10年高考物理复习 - 图文

更新时间:2023-11-02 15:45:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高考物理复习资料

学好物理要记住:最基本的知识、方法才是最重要的。 秘诀:“想” 学好物理重在理解(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件) ........

A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)

(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健 物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩!

对联: 概念、公式、定理、定律。 (学习物理必备基础知识) 对象、条件、状态、过程。(解答物理题必须明确的内容)

力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。 说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。

答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。“容易题不丢分,难题不得

零分。“该得的分一分不丢,难得的分每分必争”,“会做?做对?不扣分”

在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。 Ⅰ。力的种类:(13个性质力) 这些性质力是受力分析不可少的“是受力分析的基础” 力的种类:(13个性质力) 1重力: G = mg (g随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F滑= ?N 5浮力: F浮= ?gV排 6压力: F= PS = ?ghs 7万有引力: F引=GA B 有19条定律、2条定理 1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B 4静摩擦力: O? f静? fm (由运动趋势和平衡方程去判断) 5牛顿第二定律B 力学 m1m2r2 9能的转化守恒定律. 10热力学第一定律 11热力学第二定律 热学 12热力学第三定律(绝对零度不可达到) 13电荷守恒定律 14真空中的库仑定律 15欧姆定律 16电阻定律B 电学 17闭合电路的欧姆定律B 18法拉第电磁感应定律 19楞次定律B 定理: ①动量定理B 8库仑力: F=Kq1q2r2(真空中、点电荷) 9电场力: F电=q E =qud 10安培力:磁场对电流的作用力 F= BIL (B?I) 方向:左手定则 11洛仑兹力:磁场对运动电荷的作用力 f=BqV (B?V) 方向:左手定则 12分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快。 .13核力:只有相邻的核子之间才有核力,是一种短程强力。 ②动能定理B做功跟动能改变的关系

4种基本运动模型 1静止或作匀速直线运动(平衡态问题); 2匀变速直、曲线运动(以下均为非平衡态问题); 3类平抛运动; 4匀速圆周运动;

受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。 再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程;

然后选择适当的力学基本规律进行定性或定量的讨论。

强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决

Ⅱ。运动分类:(各种运动产生的力学和运动学条件及运动规律)是高中物理的重点、难点 .............

高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F合=0 a=0 V0≠0 ②匀变速直线运动:初速为零或初速不为零,

③匀变速直、曲线运动(决于F合与V0的方向关系) 但 F合= 恒力

④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等

⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振;

⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动;

⑩带电粒在电场力作用下的运动情况;带电粒子在f洛作用下的匀速圆周运动

Ⅲ。物理解题的依据:

(1)力或定义的公式 (2) 各物理量的定义、公式

(3)各种运动规律的公式 (4)物理中的定理、定律及数学函数关系或几何关系

Ⅳ几类物理基础知识要点:

①凡是性质力要知:施力物体和受力物体;

②对于位移、速度、加速度、动量、动能要知参照物; ③状态量要搞清那一个时刻(或那个位置)的物理量;

④过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等)

⑤加速度a的正负含义:①不表示加减速;② a的正负只表示与人为规定正方向比较的结果。 ⑥如何判断物体作直、曲线运动; ⑦如何判断加减速运动; ⑧如何判断超重、失重现象。

⑨如何判断分子力随分子距离的变化规律

⑩根据电荷的正负、电场线的顺逆(可判断电势的高低)?电荷的受力方向;再跟据移动方向?其做功情况?电势能的变化情况

V。知识分类举要

1.力的合成与分解、物体的平衡 ?求F1、F2两个共点力的合力的公式:

F=

F1?F2?2F1F2COS?

F2 F

22 合力的方向与F1成?角: tg?=

α θ

F1

F2sin?F1?F2cos?

注意:(1) 力的合成和分解都均遵从平行四边行定则。

(2) 两个力的合力范围: ? F1-F2 ? ? F?? F1 +F2 ? (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 ?F=0 或?Fx=0 ?Fy=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。按比例可平移为一个封闭的矢量三角形 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向 三力平衡:F3=F1 +F2 摩擦力的公式:

(1 ) 滑动摩擦力: f= ?N

说明 :a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

b、?为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关.

(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.

