ISIS知识点总结

更新时间:2024-06-17 19:41:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

ISIS术语表:

IS ---Router路由器 ES ---Host主机

DIS ---Designated Router (DR) 功能:在广播网络中创建和更新伪结点

DIS由LAN IIH报文选举,具备最高优先级的路由器会被当选。如果所有路由器优先级相同,则最高MAC地址者当选 SysID---类似OSPF中的Router ID PDU ---IP报文

LSP ---类似OSPF中的LSA用来描述链路状态 NSAP

---IP地址

NET ---Network Entity Title 网络实体标记,带有区域标志。 IIH ---OSPF中的Hello报文 PSNP CSNP

---OSPF的ACK报文或LSR报文 ---OSPF的DD报文

ISIS网络地址编码(重点):

NSAP由三个部分组成:区域地址,System ID和n-selector

1,区域地址 该部分长度是可变的。区域地址标识区域的路由域长度,并在路由域里固定。 2,System ID 长度为6个八位字节,在一个自治系统中值是唯一的。

3,N选择器 长度总是1个八位字节,用来指定上层协议。当N选择器设置成0时,用于IP网络。 NET---Network Entity Titles,是一个特殊的NSAP地址,其中n-selector部分为0 NET是OSI协议栈中网络设备本身的标识

IS-IS NET地址至少需要八个字节:一个字节的区域地址,六个字节的系统标识和一个字节的N 选择器,最多为20个字节。 举例:49.0001.aaaa.bbbb.cccc.00

三种地位的路由器:

Level-1路由器:

? 只与本区域的路由器形成邻居---与直连网段的路由器协商邻居时会查看:(1)区域是否一致、(2)level级别是否一致。

? 只参与本区域内的路由,只保留本区域的数据库信息---只保留本区域的level-1的lsdb,且该lsdb中只宣告使能了level-1级别的网段

? 通过与自己相连的L1/2路由器的ATT bit寻找与自己最近的L1/2路由器 ? 通过发布指向离自己最近的L1/2路由器的缺省路由,访问其他区域 Level-2路由器:

? 可以与其他区域的L2路由器形成邻居---与直连网段的路由器协商邻居时只查看是否level级别一致。 ? 参与骨干区的路由 ---level-2级别的lsdb除了宣告level-2层的网段,还宣告自己知晓的level-1层的网段。 ? 保存整个骨干区的路由信息 ? L1/2路由器同时可以参与L1路由

附:同一台路由器上,如果开启了ISIS多进程,那么也只能有一个进程被配置为level-2,第二个进程使能level-2时会

提示失败。 Level-1-2路由器:

? 可以和本区域的任何级别路由器形成邻居关系;可以和其它区域相邻的L2或L1/L2路由器形成邻居关系。如果是两个level-1-2则形成level-1-2邻居。 ? 可能有两个级别的链路状态数据库

? L1用来作为区域内路由;L2用来作为区域间路由

? 完成它所在的区域和骨干之间的路由信息的交换,将L1 LSDB中的路由信息转换到L2 LSDB中,以在骨干中传播,既承担L1的职责也承担L2的职责 ? 通常位于区域边界上

? 区域边界L1/L2路由器通过下发ATT bit,指导本区域的L1路由器选择离它最近的L1/L2路由器作为访问外部网络的出口,同时下发

一条默认路由。

? 一个路由器必须整个属于某个区域,如果是level-1-2路由器,则配置的NET中指示的区域就是level-1的区域;level-2级别的路由器则无所谓属于哪个区域了。

ISIS九种报文类型:

IS-IS Hello Packets (IIH) 定期发送,用来确定相邻的其它系统是否在运行IS-IS,以建立邻接关系,交换LSP,达到LSDB

同步

1,Level 1 LAN IS-IS Hello 2,Level 2 LAN IS-IS Hello 3,Point-to-point Hello

hello报文发送到组播MAC层地址:L1 IIH的组播地址为:0180-C200-0014;L2 IIH的组播地址为:0180-C200-0015 Link State Packets (LSP) 每个LSP( 含LSP分片) 都有一个自己的序列号;越大的表明越新。 Level 1 LSP:只用于本地区域,LSP报文描述了本路由器中所有的链路状态信息。 Level 2 LSP:包含IS-IS路由区域中所有可到达前缀的信息。

