Distributed consensus on enclosing shapes and minimum time rendezvous
更新时间:2023-07-27 17:42:01 阅读量: 实用文档 文档下载
- distributed推荐度:
- 相关推荐
In this paper we introduce the notion of optimization under control and communication constraint in a robotic network. Starting from a general setup, we focus our attention on the problem of achieving rendezvous in minimum time for a network of first order
Distributedconsensusonenclosingshapes
andminimumtimerendezvous
GiuseppeNotarstefano
6
Abstract—Inthispaperweintroducethenotionofoptimiza-0tionundercontrolandcommunicationconstraintinarobotic0network.Startingfromageneralsetup,wefocusourattention2ontheproblemofachievingrendezvousinminimumtime foranetworkof rstorderagentswithboundedinputsandlimitedrangecommunication.WeproposetwodynamiccontrolepSandcommunicationlaws.Theselawsarebasedonconsensusalgorithmsfordistributedcomputationoftheminimalenclosing 6ballandorthotopeofasetofpoints.Weprovethatthesecontrol lawsconvergetotheoptimalsolutionofthecentralizedproblem ](i.e.,whennocommunicationconstrainsareenforced)astheCboundonthecontrolinputgoestozero.Moreover,wegiveaOboundforthetimecomplexityofoneofthetwolaws.
.I.INTRODUCTION
thaTheinterestingaspectofmotioncoordinationconsistsinmcombiningtogetherproblemsfromcontrolandcommunica-[tiontheory.Themaindif cultydealswithintegratingthe 1sensing,computing,communicationandcontrolaspectsofvproblemsinvolvinggroupsofmobileagents.Awellknown9problemincontroltheoryisoptimalcontrol.Roughlyspeak-6ing,itconsistsin ndingafeedbacklawthatminimizessome1costfunctionalundersomeinputsanddynamicsconstraint.9Inthispaperweintroducethenotionofoptimalcontroland06communicationforanetworkofroboticagents.Wewant0tostudyhowtosolveanoptimizationproblem,inpresence/ofboththeusualmotionconstraintsandthecommunicationthones.Inparticularthispaperisapreliminarycontributionatowardswhatmightbelooselyreferredtoas“distributedmgeometricoptimization.”Infactmanyoptimizationproblems:forroboticnetworkscanbeshowntobeequivalenttothevicomputationofgeometricshapes.WhileinacentralizedXsettingthesolutionisusuallysimple,theproblembecomesrverycomplicatedwhenitmustbesolvedinadistributedaway.Distributedcomputationovernetworkhasbeenlargelystudiedfor xedtopologies;e.g.,see[1].
Inthispaperwepointourattentiononthewellknownrendezvouscoordinationtaskandlookforsolutionsthatsolvesuchtaskinminimumtime.Welookfordistributedsolutionsinnetworksofmobileagentswith rstorderdynamics,boundedinputsandlimited-rangecommunication.The“multi-agentrendezvous”problemanda“circumcen-teralgorithm”havebeenintroducedbyAndoandcoworkers
ThismaterialisbaseduponworksupportedinpartbyAROMURIAwardW911NF-05-1-0219.TheauthorswouldliketothankSoniaMart´ nez,JorgeCort´es,andEmilioFrazzolifornumerousdiscussionsonroboticnetworks.GiuseppeNotarstefanoiswiththetheDepartmentofInformationEn-gineering,Universit`adiPadova,ViaGradenigo6/b,35131Padova,Italy,notarste@dei.unipd.it
FrancescoBulloiswiththeCenterforControl,DynamicalSystemsandComputation,UniversityofCaliforniaatSantaBarbara,SantaBarbara,CA93106,bullo@engineering.ucsb.edu
FrancescoBullo
in[2].Thealgorithmproposedin[2]hasbeenextendedtovarioussynchronousandasynchronousstop-and-gostrate-giesin[3].Arelatedalgorithm,inwhichconnectivitycon-straintsarenotimposed,isproposedin[4].In[5]theclassof“circumcenteralgorithms”hasbeenstudiedinnetworksofagentswhosestatespaceisRd,forarbitraryd,andwithcommunicationtopologycharacterizedbyproximitygraphsspatiallydistributedoverthediskgraph.In[6]the(timeandcommunication)complexityofthisandotheralgorithmshasbeenstudied.Allthesecoordinationschemesarememoryless(staticfeedback).Inthispaperwewanttoexploredynamiccontrolandcommunicationlawsinordertoapproximatetheoptimalsolutionoftheminimumtimerendezvous.Inparticularthecontrolandcommunicationlawsisbasedonreachingconsensusonsomelogicvariablesandatthesametimemovingtowardthecurrentestimation.Asimilarapproachwasusedin[7]wheretheagentstrytoreachaconsensusonasetofvariablescalledcoordinationvariables.Studyingtheminimumtimerendezvousprobleminthecentralizedsettingweshowthat,dependingonthenormusedtoboundthecontrolinput,theoptimalsolutionconsistsofmovingtowardthecenteroftheminimalenclosingball(boundonL2norm)andtowardthecenteroftheminimalenclosingorthotope(boundonthein nitynorm)ofthepointslocatedattheinitialpositionoftheagents.
