铁路隧道现场监辅助坑道交叉口施工技术分析
更新时间:2024-03-08 05:54:01 阅读量: 综合文库 文档下载
铁路隧道现场监控量测回归分析
蒲荣宇
摘 要:介绍了包西铁路通道大保当至张桥段铁路中新九燕山隧道现场监控量测记录和数据的回归分析方法,对施工中的围岩稳定性、二次衬砌施工时间进行了分析,证明应用铁路隧道现场监控量测结果,能够有利于指导铁路隧道现场施工,科学合理确定开挖方法,及时施工二次衬砌,从而保证铁路隧道施工顺利进行。
关键词:铁路隧道 监控量测 围岩稳定 回归分析 1 工程概况
包西铁路通道大保当至张桥段铁路新九燕山隧道位于陕西省延安市南川河与劳川河上游分水岭处的劳山川右岸黄土梁峁区,隧道于三十里一沟左侧进洞,下穿既有线西延铁路洪市沟二号隧道,再穿过九燕山分水岭从前黄土沟出洞,地面高程为1158~1135米。隧道起讫里程为DK514+049~DK523+402,全长9353米,为双线隧道,隧道除进口312.77米位于R-2804.53m的曲线上,出口1725.09位于R-4004.53m的曲线上外,其余地段均位于直线上。洞身依次为长5901米的3‰、长2150米的7‰的连续上坡,出口为1302米3‰的下坡。隧道穿越了III、IV、V级围岩 隧道经过区出露主要地层为第四系全新统坡积砂质黄土,中更新统风积砂质黄土,中更新统风积黏质黄土,上第三系红粘土及侏罗纪页岩夹砂岩。隧道通过主要不良地质为滑坡,局部围岩稳定性差,尤其DK521+177~DK523+402段洞身位于第三系红粘土层,红色粘土岩为中等膨胀土,含较多疆石结核层富水,受地下水浸泡,对隧道工程影响极大,工程性质较差。地下水类型主要为第四系孔隙水和基岩裂隙水,是造成黄土山体变形的重要条件之一。
新九燕山隧道共设3个辅助坑道,均位于线路右侧,1号斜井与右线线路中线交于DK517+500,平面夹角35°,相交处夹角90°,最大坡度值11.6%,全长513.06米;2号斜井与右线线路中线交于DK519+720,平面夹角40°,最大坡度值11.6%,全长791.7米;3号斜井与右线线路中线交于DK521+400,平面夹角55°34′28″,相交处夹角80°,最大坡度值11.8%,全长367.15米。 本工点地震动峰值加速度值采用0.05g(相当于地震基本烈度六度),地震动反应谱特征周期为0.35S。 2 施工方法
本隧道施工严格按照新奥法施工,充分利用围岩的承载自稳能力,初期支护和二次衬砌对围岩起约束作用,使围岩的变形在有限的空间里,以发挥其承载能力,又阻止围岩过度变形而产生失稳。IV、V级围岩采用环形开挖预留核心土法,III级围岩采用台阶法施工。本隧道施工工期极度紧张,我们在开挖施工过程中,根据围岩监控量测的数据以及回归曲线分析,及时调整开挖方法,变形较小地段采用三台阶法施工,台阶之间的距离为5米,确保仰拱和掌子面的距离40米,二衬和掌子面的距离90米这安全红线。
3 监控量测
现场监控量测不仅检测各施工阶段围岩和支护动态,确保施工安全,而且是调整初期支护设计参数,确定二次衬砌和仰拱的施做时间提供合理的科学依据。
洞内外观察、水平相对净空变化值的量测、拱顶下沉量测、红粘土地段的隧底上鼓量测为必须进行的量测项目。量测断面间距V级围岩取5米,IV级围岩取20米,III级围岩取40米,当检测结果有异常时,缩小量测断面间距,加快量测频率。保证一个台阶一条量测线。本隧道在施工过程中,把围岩监控量测作为一项工序纳入到施工中。
新九燕山隧道开挖采用上下台阶法开挖,上台阶开挖采用环形开挖预留核心土法,下台阶开挖左右两侧跳槽开挖。测点布设为:拱顶位置布设一个测点,上台阶布设一对测点,下台阶布设一对测点,共计5个测点,对于地质变化处,位移收敛较明显位置,可以加强测点的布设,不同断面的测点应布置在相同的部位,测点应尽量对称布置,以便数据的相互验证。 4 数据处理
现场监控量测数据取得后,及时进行校对、整理、打印相关监控量测报表(以拱顶下沉原始记录表为
例),并根据数据绘制位移-时间(u-t)散点图(图1),以便分析时间效应和空间效应的影响。当u-t关系曲线图趋于平稳时,根据散点图的数据分布情况,选择合适的函数进行回归分析,对最大值(最终值)进行预测,并于控制基准值进行比较,综合分析围岩和支护结构的工作状态,对施工工法、工序进行评价,及时反馈评价结论,并提出相应工程对策建议。 5 回归分析
