高二年级数学上册期中考试题3
更新时间:2024-07-05 22:05:02 阅读量: 综合文库 文档下载
高二年级数学上册期中考试题 高二数学期中考试试卷
本次试卷共160分,测试时间120分钟
一.填空题:(本大题共14小题,每小题5分,共20分,请把答案填在答题卡相应位置) 1.设a,b,c表示直线,M表示平面,给出下列命题:
1若a//M、b//M,则a//b ○2若b?M、a//b,则a//M ○
3若a?c、b?c,则a//b ○4若a?M、b?M,则a//b ○
其中正确命题个数为____________
2.直线(1?4k)x?(2?3k)y?(5k?4)?0所确定的直线必经过定点_____________ 3.平面内两点A(-4,1)、B(3,-1),直线y?kx?3与线段AB恒有公共点,则k的取值范围为__________
4.已知直线l1:x?ay?6?和l2:(a?2)x?3y?2a?0,则l1//l2时a= 5.在四棱锥的四个侧面中,直角三角形最多可有________个。
6.设a,b,c分别是△ABC中∠A、∠B、∠C所对边的边长,则直线xsinA?ay?c?0与
bx?ysinB?sinC?0的位置关系是____
7.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的体积是___________.
2
主视图
23 左视图
俯视图
8.已知直线l过点P(3,4),它在y轴上的截距与在x轴上截距相等,则直线l的方程为
9已知圆M与圆C:x2?y2?2x?4y?1?0同圆心,且与直线2x–y+1=0相切,则圆M的方程为 .
222210.已知两圆x?y?10和(x?1)?(y?3)?20相交于A,B两点,则直线AB的方程
是 .
11 .一个几何体的三视图如图所示,该几何体的内接圆柱侧面积的最大值为 .高考资源网
4 4 4 主视图 左视图 212.若直线y?x?6与曲线x?1?(y?1)恰有一个公共点,则b的取值范围为____
· 俯视图
13.平面上有两点A(?1,0),B(1,0),点P在圆周(x?3)2?(y?4)2?4上,则使得AP2?BP2取 得最小值时点P的坐标是 .
14.已知圆C:x2?y2?2x?4y?4?0,斜率为1的直线l与圆C相交于A,B两点,AB的中点为M,O为坐标原点,若OM?二.解答题
15. (14分)在四棱锥P-ABCD中,?PBC为正三角形,AB?平面PBC,AB//CD,AB=E为PD中点。
(1)求证:AE//平面PBC (2)求证:AE?平面PDC
1AB,则直线l的方程为 . 21DC,2
16.(15分)已知直线l:y?2x?1求: (1)直线关于点M(3,2)的对称的直线方程。 (2)直线x?y?2?0关于l的对称的直线方程。
17.(18分)已知直线l过点P(2,3),并与x,y轴正半轴交于A,B二点。 (1)当?AOB面积为
27时,求直线l的方程。 2(2)求?AOB面积的最小值,并写出这时的直线l的方程。
18.已知直三棱柱ABC—A1B1C1的侧棱长与底面三角形的各边长都等于a,D为BC的中点, (1)求证:A1B∥平面AC1D.
(2)若点M为CC1中点,求证:平面A1B1M⊥平面ADC1
A1
B1 C1
M A
B C
D
19.已知:△ABC中,顶点A(2,2),边AB上的中线CD所在直线的方程是x?y?0,边AC上的高BE所在直线的方程是x?3y?4?0.(1)求点B、C的坐标; (2)求△ABC的外
接圆的方程.
22
20. 已知直线l1:3x+4y-5=0,圆O:x+y=4. (1)求直线l1被圆O所截得的弦长;
(2)如果过点(-1,2)的直线l2与l1垂直,l2与圆心在直线x-2y=0上的圆M相切,圆M被直线l1分成两段圆弧,其弧长比为2∶1,求圆M的方程.