Ourmainresultisthedesignofacontrolandcom-municationlawbasedonaconsensusalgorithmforthedistributedcomputationoftheminimalenclosingballandtheminimalenclosingorthotopeofasetofpoints.Weprovethecorrectnessofthetwoconsensusalgorithmsandprovideaboundonthetimeofconvergencefortheorthotopecase.Thenweprovethatthecontrolandcommunicationlawthatcombinestheconsensuswiththemotionlawconvergestotheoptimalsolutionasthecontrolboundgoestozero.Moreover,fortheproblemwithinputboundedbythein nitynorm(correspondingtothecomputationoftheminimalenclosingorthotope),weprovethatthecontrolandcommunicationlawisaconstantfactorapproximationofthecentralizedoptimalsolution.
InSectionIIweintroduceaformalmodelofroboticnetworkinspiredbytheoneintroducedin[6].Moreover,wede netheoptimalcontrolandcommunicationproblem.InSectionIIIwecharacterizethesolutionofminimumtimerendezvousinacentralizedsetting.InSectionIVwede netheFloodMEBandFloodMEOalgorithmsforthedistributedcomputationofminimalenclosingballandorthotope,provetheircorrectnessandgiveboundsontimecomplexity.Sec-tionVcontainsthecontrolandcommunicationlawsbasedontheconsensusalgorithmsdescribedinSectionIV.Finallyin
In this paper we introduce the notion of optimization under control and communication constraint in a robotic network. Starting from a general setup, we focus our attention on the problem of achieving rendezvous in minimum time for a network of first order
SectionV-CandSectionVIweshowsimulationsanddrawtheconclusionswithfutureperspectives.
II.PRELIMINARYDEVELOPMENTS
Inthissectionwerecalltheconceptsofnetworkofroboticagents,coordinationtasksandcomplexitymeasures,andintroducethenotionofoptimizationundermotionandcommunicationconstraints.
A.Notation
WeletN,N0,andR+denotethenaturalnumbers,thenon-negativeintegernumbers,respectively.Welet andthepositiverealnumbers,i∈{1,...,n}SidenotetheCartesianproductofsetsS1,...,Sn.Forp∈R,welet p and p denotethe oorandceilofp.Forr∈R+andp∈Rd,weletB(p,r)denotetheclosedballcenteredatpwithradiusr,i.e.,B(p,r)={q∈Rd| p q 2≤r}andC(p,r)denotetheclosedhypercubecenteredatpwithsidesoflengthrandparalleltothecoordinateaxes,i.e.,C(p,r)={q∈Rd| p q ∞≤r}.
Forf,g:N→R,wesaythatf∈O(g)(respectively,f∈ (g))ifthereexistn0∈Nandk∈R+suchthat|f(n)|≤k|g(n)|foralln≥n0(respectively,|f(n)|≥k|g(n)|foralln≥n0).Iff∈O(g)andf∈ (g),thenweusethenotationf∈Θ(g).