从图1可以看出,由于量测的偶然误差所造成的离散型,绘制的u-t散点图是上下波动和不规则的,应此,必须进行数据处理才能获得合理的曲线,并以相应的数学公式进行描述。回归分析就是处理测读数据,最终绘制曲线的一种方法。
回归分析是对一系列具有内在规律性的测试数据进行处理,通过处理和计算得到两个变量之间的函数式关系。用这个函数式做出的曲线能代表测试数据的散点分布,用以推算围岩的最终位移和掌握位移变化的规律。 项目名称 桩号 测量 编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 DK523+300 量测时间(dt) 年 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 月 日 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 第一次 包西铁路新九燕山隧道出口 埋设日期 测点高程 第二次 平均 2008-4-3 合同段 施工单位 修正后测点 高程(m) BXS-2标 中铁十二局包西铁路延安项目部第四分部 相对初次下沉值(mm) 1.43 2.30 2.62 2.80 2.96 3.01 3.03 3.10 3.14 3.14 3.18 3.19 3.23 3.23 3.23 3.23 3.23 相对上次下沉值(mm) 1.43 0.86 0.32 0.18 0.16 0.05 0.02 0.07 0.04 0.00 0.04 0.01 0.04 0.00 0.00 0.00 0.00 间隔 时间 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 下沉速率 1.4 0.9 0.3 0.2 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1134.16200 1134.16200 1134.16200 1134.16200 1134.16056 1134.16057 1134.16057 1134.16057 1134.15970 1134.15971 1134.15971 1134.15971 1134.15939 1134.15938 1134.15939 1134.15939 1134.15920 1134.15921 1134.15921 1134.15921 1134.15904 1134.15905 1134.15905 1134.15905 1134.15899 1134.15899 1134.15899 1134.15899 1134.15897 1134.15898 1134.15898 1134.15898 1134.15890 1134.15890 1134.15890 1134.15890 1134.15887 1134.15886 1134.15887 1134.15887 1134.15886 1134.15886 1134.15886 1134.15886 1134.15882 1134.15882 1134.15882 1134.15882 1134.15881 1134.15882 1134.15882 1134.15882 1134.15878 1134.15877 1134.15878 1134.15878 1134.15877 1134.15878 1134.15878 1134.15878 1134.15878 1134.15877 1134.15878 1134.15878 1134.15877 1134.15878 1134.15878 1134.15878 1134.15877 1134.15877 1134.15877 1134.15877 图1 位移-时间(u-t)散点图 5.1 确定变量位移(u)和时间(t)之间的函数类型
确定变量u和t之间的函数类型时,需要根据散点图的数据特点进行分析,从图1可以看出,位