Complete Sequence Number packets (CSNP) CSNP用于在泛洪LSPDB时数据库同步,以范围来描述数据库LSDB中的所有

的LSPs

包括Level 1 CSNP 和 Level 2 CSNP ---在广播网络上,由DIS定期发送(缺省10秒的周期);在点到点串行链路上,只

在第一次形成邻接时发送CSNP来同步LSDB。 主要功能:

用于数据库同步,以范围来描述数据库LSDB中的所有的LSPs。包含地址范围,各LSP的简要信息:LSPid,SequeceNumber, checksum, remainning lifetime等重要信息。如果路由器的LSDB非常大,将分成多个CSNP发出。功能上类似于OSPF协议中的DD报文。

Partial Sequence Number Packets (PSNP) 包括Level 1 PSNP 和 Level 2 PSNP 主要功能:

在点到点链路上路由器用来相互交换作为Ack应答以确认收到某个LSP,功能上类似于OSPF协议中的LS Ack报文; 在广播网络中用来请求发送最新的LSP,当路由器从近邻接收到CSNP时,注意到某些LSP本地数据库中没有的(或自己的比较旧),路由器发送PSNP请求新的LSP。PSNP在头中利用LSPid,SequenceNumber,Remainning lifetime, LSP checksum来描述LSPs,仅仅包含有LSP报文的头部。功能上类似于OSPF协议中的LS Request报文。

DIS的选举规则:

DIS的选举原则:

? DIS由LAN IIH报文选举,具备最高优先级的路由器会被当选。如果所有路由器优先级相同,则最高MAC地址者当选 ? Level-1和Level-2的DIS是分别选举的,选举结果可能不是同一个IS

? DIS发送Hello数据包的时间间隔是普通路由器的1/3,这样可以保证DIS失效可以被快速检测到

? 与OSPF不同,它的选举是抢占式,可预见的;IS-IS中不存在备份DIS,当一个DIS不能工作时,直接选举另一个 建立DIS的目的:

在广播类型子网上,如果每个路由器都独立的和其他路由器(包括这个LAN以外的路由器)进行LSP报文的交换以同步各自的链接状态数据库(LSDB),将导致一个巨大的流量增长。为防止流量因为网络的增大而迅猛增加以及使得路由器保存的状态最少,IS-IS在广播类型子网上选出一个指定路由器(DIS),并由其产生一个伪节点(pseudonode)来和其他路由器进行交互。伪节点不是一个真实的路由器,但它要占用一个额外的LSP 项。伪节点LSP是由DIS创建的。 不同层次有不同层次的DIS,即L1级的广播网选举L1级的DIS,L2级的广播网选举L2级的DIS。 OSPF和IS-IS的区别:

1,在OSPF中,我们要选举DR和BDR。DR一旦当选,具有终生制,如果DR发生故障,BDR接替原有DR,同时重新选举BDR。而在IS-IS路由协议中,我们只需要选举DIS路由器,没有备份DIS的概念,DIS路由器不具终生制,一旦网络中新增加的路由器DIS的优先级高于当前的DIS的优先级,网络中将重新选举新的DIS,网络的稳定性较差。

2,在OSPF路由协议中普通路由器DR Other只需和DR、BDR建立邻接关系,DR Other路由器间只需建立邻居关系,相互间握手即可。而IS-IS路由协议中由DIS生成一个伪节点(pseudonode),由伪节点周期性的发送CSNP报文和其他节点进行数据库的同步。

DIS负责生成伪节点的LSP,伪节点和本网络中的所有路由器建立联系,并且不允许它们之间直接联系。

总结:IS-IS协议中,广播子网和NBMA网络在外部被看成一个伪节点。同一网络中的IS之间会根据各自优先权选出一个DIS。网络中的非DIS会向DIS报告自己的链路状态信息,而DIS 则代表整个网络中所有的IS报告链路状态信息。 DIS的作用:

1,在广播子网中创建并向所有路由器通告伪节点LSP 2,在LAN中通过每10秒周期性地发送CSNP来泛洪LSP 伪节点的作用:

1,伪节点是在广播多路访问网络中的一台虚拟路由器 2,伪节点由DIS创建

3,DIS在伪节点LSP中通告LAN中的所有邻居

4,LAN中的所有路由器在它们的LSP中通告自己与伪节点的连接性

ISIS区域的定义:

IS-IS将整个路由域分为若干个区域(Area),我们使用NET(Network Entity Title)中的Area ID部分来标识区域号。本区域的所有L1路由器必须有相同的Area ID,L2路由器则没有此限制。

Level-1的普通区域和Level-2的骨干区域间通过L1/L2路由器相连,L1/L2路由器完成把L1 LSDB的链路数据库信息转化为L2 LSDB的链路数据库信息传递到骨干区域中;同时通过ATT bit指导L1路由器如何转发流量到外部网络。

IS-IS路由协议与OSPF路由协议不同,一台路由器必须整体属于某个区域,而不像OSPF路由协议那样一台路由器的不同接口可以分别属于不同的区域。可以说IS-IS是以路由器来划分区域的,而OSPF以接口来划分区域的。

IS-IS路由协议采用分层的网络结构,只有同一层次的路由器才能建立邻居关系,L1路由器只有和本区域的L1路由建立邻居关系,L2路由器可以和其他区域的L2路由器形成邻居关系,L1/L2路由器既可以和本区域的L1路由器形成邻居关系,又可以和其他区域的L2路由器形成邻居关系。

ISIS邻居关系的建立:

IS-IS路由协议中只有同一层次的相邻路由器才可能成为邻接体。在不同类型的网络上,IS-IS的邻接建立的方式并不相同。 定义:通过互相发送hello报文的方式,告知对方自己的源地址,保持时间以及支持的网络层协议(比如IP) IS-IS路由协议通过IIH报文建立邻居关系时需要遵循的基本原则: (1) 只有同一层次的相邻路由器才有可能成为邻接体 (2) 对于Level-1路由器来说要求区域号一致

(3) 同一网段检查,此项为华为特性。由于IS-IS直接承载在数据链路层之上,理论上是不需要进行同一网段的检查。华为VRP提供了这一新功能,进行同一网段检查,保证邻居关系的正确建立。

(4) 与OSPF协议的不同之处:OSPF协议使用接口来划分区域,一台路由器可能同时属于多个区域,和多个区域的路由器形成邻居关系;而IS-IS协议规定路由器整体属于某个特定的区域,L1路由器只能建立Level-1的邻居关系,L2路由器只能建立Level-2的邻居关系。 针对点到点网络:

1,IS-IS路由协议中在点到点链路上,没有三次握手机制,即一方收到对方的hello,经合法性检查后,邻居就直接up了。OSPF需要三次握手才能建立邻居关系,可靠性更好。

2,在点到点链路上,缺省将进行ip地址在同一网段上的检查,ip地址不在同一网段将导致链路两端邻居建立失败。最近,VRP新做了一条命令,ignore-ppp-ip-check, 通过配置该命令可以取消ppp链路上的同一网段检查。该命令只对链路层为ppp协议的链路生效,缺省情况下该命令不生效。

针对广播型网络:(1)先通报自己,邻居为null;(2)收到对方的通报,邻居也为空;(3)发送通过,邻居为对方,然后邻居关系就建立了。

1,IS-IS的广播网网络类型采用组播地址发送HELLO报文。邻居双方都收到了HELLO报文,邻居关系就建立了。 2,IS-IS路由协议中广播链路上需要进行三次握手验证,邻居才可以UP。因此可靠性更好一些。在这一点上和OSPF协议

isis circuit-type p2p //对于点到点连接的广播链路可以修改链路类型为P2P,避免选举DIS,加快收敛 isis enable 1 isis bfd enable

