第八章 多元函数微分学及其应用 习题解答

更新时间:2023-10-20 09:23:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

习题8-1

1. 求下列函数的定义域: (1)

z?x?y ;

解:x?y?0,y?0?D?x??x,y?y?0,x?y?

2(2)

z?ln(y?x)?1?x?y2;

解:y?x?0,x?0,1?x2?y2?D?(3)

??x,y?y?x?0且x12222?y2?1

?u?R2?x2?y2?z2?x?y?z?r2(R?r?0);

解:0?R2?x2?y2?z2,0?x2?y2?z2?r2?

?D?(4)

??x,y,z?r2?x2?y2?z2?R2

2?u?arccoszx?y2。

解:z22?1,x?y?0?D?22x?y??x,y?z?x2?y2且x2?y2?0

?2. 求下列多元函数的极限:: (1)

limx?1y?0ln(x?ey)x?y22;

ln(x?ey)ln(1?1) 解:lim??ln2

22x?11x?yy?0(2)

lim2?xy?4;

x?0xyy?01?12?(t?4)2?xy?42t?41?lim?lim2?? 解:令t=xy,limx?0t?0t?0xyt14y?0 1

(3)

limsinxy;

x?0xy?5sinxysinxy?5lim?5

x?0x?0x5xy?5y?0解:lim1?cos(x2?y2)(4) lim;

22x2y2x?0y?0(x?y)ex2?y221?cos(x2?y2)1解:?1?cos(x?y)?2(sin),?lim22x2y2?2??0?0

x?022y?0(x?y)e22(5)

lim(x2?y2)xy。

x?0y?0解:设xy?0,两边取对数xyln(x2?y2),由夹逼定理limxyln(x2?y2)xylnxy?xyln(x2?y2)?(x2?y2)ln(x2?y2)当xy?0时同理可得,limxyln(x?y)?0,?lim(x?y)?ex?0y?0x?0y?02222xyx?0y?0?1

3. 证明下列极限不存在: (1)

limx?y;

x?0x?yy?0

证明:当(x,y)沿直线y?mx趋于原点(0,0)时.f(x,y)?f(x,mx)?(1?m)x(1?m)x

limx?y1?m?,m不同时,极值也不同,所以极限不存在。

x?0x?y1?my?0x2y2(2) lim22。

x?0xy?(x?y)2y?0证明:

x2y2当(x,y)沿直线y?x趋于原点(0,0)时,f(x,y)?f(x,x)?1,lim22?1x?0xy?(x?y)2y?0 2

当(x,y)沿直线y?2x趋于原点(0,0)时,f(x,y)?f(x,2x)?0x2y2lim22?0,极值不同,所以不存在x?0xy?(x?y)2y?04. 讨论下列函数在点(0,0)处的连续性:

222222??(x?y)ln(x?y),x?y?0(1) f(x,y)?? ; 22?x?y?0?0,

lim解:连续,x?0y?0f(x,y)?lim(x2?y2)ln(x2?y2)?0?f(0,0)

x?0y?01?(x?y)cos,x?0?f(x,y)?(2) ; x??x?0?0,解:连续,x?0时,limf(x,y)?lim(x?y)cosx?0y?0x?0y?01?0,x?0时,limf(x,y)?0x?0xy?0

?limf(x,y)?f(0,0)?0

x?0y?0?2xy22?x2?y2,x?y?0(3) f(x,y)?? 。

?0,x2?y2?0?解:不连续,f(x)?2xy在(0,0)处极限不存在。 22x?y2m1?m2

当(x,y)沿直线y?mx(m?0)趋于原点(0,0)时.f(x,y)?f(x,mx)?limf(x,y)?x?0y?02m,m不同时,极值也不同,所以极限不存在。 21?m习题 8-2

1. 求下列函数的一阶偏导数: (1)

xz?xy?

y

3

解:

?z1?z?y?,?x?xy?2 ?xy?y(2)

z?arcsinx;

22x?yy?z?z?xy解: ?22,??xx?y?yy?x2?y2?(3)

z?(x?y)e22?y?-arctan???x?;

解:

yyy?arctan?arctan?arctan?z122?2x?(x?y)ex?(?1)x(2x?y) ?2xe?y?(?1)x?ey?x1?()2xyyy?arctan?arctan?arctan?z1122x?(x?y)ex?(?1)x(2y?x) ?2ye?y??ey?yx1?()2x(4)

z?xy?yx;

?z?(xy)xy?(yx)?y?x?xy?1?yx(y?xlny), 解:?x?x?x?z?xylnx?yx?xy?xyx?1?xyyx?1(ylnx?x) ?y(5) 解:(6) 解:(7)

f(u,v)?ln(u?lnv);

?f1?f11?,?? ?uu?lnv?vu?lnvvf(x,y)??edt;

x2222?f?x?f?y??ex???ex, ?ey??ey ?x?x?y?yyt2u?xy

zzz?u?u?u?yz?xy?1,?xylnx?z?yz?1,?xylnx?yzlny 解:?x?y?zu?sin(x1?2x2???nxn)。

4

z(8)

解:

?u?u?cos(x1?2x2?????nxn),?2cos(x1?2x2?????nxn),???,?x1?x2?u?ncos(x1?2x2?????nxn) ?xn

2. 求下列函数在指定点处的一阶偏导数: (1)

z?x?(y?1)arcsin?z?1?(y?1)?x1x, 点 (0,1); y?解:

1?z,?=1?0?1,x2xy?x(0,1)1?y11?xy?(?x2yy),? z?=0 ?y(0,1)?zx?0?arcsin?(y?1)?yy(2)

yz?x2ey?(x?1)arctan, 点 (1,0)。

x?zy?ey?2x?arctan?(x?1)?xx1?y??z?2?,?=2+0+0=2;2?y??x??x(1,0)1???x???

解:

?z?x2ey?(x?1)?y1?1??z,?=1+0=1 2??y??x??y(1,0)1???x????x2?y2?z?3. 求曲线?4 在点 (2,4,5) 处的切线对于x轴的倾斜角。

??y?4解:zx(2,4)?x??1,?tan??1,??? 2(2,4)4?xy22,x?y?0,?224. 设f(x,y)??x?y证明f(x,y)在点(0,0)处连续且偏导数

?0,x2?y2?0,?存在。

5

本文来源:https://www.bwwdw.com/article/xgbf.html

Top