参考答案
题1 号 答1 案 题6 号 答垂案 直 题11 号 2 (-2,1) 7 3 4 5 4 10 x+3y=0 41-1 (??,?]?[,??) 328 x+y-7=0或4x-3y=0 13 9 83 12 (x?1)2?(y?2)2?5 14 x-y+1=0或x-y-4=0 912答4? (0,2]?{1?2} (,) 案 55 15(1)证明:取PC中点F,连接BF,EF 在三角形PCD中,因为E,F是中点,
1?EF//CD,EF?CD
21而AB//CD,AB?CD
2所以四边形ABFE为平行四边形 ?AE//BF
又?BF?面BPC,AE?面BPC ?AE//面BPC
(2)?AB?面BPC,AB//CD ?CD?面BPC 又?BF?面BPC ?CD?BF
又因为?PBC是正三角形,F为PC中点 ?BF?PC
而PC?CD?C,PC?面DPC,CD?面DPC
?BF?面DPC ?AE//BF
?AE?面DPC
16直线y=2x+1上一点(0,1)关于(3,2)的对称点为(6,3)代入直线y=2x+b得,b=-9 所以所求直线为y=2x-9
(2) 直线y=2x+1与直线x-y-2=0的交点为(-3,-5),设直线x-y-2=0上一点p(2,0)关于y=2x+1的对称点为P?(x0,y0)
y0?0?x0?22??1?,?22?则有?解得P?(?2,2)
y?01?0??2??x0?2所以所求直线为7x?y?16?0 17
法一(1)设直线方程为
xy??1(a?0,b?0) ab?a?6?a?3?12723,??1,解得?由题意得ab?或?9
22abb?9b????2所以所求直线方程式3x?y?9?0或3x?4y?18?0
(2)?1?231236,所以ab?24,S?12当且仅当??时取等号,所以此时??2ab2abab直线方程为3x?2y?12?0
18(1)法一:连结AC1,与AC1交于点O,连结DO
在?A1BC中,A1B//DO,DO?面AC1D,A1B?面AC1D,?A1B//面AC1D 法二:连接BM,取B1C1中点N,连接A1N,BN
?BN//C1D,BN?面AC1D
?BN//面AC1D
又?A1N//AD,A1N?面AC1D
?BN//面AC1D
?面A1BN//面AC1D ?A1B//面AC1D
(2)由题意的B1M?C1D,B1M?AD
B1M?面ADC1
?面A1B1M?面ADC1
19(1)由题意得,直线AC:y?2?3(x?2)
则联立??x?y?0得,C(1,?1)
?y?2?3(x?2)a?2b?2,) 22设B(a,b),代入BE:x?3y?4?0,则AB中点D(代入直线x?y?0,得B(?4,0)
(2)设圆方程为x2?y2?Dx?Ey?F?0,A,B,C三点代入得
911D?,E??,F??7
4491122y?7?0 所以圆方程为x?y?x?4420由题意得:圆心到直线l1:3x?4y?5?0的距离
d?|0?0?5|3?422?1,由垂径定理的,弦长为23 4(x?1) 3(2)直线l2:y?2?设圆心M为(a,)圆心M到直线l1的距离为r,即圆的半径,由题意可得,圆心M到直线l2a23|4a?a?10|2?|3a?2a?5|r2?r?的距离为,所以有: 222223?43?4解得:a?884108242100,所以圆心为M(,),r?,所以所求圆方程为:(x?)?(y?)? 333333922或a?0,即圆方程为x?y?4
w.w.w.k.s.5.u.c.o.m
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 考试题
- 上册
- 期中
- 高二
- 年级
- 数学
- 山东省烟台市2018年中考物理试题(word版,含解析)
- 最新2018201X年党支部的工作总结范本-精选word文档(5页)
- 湖南师大全日制教育硕士考研辅导班大家应该选择哪家
- 2012中科院植物生理学848真题回忆
- 高压试验理论考试题1一5套
- 施工组织设计办公楼- 副本
- 血压高会引起什么病
- 2019年领导班子对照检查材料学习心得体会-精选word文档(2页)
- 2016年桂林市初中毕业升学考试试卷数学
- 17春西南交《大学英语Ⅰ》在线作业二
- 高考英语范文
- 千阳县南寨镇民间刺绣工艺调查课件资料 - 图文
- 证监会关于股利分配的最新要求
- 微带线定向分支线耦合器
- LL(1)预测分析法实验报告
- 中国企业500强发布 湖北8企业入选
- 仁爱版英语最新试题九上Unit4Topic1
- 制造过程审核管理规定
- 2015-2020年中国种子市场分析及投资策略研究报告 - 图文
- 2015年江西省公安机关考试录用人民警察报考指南