Next,webrie yreviewsomeusefulproximitygraphs.Givenrcmm∈R+,thediskgraphGdisk(rcmm),respec-tivelycubegraphGcube(rcmm),isthestatedependentgraphonRdde ned[n]bythefollowingstatement:foranypointset{p[1],...,p} Rd,thepair(i,j)isanedgeinG[1]disk(rcmm)·({p[1],...,p[n]}),respectivelyGcube(rcmm)·({p,...,p[n]}),ifandonlyifi=jand p[i] p[j] 2≤rcmm
p[i] p[j]∈B(0d,rcmm),
respectively
p[i] p[j] ∞≤rcmm
p[i] p[j]∈C(0d,rcmm).
AnotherusefulgraphisthecompletegraphGcmpl,i.e.,thegraphwithedgesbetweenanypairofnodes.
Finally,givenagraphG(evennotstatedependent),wedenotewithdistG(i,j)thetopologicaldistancebetweeniandj,i.e.,theminimumnumberofagentstogofromitojinthegraphG.Wede nediamG,thediameterofG,tobethemaximumtopologicaldistance,distG(i,j),forall(i,j).B.Modelinganetworkofroboticagents
Wedescribea(uniform)networkofroboticagentsusingtheformalmodelintroducedin[6]modi edforthediscretetimecase.Thenetworkismodeledasatuple(I,A,Ecmm).I={1,...,n}isthesetofuniqueidenti ers(UIDs);A={A[i]}i∈I={(X,U,X0,f)}i∈IiscalledthesetofphysicalagentsandisasetofcontrolsystemsconsistingofadifferentiablemanifoldX(statespace),acompactsubsetUofRm(inputspace),asubsetX0ofX(setofallowableinitialstates)anda(suf cientlysmooth)mapf:X×U→Xdescribingthedynamicsofithagent;Ecmm:Xn→I×Iiscalledthecommunicationedgemap.
Theroboticnetworkevolvesaccordingtoadiscrete-timecommunicationandmotionmodel.
De nition2.1(Controlandcommunicationlaw):LetSbearoboticnetwork.A(uniform,synchronous,dynamic)controlandcommunicationlawCCforSconsistsofthesets:
(i)L,asetcontainingthenullelement,calledthe
communicationlanguage;elementsofLarecalledmessages;
(ii)W,setofvaluesofsomelogicvariablesw[i],i∈I;(iii)W0 W,subsetsofallowableinitialvalues;andofthemaps:
(i)msg:X×W×I→L,message-generationfunction;(ii)stf:W×Ln→W,calledstate-transitionfunction;(iii)ctl:X×W×Ln→U,calledcontrolfunction. Roughlyspeakingthisde nitionhasthefollowingmean-ing:foralli∈I,totheithphysicalagentcorrespondsalogicprocess,labeledi,thatperformsthefollowingactions.First,ateachcommunicationroundtheithlogicprocesssendstoeachofitsneighborsinthecommunicationgraphamessage(possiblythenullmessage)computedbyapplyingthemessage-generation[i]functiontothecurrentvaluesofx[i]andw.Afteranegligibleperiodoftime,theithlogicprocessresetsthevalueofitslogicvariablesw[i]byapplyingthestate-transitionfunctiontothecurrentvalueofw[i],andtothemessagesreceivedattimet.Betweencommunicationinstants,themotionoftheithagentisdeterminedbyapplyingthecontrolfunctiontothecurrentvalueofx[i],andthecurrentvalueofw[i].Thisideaisformalizedasfollows.De nition2.2(Evolutionofaroboticnetwork):LetSbearoboticnetworkandCCbeacontrolandcommunicationlawforS.Theevolutionof(S,x[i][i]
CC)frominitialconditions0∈X0andw0∈W0,i∈I,isthesetofcurvesx[i]:N→Xandw[i]:N→W,i∈I,satisfying
x[i](t+1)=f x[i](t),ctl(x[i](t),w[i](t+1),y[i](t))
,where,fori∈I,
w[i](t+1)=stf(w[i](t),y[i](t)),
withtheconventionsthatx[i](t0)=x[i]
[i]
i∈I.Here,thefunctiony[i]:N→0andw[i](t0)=wLn(describingthe0,messagesreceivedbyagenti)y[i]
Inthepaper
hascomponents
msg(x[j](t),w[j](t),i),if(i,j)∈Ecmm,j(t)=
null,otherwise.
weconsiderthefollowingnetwork.Eachagentioccupiesalocationp[i]∈Rd,d∈N,andmovesaccordingtothe rstorderdiscrete-timeintegrator
p[i](t+1)=p[i](t)+u[i](t).