大小范围: O? f静? fm (fm为最大静摩擦力与正压力有关)

说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

b、摩擦力可以作正功,也可以作负功,还可以不作功。

c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d、静止的物体可以受滑动摩擦力的作用,运动的物体也可以受静摩擦力的作用。

力的独立作用和运动的独立性

当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫做力的独立作用原理。

一个物体同时参与两个或两个以上的运动时,其中任何一个运动不因其它运动的存在而受影响,这叫运动的独立性原理。物体所做的合运动等于这些相互独立的分运动的叠加。

根据力的独立作用原理和运动的独立性原理,可以分解速度和加速度,在各个方向上建立牛顿第二定律的分量式,常常能解决一些较复杂的问题。

VI.几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运 2.匀变速直线运动:

两个基本公式(规律): Vt = V0 + a t S = vo t +2 2 12a t2 及几个重要推论: (1) 推论:Vt-V0= 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值) (2) A B段中间时刻的即时速度: Vt/ 2 =V0?Vt22=st (若为匀变速运动)等于这段的平均速度 2 (3) AB段位移中点的即时速度: Vs/2 = vo?vt2 Vt/ 2 =V=V0?Vt2=st=SN?1?SN2T= VN ? Vs/2 = vo?vt222匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2

探究匀变速直线运动实验:

右图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O,然后每5个点取一个计数点A、B、C、D ?。(或相邻两计数点间

有四个点未画出)测出相邻计数点间的距离s1、s2、s3 ?

s1 A B

s2 C s3 D v/(ms-1)

0 T 2T 3T 4T 5T 6T t/s

利用打下的纸带可以:

?求任一计数点对应的即时速度v:如vc?s2?s32T?s3?s2T2(其中记数周期:T=5×0.02s=0.1s)

?利用上图中任意相邻的两段位移求a:如a?利用“逐差法”求a:a??s4?s5?s6???s1?s2?s3?

29T?利用v-t图象求a:求出A、B、C、D、E、F各点的即时速度,画出如图的v-t图线,图线的斜率就是加速度a。 注意: 点 a. 打点计时器打的点还是人为选取的计数点 距离 b. 纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离。 纸带上选定的各点分别对应的米尺上的刻度值, 周期 c. 时间间隔与选计数点的方式有关 (50Hz,打点周期0.02s,常以打点的5个间隔作为一个记时单位)即区分打点周期和记数周期。 d. 注意单位。一般为cm

试通过计算推导出的刹车距离s的表达式:说明公路旁书写“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的原理。

解:(1)、设在反应时间内,汽车匀速行驶的位移大小为s1;刹车后汽车做匀减速直线运动的位移大小为s2,加速度大小为a。由牛顿第二定律及运动学公式有:

?s1?v0t0..................?1????F??mg ?..........?2???a??m??2?v?2as2...............?3???0???s?s?s...............?4?12??由以上四式可得出:

s?v0t0?2(v0Fm2..........?5?

??g)①超载(即m增大),车的惯性大,由?5?式,在其他物理量不变的情况下刹车距离就会增长,遇紧急情况不能及时刹车、停车,危险性就会增加;

②同理超速(v0增大)、酒后驾车(t0变长)也会使刹车距离就越长,容易发生事故;

③雨天道路较滑,动摩擦因数?将减小,由<五>式,在其他物理量不变的情况下刹车距离就越长,汽车较难停下来。

因此为了提醒司机朋友在公路上行车安全,在公路旁设置“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的警示牌是非常有必要的。

思维方法篇

1.平均速度的求解及其方法应用

一① 用定义式:v??s?t 普遍适用于各种运动;② v=

V0?Vt2只适用于加速度恒定的匀变速直线运动

2.巧选参考系求解运动学问题

3.追及和相遇或避免碰撞的问题的求解方法:

两个关系和一个条件:1两个关系:时间关系和位移关系;2一个条件:两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。

关键:在于掌握两个物体的位置坐标及相对速度的特殊关系。

基本思路:分别对两个物体研究,画出运动过程示意图,列出方程,找出时间、速度、位移的关系。解出结果,必要时进行讨论。

追及条件:追者和被追者v相等是能否追上、两者间的距离有极值、能否避免碰撞的临界条件。 讨论:

1.匀减速运动物体追匀速直线运动物体。

①两者v相等时,S追

③若位移相等时,V追>V被追则还有一次被追上的机会,其间速度相等时,两者距离有一个极大值

2.初速为零匀加速直线运动物体追同向匀速直线运动物体

①两者速度相等时有最大的间距 ②位移相等时即被追上

3.匀速圆周运动物体:同向转动:?AtA=?BtB+n2π;反向转动:?AtA+?BtB=2π 4.利用运动的对称性解题 5.逆向思维法解题

6.应用运动学图象解题 7.用比例法解题

8.巧用匀变速直线运动的推论解题

①某段时间内的平均速度 = 这段时间中时刻的即时速度 ②连续相等时间间隔内的位移差为一个恒量 ③位移=平均速度?时间

解题常规方法:公式法(包括数学推导)、图象法、比例法、极值法、逆向转变法

3.竖直上抛运动:(速度和时间的对称)

分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V0加速度为?g的匀减速直线运动。 (1)上升最大高度:H =

Vo22g (2)上升的时间:t=

Vog (3)从抛出到落回原位置的时间:t =2

Vog

(4)上升、下落经过同一位置时的加速度相同,而速度等值反向 (5)上升、下落经过同一段位移的时间相等。 (6)匀变速运动适用全过程S = Vo t -

12g t2 ; Vt = Vo-g t ; Vt2-Vo2 = -2gS (S、Vt的正、负号的理解)

4.匀速圆周运动

s2?R?2??2?f线速度: V===?R=2?f R 角速度:?=?tTtT

向心加速度: a =

v2R??R?24?T22R?4?fR=??v

2 2

向心力: F= ma = m

v2R?m?R= m

2

4?T22R?m4?2nR

2

追及(相遇)相距最近的问题:同向转动:?AtA=?BtB+n2π;反向转动:?AtA+?BtB=2π

注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

5.平抛运动:匀速直线运动和初速度为零的匀加速直线运动的合运动

(1)运动特点:a、只受重力;b、初速度与重力垂直.尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重

力加速度g,因而平抛运动是一个匀变速曲线运动。在任意相等时间内速度变化相等。

(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

水平方向和竖直方向的两个分运动既具有独立性又具有等时性. (3)平抛运动的规律:

证明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。

证:平抛运动示意如图

设初速度为V0,某时刻运动到A点,位置坐标为(x,y ),所用时间为t. 此时速度与水平方向的夹角为?,速度的反向延长线与水平轴的交点为x, 位移与水平方向夹角为?.以物体的出发点为原点,沿水平和竖直方向建立坐标。

'依平抛规律有:

速度: Vx= V0

Vy=gt

v?vx?vy22 tan??vyvx?gtv0?yx?x' ①

位移: Sx= Vot

sy?12gt2

2ys?s?s2x tan??yx1?2gtv0t2?1gt2v0 ②

由①②得: tan??12tan?12 即

yx?1y'2(x?x) ③

所以: x'?x ④

④式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。

“在竖直平面内的圆周,物体从顶点开始无初速地沿不同弦滑到圆周上所用时间都相等。”

一质点自倾角为?的斜面上方定点O沿光滑斜槽OP从静止开始下滑,如图所示。为了使质点在最短时间内从O点到达斜面,则斜槽与竖直方面的夹角?等于多少?

7.牛顿第二定律:F合 = ma (是矢量式) 或者 ?Fx = m ax ?Fy = m ay

理解:(1)矢量性 (2)瞬时性 (3)独立性 (4)同体性 (5)同系性 (6)同单位制

●力和运动的关系

①物体受合外力为零时,物体处于静止或匀速直线运动状态; ②物体所受合外力不为零时,产生加速度,物体做变速运动.

③若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,也可以是曲线. ④物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.

⑤根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动; ⑥若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.

⑦物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力仅改变速度的方向,不改变速度的大小.

⑧物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动.

表1给出了几种典型的运动形式的力学和运动学特征.

综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系.

力与运动的关系是基础,在此基础上,还要从功和能、冲量和动量的角度,进一步讨论运动规律.