注意:i-SPF功能和PRC功能为当前ISIS的默认算法,已经使能,不需要另外单独配置。

解释:Timer lsp-generation 两次产生同一个LSP分片时使用该定时器,init-interval :产生同一LSP分片的初始间隔时间。 incr-interval :两次产生同一LSP分片之间的递增时间间隔,每变化一次,间隔增加一个incr-interval。在初次进行SPF计算时,所需时间间隔为init-interval;随后,每变化一次,间隔增加一个incr-interval,直到max-interval。稳定在max-interval三次后,间隔又降回到init-interval。

在IS-IS协议中,当LSDB改变时,需要重新计算最短路径,如果频繁地计算最短路径,将占用大量的资源,影响路由器的效率,延迟SPF计算可以在一定程度上提高路由计算的效率,减少系统资源的消耗。但另一方面,如果路由计算的延迟时间过长,则会减慢路由的收敛速度。为了加快路由的收敛速度,同时又不至于影响路由器的效率,在SPF计算中使用了智能定时器,它可以根据LSDB的变化频率自动调整间隔时间。

ISIS路由优选原则:

ISIS路由优选:

整体原则:Internal类路由优于External类外部路由

Internal类路由:包括Internal路由和Internal类型的外部路由,优先级相同,直接比较cost。引入的路由如果指定为internal类型,那么引入路由和isis内部路由优先级一致。

External类外部路由:仅cost-style为narrow时存在。即引入时指定路由类型为external,cost=64。优先级要低于isis内部路由和internal类型的外部路由。

L1/L2路由器上:路由类型相同时优选从L1区域学到的路由(不比较cost),从L2渗透到L1的路由除外 形成等值路由的条件:多条路由来自同一层次且类型和cost相同,区域呢?????? 外部路由的生成:

引入路由缺省发布到level2(即其为level-1路由器,会造成路由引入不成功) Cost-style为narrow/narrow compatible

使用TLV 0X82(IP External Reachbility)承载路由信息,不能携带tag

缺省引入路由类型为External、cost=64(external外部路由的cost值必然大于isis内部路由,因为isis内部路由narrow模式下cost值最大为63,而external路由指定cost值时实际路由计算时按64+指定值计算) 引入路由类型设置为Internal时,缺省cost=0

Cost-style为wide/wide compatible(该模式下由于不区分internal和external,所以引入路由和isis内部路由优先级一致)

使用TLV 0X87(Extended IP Reachbility)承载路由信息,可以通过sub-TLV携带tag信息 不区分External和Internal类型,缺省cost=0

附:ISIS协议引入外部路由时可以配置inherit-cost参数,意思是引入外部路由时保留路由的原有开销值。当配置IS-IS保留引入路由的原有开销值时,将不能配置引入路由的开销类型和开销值。目前OSPF引入外部路由没有类似参数。 ISIS外部路由优选原则: 1、narrow-metric

使用TLV 0X82(IP External Reachbility)携带外部路由信息,可集成在原始LSP(.00-00 VRP5)或独立的分片LSP(.00-nn VRP3)中;不能携带tag信息

1.1 import缺省引入路由类型为External、cost=64(对应LSP中default-metric为0)、引入到level-2;指定cost值时实际路由计算时按64+指定值计算。路由优先级低于Internal类型路由,如下例:

[RT4-isis-1]disp this isis 1 is-level level-1 network-entity 48.0000.0000.0004.00 import-route static cost 5 level-1 tag 1414 [RT4-isis-1]disp isis lsdb local verbose

Level-1 Link State Database

Seq Num Checksum Holdtime Length ATT/P/OL

LSPID

------------------------------------------------------------------------------- 0000.0000.0004.00-00*

0x0000001d 0xfa49 580 98 0/0/0

SOURCE 0000.0000.0004.00 NLPID IPV4 AREA ADDR 48 INTF ADDR 1.1.1.14 INTF ADDR 172.16.20.2 NBR ID 0000.0000.0004.02 COST: 10 IP-Internal 1.1.1.14 255.255.255.255 COST: 0 IP-Internal 172.16.20.0 255.255.255.252 COST: 10