(1)
Thecommunicationedgemapcanbeeithertheonearisingaccordingtothediskgraph,Edisk,ortheoneaccordingtothecubegraph,Ecube.Eachcontrolu[i]takesvaluesinaboundedsubsetofRd,thatcanbeeitherB(0,rctr)orC(0,rctr),i.e., u[i] 2≤rctror u[i] ∞≤rctr.Noticethat,ingeneral,thetypeofcommunicationedgemapandthetypeofcontrolboundarenotrelated.Finallythecontrolandcommunicationlawwillbede neddependingonthecoordinationtask.
In this paper we introduce the notion of optimization under control and communication constraint in a robotic network. Starting from a general setup, we focus our attention on the problem of achieving rendezvous in minimum time for a network of first order
C.Coordinationtasksandtimecomplexity
Wearereadytode nethenotionoftaskandoftaskachievementbyaroboticnetwork.
De nition2.3(Coordinationtask):LetSbearoboticnetwork.nA(static)coordinationtaskforSisamapT:X→{true,false}.Additionally,letCCacontrolandcommunicationlawforS.Theforallinitialconditionsx[i]lawCCachievesandw[i]
thetaskTif,
0∈X00∈W0,i∈I,thecorrespondingnetworkevolutiont→(x(t),w(t))hasthepropertythatthereexistsT∈NsuchthatT(x(t))=trueforallt≥T. Weare nallyreadytode nethenotionoftimecom-plexityastheminimumnumberofcommunicationroundsneededbytheagentstoachievethetaskTwithCC.
De nition2.4(Timecomplexity):LetSbearoboticnet-workandletTbeacoordinationtaskforS.LetCCbeacontrolandcommunicationlawforScompatiblewithTThetimecomplexitytoachieveTwithCCfromx0∈X0n
.
isTC(T,CC,x0)=inf{T∈N|T(x(t))=true, t≥T}wheret→(x(t),w(t))istheevolutionof(S,CC)fromtheinitialcondition(x0,w0).
ThetimecomplexitytoachieveTwithCC,TC(T,CC),isthemaximumTC(T,CC,x0)overallinitialconditionsx0.D.OptimalcontrolandcommunicationinroboticnetworksHavingde nedacoordinationtaskforaroboticnetwork,wecanaskwhethersuchtaskcanbeaccomplishedminimiz-ingsomecostfunctional.Inwhatfollowswewillintroducethenotionofoptimalcontrolandcommunicationproblemandofoptimalcontrolandcommunicationlawassolutionoftheproblem.
De nition2.5(Optimalcontrolandcommunication):GivenataskTandacostfunctionalJ(u(·),x(T),T),anoptimalcontrolandcommunicationproblemisthefollowing:minimizeu(·),x(0),x(T),TJ(u(·),x(T),T)
J(u(·),x(T),T)= T
τ=0(l(x(τ),u(τ))+g(x(T)),subj.to
(i)(x(·),u(·))isaninput-statetrajectoryofA,
A={A[i]}i∈I;
(ii)iandjcancommunicateifandonlyif
(i,j)∈Ecmm(x[1](t),...,x[n](t));(iii)T(x(t))=trueforallt≥T,T∈N.
wherel:Xn×Un→Risasuf cientlysmoothand
nonnegative-valuednfunction,calledstagecost,andg:X→Rhasthesamepropertiesplusg(x)=0forallx∈XnsuchthatT(x)=true(foranadmissibleCC). WesaythatacontrolandcommunicationlawCCisoptimalwithrespecttothecoordinationtaskTandthecostfunctionalJ,ifitsolvestheaboveoptimalcontrolandcommunicationproblem.
WecallCCacentralizedoptimalcontrolandcommunica-tionlawifitsolvestheoptimizationproblemforanetworkofroboticagentsthatcommunicateaccordingtothecompletegraph,i.e.,thecommunicationedgemapisEcmpl.