移u随时间t的增加而增加,且最初几天增加较快,以后逐步趋于稳定。根据这个特点,采用不同的函数来计算相关系数R,采取相关系数R最接近1的函数来进行回归分析。 5.1.1 双曲线函数计算 u=t/(a+bt)
式中,a,b为回归常数,u为位移变形值(mm),t为测点的观测时间(d)。 5.1.1.1 将非线性回归方程转化为线性回归方程
从图一中可以看出,双曲线函数的两个变量u和t不是线性关系,需要通过数学处理,替代换元,才能把非线性回归化为线性回归,从而确定回归常数A和B。 将u=t/(a+bt)数学处理、换元如下:
首先将双曲线函数u=t/(a+bt)做以下变形; u=t/(a+bt)两边取倒数,得到: 1/u=(a+bt)/t=b+a*1/t
换元令Y=1/u,X=1/t,b=A,a=B可以得到线性方程为: Y=A+BX
5.1.1.2 求回归常数A和B
对图一中的数据进行回归计算,过程如下: X=∑Xi/n=0.194 Y=∑Yi/n=0.351
LXX=∑Xi2-n(X)2=0.912 LYY=∑Yi2-n(Y)2=0.146 LXY=∑XiYI- ∑Xi ∑Yi /n=0.341
B=LXY/LXX=0.374 A=Y-bX=0.278 相关系数r=LXY/√LXXLYY=0.933
将回归常数A、B代入双曲线方程得: u=t/(0.374+0.278t) 5.1.1.3 回归方程线性检验
根据回归方程,判断X和Y是否存在线性关系,对X和Y之间回归直线方程得有效性,用相关系数检验得: r=0.933
5.1.2 指数函数计算 u=a*e-b/t
式中,a,b为回归常数,u为位移变形值(mm),t为测点的观测时间(d) 5.1.2.1 将非线性回归方程转化为线性回归方程
从图一中可以看出,指数函数的两个变量u和t不是线性关系,需要通过数学处理,替代换元,才能把非线性回归化为线性回归,从而确定回归常数A和B。 将指数函数u=a* e-b/t数学处理、换元如下: 首先将指数函数u=a* e-b/t做以下变形; u=a* e-b/t两边取对数: ㏑(u/a)=㏑e-b/t ㏑u=㏑a+b(-1/t)
换元令Y= ㏑u,X=-1/t,A=㏑a,B=b,可以得到线性方程为: Y=A+BX
5.1.2.2 求回归常数A和B
对图一中的数据进行回归计算,过程如下: X=∑Xi/n=-0.194 Y=∑Yi/n=1.069
LXX=∑Xi2-n(X)2=0.912 LYY=∑Yi2-n(Y)2=0.673
LXY=∑XiYI- ∑Xi ∑Yi /n=0.781
B=LXY/LXX=0.857 A=exp(Y-BX)=3,441 相关系数r=LXY/√LXXLYY=0.998 将回归常数A、B代入指数方程得: u=3.441*e-0.857/t
5.1.2.3 回归方程线性检验
根据回归方程,判断X和Y是否存在线性关系,对X和Y之间回归直线方程得有效性,用相关系数检验得: r=0.998
5.1.3 对数函数计算 u=a-b/[(lg(1+t)]
式中,a,b为回归常数,u为位移变形值(mm),t为测点的观测时间(d) 5.1.3.1 将非线性回归方程转化为线性回归方程
从图一中可以看出,对数函数的两个变量u和t不是线性关系,需要通过数学处理,替代换元,才能把非线性回归化为线性回归,从而确定回归常数A和B。 将对数函数u=a-b/[(lg(1+t)]数学处理、换元如下: 将u=a-b/[(lg(1+t)]数学处理如下:
换元令Y=u,X=-/[(lg(1+t)],A=a,B=b,可以得到线性方程为: Y=A+BX
5.1.3.2 求回归常数A和B
对图一中的数据进行回归计算,过程如下: X=∑Xi/n=-1.215 Y=∑Yi/n=2.96
LXX=∑Xi2-n(X)2=6.723 LYY=∑Yi2-n(Y)2=3.548 LXY=∑XiYI- ∑Xi ∑Yi /n=4.878
B=LXY/LXX=0.726 A= Y-BX=3,841 相关系数r=LXY/√LXXLYY=0.999 将回归常数A、B代入指数方程得: u= 3.841-0.726/[(lg(1+t)] 5.1.3.3 回归方程线性检验