IP-External 10.10.0.0 255.255.255.0 COST: 69

1.2 import引入路由类型设置为Internal时,缺省cost=0(对应LSP中default-metric为0)、引入到level-2;配置的cost值为用于实际路由计算的cost,引入路由与ISIS内部路由优先级一样,cost直接可比。如下例: [RT0-isis-1]disp this isis 1 is-level level-1 network-entity 49.0000.0000.0010.00 import-route static cost 60 cost-type internal level-1 [RT0-isis-1]disp isis lsdb loc v

Database information for ISIS(1) Level-1 Link State Database

Seq Num Checksum Holdtime Length ATT/P/OL

LSPID

------------------------------------------------------------------------------- 0000.0000.0010.00-00*

0x00000019 0xba09 967 130 0/0/0

SOURCE 0000.0000.0010.00 NLPID IPV4 AREA ADDR 49 INTF ADDR 1.1.1.10 INTF ADDR 10.0.0.1 INTF ADDR 192.168.1.1 INTF ADDR 1.1.2.10 NBR ID 0000.0000.0001.00 COST: 10 IP-Internal 1.1.1.10 255.255.255.255 COST: 0 IP-Internal 10.0.0.0 255.255.255.252 COST: 10 IP-Internal 192.168.1.0 255.255.255.252 COST: 10 IP-Internal 1.1.2.10 255.255.255.255 COST: 0 IP-Internal 10.10.0.0 255.255.255.0 COST: 60 2、wide-metric

使用TLV 0X87(Extended IP Reachbility)携带外部路由信息,集成在原始LSP(.00-00 )中;可以通过sub-TLV携带tag信息

不再区分External和Internal类型,缺省cost=0(对应LSP中default-metric为0)、引入到level-2;指定的cost值为实际路由计算的cost,引入路由与ISIS内部路由优先级一样,cost直接可比。如下例: [RT4-isis-1]import-route static ? cost Cost of imported routes level-1 Import into level-1 area level-1-2 Import into level-1 and level-2 area level-2 Import into level-2 area route-policy Apply the specified route policy to filter route tag Set tag for routes imported into ISIS [RT4-isis-1]import-route static cost ? INTEGER<0-4261412864> Cost value

[RT4-isis-1]disp this isis 1 is-level level-1 cost-style wide network-entity 48.0000.0000.0004.00 import-route static cost 5 level-1 tag 1414 LSPID

Seq Num Checksum Holdtime Length ATT/P/OL

------------------------------------------------------------------------------- 0000.0000.0004.00-00*

0x00000029 0xdddb 1199 92 0/0/0

SOURCE 0000.0000.0004.00 NLPID IPV4 AREA ADDR 48 INTF ADDR 1.1.1.14 INTF ADDR 172.16.20.2 +NBR ID 0000.0000.0004.02 COST: 10 +IP-Extended 1.1.1.14 255.255.255.255 COST: 0 +IP-Extended 172.16.20.0 255.255.255.252 COST: 10 +IP-Extended 10.10.0.0 255.255.255.0 COST: 5 Tag: 1414

可以看到蓝色部分不再是internal和external了。同时从上面看,除了tag外,看不出来外部路由和内部路由的区别。

ISIS路由聚合:

ISIS路由聚合:

summary ip-address ip-mask [ level-1 | level-1-2 | level-2 ]

1、可以在本地路由器(本地生成或引入的)或L1/L2路由器(跨级别引入的,当然L1/L2路由器也可以聚合本地产生的)上使用

2、本地路由器上可以聚合本地产生的内部+外部路由(路由聚合时不区分路由类型)??????