Remark2.6:Thecentralizedsolutionofanoptimalcon-trolandcommunicationproblemistheclassicalsolutionoftheoptimalcontrolproblemforthewholenetworksystemwithoutcommunicationconstraints.
III.CENTRALIZEDMINIMUM
TIMERENDEZVOUS
Inthissectionwestudytherendezvousproblemforaroboticnetworkof rstorderagentswithcommunicationedgemapEdiskorEcubeandlookforacontrolandcommu-nicationlawthatsolvestheprobleminminimumtime.Moreformally,letS=(I,A,Ecmm)beauniformroboticnetwork.The(exact)rendezvoustaskTrndzvs:Xn→{true,false}forSis thestatictaskde nedby
true,
ifx[i]=x[j],Trndzvs(x)=forx=(x[1],...,x[n (i,j)∈Ecmm(x),
false,otherwise.
]).
Thus,giventheuniformnetworkS=(I,A,Ecmm),theminimumtimerendezvousproblemfor rstorderagentswithlimited-rangecommunicationandboundedcontrolinputisthefollowing:
minimizeu(·),p(T)
Tτ=01,subj.to
(i)(p(·),u(·))isaninput-statetrajectoryofA,
A={A[i]}i∈I={(Rd,U,Rd,f)}i∈I,p(0)=p0;(ii)iandjcancommunicateif[nand]onlyif
(i,j)∈Ecmm(p[1](t),...,p(t));
(iii)Trndzvs(p[1],...,p[n])=trueforallt≥T,T∈N.Herei]UiseitherB(0,rctr)orC(0,rctr),f(p[i](t),u[i](t))=p[(t)+u[i](t)andthecommunicationedgemapEcmmiseitherEdiskorEcube.
WerefertotheminimumtimerendezvousproblemwithcommunicationedgemapEcmmandinputsetUasMTR(Ecmm,U).
Next,weprovidesomepreliminaryresultsforthecentralizedsettingoftheaboveproblem,]thatis,forMTR(Ecmpl,U).LetMEB(p[1]···p[n)andMEO(p[1]···p[n])theminimalenclosingballandorthotopeofpoints(p[1]·]··p[n]),andletMBC(p[1]···p[n][n])andMOC(p[1]···p[n[n])thecentersofMEB(p[1]···p)andMEO(p[1]···p)respectively.Wepresentthefollowingtheoremomittingtheproofbasedongeometricargumentsbecauseofspaceconstraints.
Theorem3.1:Forallrctr∈R+,p[i]
),U0∈Rd,i∈{1,...,n}thesolutionofMTR(Ecmpl,U=B(0,rctr)orU=C(0,rctr),isnotunique(theproblemisnotnormal).Ifu[i]∈B(0,rctr),i∈{1,...,n},then
(i)p(T)=prndzvs,disk=MBC(p[1](0),...,p[n](0)),
u[i](t)=min{rctr, prndzvs p[i](t) 2}
·vers(prndzvs p[i](t)),
i∈{1,...,n},
isasolutionofMTR(Ecmpl,B(0,rctr));
In this paper we introduce the notion of optimization under control and communication constraint in a robotic network. Starting from a general setup, we focus our attention on the problem of achieving rendezvous in minimum time for a network of first order
(ii)if i∈{1,...,n}, p[i] MBC(p[1]···p[n]) 2≤
rctr,thenthesolutionofMTR(Ecmpl,B(0,rctr))isgivenbyp(T)=prndzvs,disk,prndzvs,disk∈∩i∈{1,...,n}B(p[i],rctr),andu[i](t)=prndzvs,disk p[i](t).