根据回归方程,判断X和Y是否存在线性关系,对X和Y之间回归直线方程得有效性,用相关系数检验得: r=0.999
通过以上三种回归方程,指数函数相关系数r得绝对值最靠近1,回归精度较高,所以选用该回归方程来预测最终收敛情况。
5.2 求变形稳定时间t(d)及相应得变形量u(mm) 对数函数u= 3.841-0.726/[(lg(1+t)]最大值 Umax=3.841
当时间为t=40d时,u=3.391,位移速率为0.003mm/d<0.2 mm/d 因此,当开挖40d后,可以进行二次衬砌。 图2量测数据处理与回归分析表 6 结论
本例仅对拱顶下沉量测数据为依据进行了判定,在实际操作中,要结合监控量测要求得围岩支护状态、周边位移、拱顶下沉、地表沉降等项目,综合考虑,才能得出合理结果,指导施工。新九燕山隧道地质条件复杂,尤其出口1997米为红粘土,遇水膨胀,监控量测工作指导施工尤其重要,本隧道在施工前特制定了监控量测实施细则,专人负责数据的收集、校对、整理、分析、反馈,主要依据
时态曲线的形态对围岩的稳定性、支护结构的工作状态、对周围环境的影响程度进行判定,验证和优化隧道施工参数,指导施工。新九燕山隧道在施工中把监控量测工作作为一道工序来做,初期支护未出现掉拱和塌方事故。根据监控量测数据指导二次衬砌的施做时间,很好的保证了隧道施工的安全,成为全线的样板示范工程。
测量数据处理与回收分析表
工程名称: 新九燕山隧道 测点编号:AB
一、 建立下沉量(u)随时间(t)发展的时态函数,根据施工规范选取下列函数: ⑴指数函数u=ae-(bt);⑵对数函数u=a+b/log(1+t);⑶双曲函数u=t/(a+bt) 时间t(天) 实测下沉值u(mm) 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天 第11天 第12天 第13天 第14天 第15天 第16天 第17天 第18天 ∑u 1.43 2.30 2.62 2.80 2.96 3.01 3.03 3.10 3.14 3.14 3.18 3.19 3.23 3.23 3.23 3.23 3.23 3.23 53.28 计算回归值ǜ(mm) 1.44 2.33 2.64 2.81 2.91 2.99 3.04 3.08 3.12 3.15 3.17 3.19 3.21 3.23 3.24 3.25 3.27 3.28 ∑(u-ǜ)2 -0.01 -0.03 -0.02 -0.01 0.05 0.02 -0.01 0.02 0.02 -0.01 0.01 0.00 0.02 0.00 -0.01 -0.02 -0.04 -0.05 0.01 备注 以上三种回归方程 2 的相关系数r的绝对值最接近1,其回归精度较高.故选用该回归方程来预测的最终下沉情况. ⑶ 双曲函数 u=t/(0.278-0.374t) r=0.933 ⑵ u-ǜ 里程桩号 ⑴ DK523+380 围岩类别 指数函数: u=3.442e-0.857/t r=0.998 对数函数: u=3.841-0.723/lg(1+t) r=0.999 二、根据量测数据绘制实测数据与时间关系曲线和回归方程曲线 1、实测数据与时间关系曲线 2、回归方程曲线 平均值ū= 时间t(天) 第20天 2.96 下沉值ǜ(mm) 3.29 标准差s=√∑(u-ǜ)2/n =0.024 下沉值ǚ/max100% 85.65% 时间t(天) 下沉值ǜ(mm) 第40天 3.39 下沉值ǚ/max100% 88.25% 变异系数Sr=S√u=0.041 时间t(天) 第60天 下沉值ǜ(mm) 3.44 下沉值ǚ/max100% 89.56% 三. 量测数据处理 1、推算出最终下沉量: ǜmax= 3.841 mm 2、推算出基本稳定时间: 第 40 天以后, 开挖面距该量测断面 90 m,围岩下沉为 3.39 mm,下沉率达 88.25 %≥80%,下沉速度为 0.01 mm/天≤0.2mm/天,故围岩基本稳定
测量数据处理与回收分析表
工程名称: 新九燕山隧道 测点编号:AB