解释:本地路由器包括所有级别的路由器,如果是level-1,那么就把自己产生和引入的路由聚合后作为level-1的lsa发布到level-1区域中(实际只level-1参数有效);如果是level-2,那么就把自己产生和引入的路由聚合后作为level-2的lsa发布到level-2骨干区域(实际只level-2参数有效);如果是level-1-2,那么这三种参数都可以配置,分别可以把自己产生和引入的路由聚合后作为相应的level-1或level-2的lsa单独发往level-1或level-2或者两者都发。 3、level级别参数,表示只对引入到Level-1或骨干区域的路由进行聚合,如果是level-1-2,表示对向Level-1区域以及骨干网络引入的路由都进行聚合 聚合路由属性:

Narrow-metric:路由类型统一改为Internal;如明细路由全部为External类型,聚合路由cost统一改为63(Internal路由的最大cost值)

Wide-metric:聚合路由的cost与最优明细路由相同,tag丢失

4、L1/L2上可以聚合发给L2的本区域内部所有类型路由(缺省就会将level-1的路由发往level-2) 5、L1/L2上可以聚合发给L1区域的L2层所有类型路由(路由渗透时)

6、建议加上[ avoid-feedback ](表示不会再处理自己聚合过的又从别人送回来的) 和[ generate_null0_route ]参数,避免聚合路由造成环路(仅VRP5支持) 注意点:

不要聚合loopback地址路由

为便于管理,建议为聚合路由配置tag进行标记

为避免出现环路或路由黑洞,注意在本地配置相同的静态黑洞路由(VRP5中配置[generate_null0_route]参数后自动生成黑洞路由)

ISIS路由过滤:

ISIS的路由过滤只有三种:

1、filter-policy export命令用来配置IS-IS对import引入的路由在向外发布时进行过滤。

2、filter-policy import命令用来设置IS-IS对接收的路由是否加入IP路由表进行过滤。该命令不影响LSA。

3、set-overload命令用来设置非伪节点LSP的过载标志位。虽然设置了过载标志位的LSP会在网络中扩散,但是在计算通过超载路由器的路由时不会被采用。即,对ME设备设置过载位后,其它ME设备在进行SPF计算时不会考虑这台ME设备。但该ME设备的直连路由不会被忽略。

ISIS的COST设置:

cost-style { narrow | wide | wide-compatible }

cost-style { compatible | narrow-compatible } [ relax-spf-limit ]

命令用来设置IS-IS路由器接收和发送路由的开销类型,缺省情况下,路由的开销类型为narrow。 relax-spf-limit 表示允许接收开销值大于1023的路由。否则做丢弃处理。 compatible 可以接收或发送开销类型为narrow和wide的路由。 narrow和wide的兼容原则是:

1、narrow和narrow-compatible类型缺省可以发送和接收narrow类型,而只有narrow-compatible可以接收wide类型; 2、wide和wide-compatible类型缺省可以发送和接收wide类型,而只有wide-compatible可以接收narrow类型; 结合以上两点,来计算这四者之间的兼容性。

缺省不使能接口自动cost,然后所有接口的cost值都是10。

1、filter-policy export命令用来配置IS-IS对import引入的路由在向外发布时进行过滤。

2、filter-policy import命令用来设置IS-IS对接收的路由是否加入IP路由表进行过滤。该命令不影响LSA。

3、set-overload命令用来设置非伪节点LSP的过载标志位。虽然设置了过载标志位的LSP会在网络中扩散,但是在计算通过超载路由器的路由时不会被采用。即,对ME设备设置过载位后,其它ME设备在进行SPF计算时不会考虑这台ME设备。但该ME设备的直连路由不会被忽略。

ISIS的COST设置:

cost-style { narrow | wide | wide-compatible }

cost-style { compatible | narrow-compatible } [ relax-spf-limit ]

命令用来设置IS-IS路由器接收和发送路由的开销类型,缺省情况下,路由的开销类型为narrow。 relax-spf-limit 表示允许接收开销值大于1023的路由。否则做丢弃处理。 compatible 可以接收或发送开销类型为narrow和wide的路由。 narrow和wide的兼容原则是:

1、narrow和narrow-compatible类型缺省可以发送和接收narrow类型,而只有narrow-compatible可以接收wide类型; 2、wide和wide-compatible类型缺省可以发送和接收wide类型,而只有wide-compatible可以接收narrow类型; 结合以上两点,来计算这四者之间的兼容性。

缺省不使能接口自动cost,然后所有接口的cost值都是10。

本文来源:https://www.bwwdw.com/article/x9n3.html

Top