Alternatively,ifu[i]∈C(0,rctr),i∈{1,...,n},then
(iii)p(T)=prndzvs,cube,prndzvs,cube∈RMT,ua[i](t)=
min{rctr,|prndzvs,a pa[i](t)|}sign(prndzvs,a pa[i](t)),i∈{1,...,n},a∈{1,...,d}isasolutionofMTR(Ecmpl,C(0,rctr)),where
RMT= MOC(p[1](0),...,p[n](0))
1
a
2
(lmax la)
,
lmaxisthelargestsideofMEO(p[1](0),...,p[n](0))andlaisthesideindirectiona;
(iv)if i∈{1,...,n} p[i] MOC(p[1]···p[n]) ∞≤rctr
thesolutionofMTR(Ecmpl,C(0,rctr))isgivenbyp(T)=prndzvs,prndzvs∈∩i∈{1,...,n}C(p[i],r]ctr),andu[i(t)=prndzvs p[i](t). IV.DISTRIBUTED
CONSENSUSONMINIMALENCLOSING
BALLANDORTHOTOPE
Intheprevioussectionwehaveshownthatminimalenclosingshapesplayakeyroleinthesolutionofminimumtimerendezvous.Infactiftheagentscouldknowthecenterofsuchshapes(ballororthotope)thesolutionofminimumtimerendezvouswouldbejustacontrollawthatdriveseachagenttothispoint.Therefore,inthissection,wewanttoexploretwoconsensusalgorithmstocomputetheminimalenclosingballandtheminimalenclosingorthotopeofasetofgivenpointsinRdinadistributedway.
HereisaninformaldescriptionofwhatweshallrefertoastheFloodMEBalgorithm:
[Informaldescription]Eachagentinitializestheminimalenclosingballtoitsinitialposition,then,ateachcommunicationround,performsthefol-lowingtasks:(i)itacquiresfromitsneighbors(amessagerepresentedby)thecoordinatesoftheminimumsetofpointsdescribingtheboundaryoftheirminimalenclosingballandthecoordinatesoftheirinitialposition;(ii)itcomputestheminimalenclosingballofthepointsetcomprisedofitsanditsneighbors’setofpointsanditsinitialposition(thatitmaintainsinmemory);(iii)itupdatesitslogicvariablesandmessageasin(i).
Beforedescribingthealgorithmmoreformally,weneedtointroducesomenotationandstatesomepropertiesoftheminimalenclosingball.Givenasetofmpoints{q1,...,qm} Rdingenericpositions,wedenotewithMEBbndry({q1,...,qm})theminimumsetofpointsontheboundaryofMEB({q1,...,qm})thatuniquelyidentifysuchboundary.Whenthepointsareingenericposition,weletMEBbndry({q1,...,qm})denoteaminimumsetofpointsontheboundaryofMEB({q1,...,qm})thatidentifysuchboundary.Moreover,letMBR:F(Rd)→Rthefunction
thatassociatestoasetofpointstheradiusoftheminimalenclosingballofsuchpoints.
Lemma4.1(MEBproperties):LetQnasetofnpoints.Thefollowingstatementshold.
(i)thereexistsasubsetQd Qnofd+1elementssuch
thatMEB(Qd)=MEB(Qn);
(ii)forallQn1,Qn2 QnwithQnQ;
1 Qn2,then
MBR(n(iii)ifMBR(Q1)≤MBR(Qn2)nQ1)=MBR(Qn2),thenMBC(Qn1)=
MBC(n(iv)thenumber2);
ofpossiblevaluesofMBR(Qn Q1),forall
Qn1n,is nite.
Remark4.2:AnimportantimplicationofLemma4.1(i)isthatMEBbndry({q1,...,qn})hasatmostd+1points,thenthenumberofpacketsinthemessagesentandstoredbyeachagentisatmostd+1anddoesnotdependonn. :FloodMEBalgorithm.
Goal:Solvetheproblemofcomputingmin-imalenclosingballofasetofLogicstate:w[i]=(P[i]bndry,p[i]
points.
0);Msgfunction:msg(x[i],w[i],i)=w[i];Initialization:
P[i]bndry(0)={p[i](0)},p[i]
0(0)=p[i](0).