8.万有引力及应用:与牛二及运动学公式

1思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F心=F万 (类似原子模型)

2公式:G

Mmr2=man,又an=

v2r??r?(22?T)r2, 则v=GMr,??GMr3,T=2?r3GM 3求中心天体的质量M和密度ρ

由G

Mmr2==m?3?r3322r =m(2?T)r?2M=

4?rGT223 (

rT32?恒量)

ρ=

M43?R3?GRT43(当r=R即近地卫星绕中心天体运行时)?ρ=?3?GT2

??3?GT近2?3?GT2远(R?hR)3(M=?V球=??r3) s

球面

=4?r2 s=?r2 (光的垂直有效面接收,球体推进辐射) s球冠=2?Rh

轨道上正常转: F引=GMmr2= F心= ma心= mv2R?m?R= m2 4?T22R?m4?2nR 2 地面附近: GMmR2= mg ?GM=gR (黄金代换式) mg = m2v2R?v?gR=v第一宇宙=7.9km/s 题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。 轨道上正常转: GMmr2= mv2R ? v?GMr 【讨论】(v或EK)与r关系,r最小时为地球半径时,v第一宇宙=7.9km/s (最大的运行速度、最小的发射速度); T

最小

=84.8min=1.4h

GMr①沿圆轨道运动的卫星的几个结论: v=

,??GMr3,T=2?r3

GM②理解近地卫星:来历、意义 万有引力≈重力=向心力、 r最小时为地球半径、 最大的运行速度=v第一宇宙=7.9km/s (最小的发射速度);T

最小

=84.8min=1.4h

③同步卫星几个一定:三颗可实现全球通讯(南北极仍有盲区)

轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍) V同步=3.08km/s﹤V第一宇宙=7.9km/s ?=15/h(地理上时区) a=0.23m/s ④运行速度与发射速度、变轨速度的区别

⑤卫星的能量:r增?v减小(EK减小

⑥应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s2 月球公转周期30天

o

2

力学助计图 有a v会变化

原因

原因 受力 结果

●典型物理模型及方法

◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这

类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程

隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 m1 m2 N记住:N= m2F1?m1F2m1?m2 (N为两物体间相互作用力), ?m2m1?m2一起加速运动的物体的分子m1F2和m2F1两项的规律并能应用?讨论:①F1≠0;F2=0 F F m1 m2

F=(m1+m2)aN=m2a N=m2m1?m2 F F=m1(m2g)?m2(m1g) m1?m2 ② F1≠0;F2≠0 N= m2F1?m1F2m1?m2 F=m1(m2g)?m2(m1gsin?) m1?m2(F?0就是上面的情况) 2F=mA(mBg)?mBFm1?m2 F1>F2 m1>m2 N1

◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)

研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3

③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)

(1)火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R。由于外轨略高于内轨,使得火车所受重力和

支持力的合力F合提供向心力。

由F合?mgtan??mgsin??mghL?mv0R2得v0?RghL(v0为转弯时规定速度)v0?gtan??R

(是内外轨对火车都无摩擦力的临界条件)

①当火车行驶速率V等于V0时,F合=F向,内外轨道对轮缘都没有侧压力 ②当火车行驶V大于V0时,F合

v2③当火车行驶速率V小于V0时,F合>F向,内轨道对轮缘有侧压力,F合-N'=mR

即当火车转弯时行驶速率不等于V0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。火车提速靠增大轨道半径或倾角来实现 (2)无支承的小球,在竖直平面内作圆周运动过最高点情况: 受力:由mg+T=mv2/L知,小球速度越小,绳拉力或环压力T越小,但T的最小值只能为零,此时小球以重力提供作向心力. 结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。 能过最高点条件:V≥V临(当V≥V临时,绳、轨道对球分别产生拉力、压力) 不能过最高点条件:V

m1v1?m2v2?(m1?m2)v? E损?12m1v1?12m2v2?12(m1?m2)v'2v??m1v1?m2v2m1?m22 ?1m1m2(v1?v2)2m1?m2◆一动一静的完全非弹性碰撞(子弹打击木块模型)是高中物理的重点。 特点:碰后有共同速度,或两者的距离最大(最小)或系统的势能最大等等多种说法. m1v1?0?(m1?m2)v? 12m1v1?0?122v??m1v1m1?m2 (主动球速度上限,被碰球速度下限) 12(m1?m2)v12'2?E损 m1m2v12E损?m1v?21(m1?m2)v'2?2(m1?m2)?m21(m1?m2)2m1v1?2m2m1?m2Ek1 讨论: ①E损 可用于克服相对运动时的摩擦力做功转化为内能 E损=fd相=?mg·d相=12mv一2012(m?M)v'2=mMv202(m?M)? d相=mMv202(m?M)f=mMv202?g(m?M) ②也可转化为弹性势能; ③转化为电势能、电能发热等等;(通过电场力或安培力做功) 由上可讨论主动球、被碰球的速度取值范围 (m1-m2)v1m1?m2?v主?m1v0m1?m2 m1v0m1?m2?v被?2m1v1m1?m2 “碰撞过程”中四个有用推论 推论一:弹性碰撞前、后,双方的相对速度大小相等,即: u2-u1=υ1-υ2 推论二:当质量相等的两物体发生弹性正碰时,速度互换。 推论三:完全非弹性碰撞碰后的速度相等 推论四:碰撞过程受(动量守恒)(能量不会增加)和(运动的合理性)三个条件的制约。 碰撞模型 L vM v0 A s v B 1 A v 0A v0 B 其它的碰撞模型: 证明:完全非弹性碰撞过程中机械能损失最大。 证明:碰撞过程中机械能损失表为:△E=