一、 建立下沉量(u)随时间(t)发展的时态函数,根据施工规范选取下列函数: ⑴指数函数u=ae-(bt);⑵对数函数u=a+b/log(1+t);⑶双曲函数u=t/(a+bt) 时间t(天) 实测下沉值u(mm) 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天 第11天 第12天 第13天 第14天 第15天 第16天 第17天 第18天 ∑u 1.43 2.30 2.62 2.80 2.96 3.01 3.03 3.10 3.14 3.14 3.18 3.19 3.23 3.23 3.23 3.23 3.23 3.23 53.28 计算回归值ǜ(mm) 1.44 2.33 2.64 2.81 2.91 2.99 3.04 3.08 3.12 3.15 3.17 3.19 3.21 3.23 3.24 3.25 3.27 3.28 ∑(u-ǜ)2 -0.01 -0.03 -0.02 -0.01 0.05 0.02 -0.01 0.02 0.02 -0.01 0.01 0.00 0.02 0.00 -0.01 -0.02 -0.04 -0.05 0.01 备注 以上三种回归方程 2 的相关系数r的绝对值最接近1,其回归精度较高.故选用该回归方程来预测的最终下沉情况. ⑶ 双曲函数 u=t/(0.278-0.374t) r=0.933 ⑵ u-ǜ 里程桩号 ⑴ DK523+380 围岩类别 指数函数: u=3.442e-0.857/t r=0.998 对数函数: u=3.841-0.723/lg(1+t) r=0.999 二、根据量测数据绘制实测数据与时间关系曲线和回归方程曲线 1、实测数据与时间关系曲线 2、回归方程曲线 平均值ū= 时间t(天) 第20天 2.96 下沉值ǜ(mm) 3.29 标准差s=√∑(u-ǜ)2/n =0.024 下沉值ǚ/max100% 85.65% 时间t(天) 下沉值ǜ(mm) 第40天 3.39 下沉值ǚ/max100% 88.25% 变异系数Sr=S√u=0.041 时间t(天) 第60天 下沉值ǜ(mm) 3.44 下沉值ǚ/max100% 89.56% 三. 量测数据处理 1、推算出最终下沉量: ǜmax= 3.841 mm 2、推算出基本稳定时间: 第 40 天以后, 开挖面距该量测断面 90 m,围岩下沉为 3.39 mm,下沉率达 88.25 %≥80%,下沉速度为 0.01 mm/天≤0.2mm/天,故围岩基本稳定
正在阅读:
铁路隧道现场监辅助坑道交叉口施工技术分析03-08
苹果公司物流12-24
零中介留学:澳洲大学法学05-28
集合框架练习12-24
零中介留学:澳洲大学法学05-24
屋面工程施工方案(终版)12-24
屋面工程施工方案模板12-24
中考数学试题经典大题12-24
山东什么留学中介好07-24
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 坑道
- 交叉口
- 施工技术
- 隧道
- 辅助
- 铁路
- 现场
- 分析
- 河南将全面启动计划生育家庭特别扶助制度
- 2015年中小学职称评定文件
- 2009年天津、陕西、湖北公务员考试申论答案及解析
- 实验6 文件I/O练习
- 湖北三环专用汽车有限公司技术服务站名录 doc - 图文
- 推荐中考物理总复习第六章熟悉而陌生的力
- 物业管理行业的历史使命--致广大物业管理工作者的一封信
- 2016考研数学:梳理数学复习迷途
- 暑期作文培训:新编成语故事
- 网络与信息安全工程师需要掌握什么技能
- 2019年秋七年级英语上册 Unit 1 School and Friends基础知识过关
- 2019高中数学二项式定理综合测试题(有答案)语文
- 单选判断
- 2014高考生物一轮复习题库 3-1-4免疫调节
- 4级英语写作范文(21)
- 基础分部验收汇报材料文书
- 巴勒斯坦问题
- 11级数控加工机械基础寒假作业
- 阿里巴巴跨境电商人才认证偏外贸操作B卷试题及答案
- 托福作文要做到哪些才能拿满分