In this paper we introduce the notion of optimization under control and communication constraint in a robotic network. Starting from a general setup, we focus our attention on the problem of achieving rendezvous in minimum time for a network of first order
sequencecorrespondstoaballwhoseradiusismonotonenondecreasing,upperboundedandcanassumea nitenum-berofvalues.Thenweproceedbycontradictiontoprovethatallthelawsconvergetothesameball(sameradiusandcenter)andthatitisexactlytheminimalenclosingballofthenpoints.Supposethatthealgorithmconvergesondifferentballs(differentradiusordifferentcenter)fordifferentagents.Thentheremustexisttwoagentsthatareneighborsandhavedifferentlogicvariables(correspondingtodifferentballs).Butthismeansthat,atthefollowingtimeinstant,theyhavetocomputetheminimalenclosingballofalargersetofpoints,theneitheroneofthemwilltakethevalueoftheotherorbothofthemwillchangetheirvalueandtakeacommonone.Iteratingthisargumentweobtainthatalltheagentsmustconvergetoacommonvalue.Now,theballateachnodecontains,byconstruction,theinitialpositionofthatnode.Sincetheballisthesameforeachnode,itcontainsalltheinitialpositions,thenitistheminimalenclosingballoftheinitialpositions.
Fori∈{1,...,n},agentiexecutesateachtimet∈N:
1:acquirew[j],j∈N(i)2:
compute a∈{1,...,d}
p[i]
=minj∈N(i)∪{i}{p[j]min,a(t+1)p[max,ai]min,a(t)}(t+1)=maxj∈N(i)∪{i}{p[max,aj]
(t)}3:
update a∈{w[ai](t+1)= 1,...,d}p[i]
p[max,ai]min,a(t+1),(t+1)
whereimin,aandimax,aaretheagentsthatcharacterizetheboundaryoftheorthotopeindirectionaandminimizethetopologicaldistancefromi.
ThetimecomplexityofthealgorithmisoforderΘ(n). Proof:InordertoprovethecorrectnessandthetimecomplexityofthealgorithmdescribedinTable??,weneedtoprovethatitisequivalentto2dFloodMaxalgorithmsforleaderelection(twoforeachdirection)runningsimultane-ously.Oncewehaveproventhat,theresultsoncorrectnessandtimecomplexityfollowfromChapter4in[1].
ThealgorithmisclearlyasetofFloodMaxalgorithmsforleaderelection.Infacttheboundaryoftheorthotopeineachdirectionaisgivenbythecoordinatesofthepointsonsuchboundarywhicharecharacterizedbythepropertyofhavingthemaximumandminimumvalueoftheathcoordinaterespectively.
Inordertoprovethattheexactnumberofcommunica-tionroundsneededisTFloodMEO,simplyobservethatitisexactlytheminimumtimeforalltheleaderstopropagatetheirinformationthroughallthenetwork.Hencethisistheminimumtimeforeverypossibleconsensusalgorithmtoconverge.Butthisisexactlythetimetakenby2dFloodMaxalgorithmsrunningsimultaneouslyandthereforethetimetakenbyFloodMEO.
In this paper we introduce the notion of optimization under control and communication constraint in a robotic network. Starting from a general setup, we focus our attention on the problem of achieving rendezvous in minimum time for a network of first order
theMEB(MEO)ofagenti(forsomei∈{1,...,n})hasnotchangedandthealgorithmhasnotconvergedyet.ThentherewillexistaT>diamGsuchthattheMEB(MEO)ofagentiwillchangetoanewvalue.Butthismeansthatthenewvalue,storedTroundsbeforebysomeotheragentj,tookanumberofcommunicationroundsgreaterthandiamGtoarrivefromjtoiandthiscontradictsthede nitionofdiameterofG.
T∈Nsuchthatfort=
A.TimecomplexityofCCMEBandCCMEO
InthepreviouslemmawehaveproventhatthecontrolandcommunicationlawsCCMEBandCCMEOachieveconsensus.Nowweaskhowfasttheselawsaredependingonthecontrolboundrctrandthenumberofagents.
Theorem5.2:Forrcmm∈R+,d∈N,considerthenetworkSwithcommunicationedgemapeitherEdiskorEcube.Thefollowingstatementshold:
(i)foru[i]∈B(0,rctr),i∈{1,...,n},thecontroland
communicationlawCCMEBasymptoticallyconvergestotheminimumtimerendezvouscentralized+solutionMTR(Ecmpl,B(0,rctr))asrctr→0(forall xedn).(ii)foru[i]∈C(0,rctr),i∈{1,...,n},thecon-trolandcommunicationlawCCMEOconvergestotheminimumtimerendezvouscentralized+solutionMTR(Ecmpl,C(0,rctr))forrctr→0(forall xedn).Moreover,itisaconstantfactorapproximationofMTR(Ecmpl,C(0,rctr)),i.e.,TC(Trndzvs,CCMEO)∈Θ(n
rTctr
+FloodMEO.
(3)
The rststatementisprovenbyobservingthatTFloodMEOdoesnotdependonrctr,therefore,asrctr→0+,TMEOconvergestotheoptimalvalueofthecentralizedcase.
Inordertoprovethesecondstatement,observethatdiam(p[1](0),...,p[n](0))≤(n 1)rcmmandTFloodMEO∈Θ(n).Theresultfollowsbysubstitutingtheseboundsin(3).
In this paper we introduce the notion of optimization under control and communication constraint in a robotic network. Starting from a general setup, we focus our attention on the problem of achieving rendezvous in minimum time for a network of first order
B.DistributedminimumtimerendezvousinonedimensionInonedimension(alltheagentsspreadonaline),wecan ndaconditiononrctrensuringthatthemove-toward-MBCalgorithmisthesolutionofMTR(Edisk,B(0,rctr)).
Theorem5.5:Ford=1,letimaxandimintheagentsinthenetworkSwiththemaximumandminimumpositions.Ifrctr<1
rctr
Proof:Considertheinputsequenceofthecentralizedsolutionfortheagentimin(andequivalentlyforimax).Itisu[imin](t)=rctrforallt<T 1andu[imin](T 1)=MBC(p[1](0),...,p[n](0)) p[imin](T 1).SincetherendezvoustimeisboundedbythetimethatimaxandimintaketoreachMBC(p[1](0),...,p[n](0)),weneedtoprovethat,aslongastheconsensusontheminimalenclosingballisnotreached,thenu[imin](t)= u[imax](t)=rctr.Duetothesymmetryoftheproblemwewillgivetheproofonlyforimin.Itcanbeeasilyshownthatforallt≥1such
[imin]
thatpmax(t)=p[imax](0)(consensusisnotreached),thefollowingholds:
[imin]imin]
p[max(t+1)>pmax(t 1)+rcmm.
.
Itfollows:
MBC[imin](t+1)=
1
2
imin][imin]
(p[(0))max(t 1)+rcmm+p
=MBC[imin](t 1)+
1rcmm.
2
Thisleadsto
rctr+
1
4
rcmm.
Theothertwoassumptionsensuretheconditionfort=0.
- 1TIME单挑1000
- 2REFLECTED BROWNIAN BRIDGE LOCAL TIME CONDITIONED ON ITS LOCAL TIME AT THE ORIGIN
- 33BM3U1Shapes教案
- 4Approximate distributed Kalman filtering in sensor networks with quantifiable performance
- 5Inter-Network magnetic fields observed during the minimum of the solar cycle
- 6牛津小学英语5A Unit 9 Shapes
- 7Discrete-Time Integrator
- 8《TIME》周刊经典词汇
- 9《What time is it? 》试讲稿
- 10How to manage time in college
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Distributed
- rendezvous
- consensus
- enclosing
- minimum
- shapes
- time
- 重庆机床厂实习报告
- 安全生产管理奖惩考核办法
- 永州监狱监理规划
- 最新审定新人教版一年级数学上册小学一年级上册数学第六单元11~20数的认识练习试卷
- 正海磁材:2012年第三季度报告正文
- 石景山一模试题解析2013
- 小学语文作文创新教学浅探
- 人教统编版2020-2021年二年级上册语文第六单元测试卷C卷
- 战斗动作训练教案
- 校园文化艺术节致辞精选范文5篇
- 2018年元宵节灯谜
- 系统集成项目管理师教材第4章
- 【全国百强校】浙江省嘉兴市第一中学2017-2018学年高二下学期期中考试地理试题(无答案)
- 饲料及药物管理制度
- 18剪板机安全操作规程
- 附一院工程分公司对项目部安全总交底
- 七年级语文上册 盲孩子和他的影子随堂练习 人教新课标版
- 第一学期小学五年级班主任工作计划
- 陈毓慧《内部客户服务和沟通技巧》课程大纲2009-9-30
- 中央音乐学院培训中心招生简章