12m1υ

211+

2m2υ

2

2

12m1u12―

12m2u22

由动量守恒的表达式中得: u2=

1m2(m1υ1+m2υ2-m1u1)

代入上式可将机械能的损失△E表为u1的函数为: △E=-m1(m1?m2)u12-m1(m1?12m2?m2?2)u+[(1mυ

11

21

2

+

12m2υ

2

2

)-

12m2( m1υ1+m2υ2)2]

m??m?1122m?m12m2这是一个二次项系数小于零的二次三项式,显然:当 u1=u2=

即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值 △ Em=

12时,

m1υ

1

2

+1m2υ

22

2-

12(m1?m2)(m1?1?m2?2m1?m2)2

历年高考中涉及动量守量模型的计算题都有:(对照图表) 一质量为M的长木板静止在光滑水平桌面上.一质量为m的小滑块以水平速度v0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时速度为V0/3,若把此木板固定在水平面上,其它条件相同,求滑块离开木板时速度? 1996年全国广东(24题) 试在下述简化情况下由牛顿定律导出动量守恒定律的表达式:系统是两个质点,相互作用力是恒力,不受其他力,沿直线运动要求说明推导过程中每步的根据,以及式中各符号和最后结果中各项的意义。 1999年全国广东(20题12分) 2000年全国广东(22压轴题) 2001年广东河南(17题12分) 速率v(相对于静止水面)向前跃入水中, 两个质量皆为m的小孩a和b,分别静止站在船头和船尾. 现小孩a沿水平方向以 A O m x3x1995年全国广东(30题压轴题) 1997年全国广东(25题轴题12分) 1998年全国广东(25题轴题12分) 质量为M的小船以速度V0行驶,船上有 M 2 1 N v B l l2002年广东(19题) 2003年广东(19、20题) 2004年广东(15、17题)

O L B OH A L2P C 2005年广东(18题) 2006年广东(16、18题) 2007年广东(17题) PvA LE PO (L B EE PA 2008年广东( 19题、第20题 ) 0 T 23456t (R PN B D R C 子弹打木块模型:物理学中最为典型的碰撞模型 (一定要掌握) 子弹击穿木块时,两者速度不相等;子弹未击穿木块时,两者速度相等.这两种情况的临界情况是:当子弹从木块一端到达另一端,相对木块运动的位移等于木块长度时,两者速度相等. 例题:设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒: mv0??M?m?v 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d 对子弹用动能定理:f?s1?1mv02?1mv2 ?????????????① 22对木块用动能定理:f?s2?①、②相减得:f?d?12212Mv????????????????② 122mv0??M?m?v2?Mm2?M?m?2v0 ??????③ ③式意义:f?d恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见f?d?Q,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。 由上式不难求得平均阻力的大小:f?Mmv202?M?m?d s2?mM?md至于木块前进的距离s2,可以由以上②、③相比得出: 从牛顿运动定律和运动学公式出发,也可以得出同样的结论。试试推理。 由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:

s2?ds2??v0?v?/2v/2?v0?vv,?ds2?v0v?M?mm,s2?mM?md 一般情况下M??m,所以s2<

求功方法 单位:J ev=1.9×10-19J 度=kwh=3.6×106J 1u=931.5Mev

⊙力学: ①W = Fs cos? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度

②W= P·t (?p=

wt=

FSt=Fv) 功率:P =

Wt (在t时间内力对物体做功的平均功率) P = Fv

(F为牵引力,不是合外力;V为即时速度时,P为即时功率.V为平均速度时,P为平均功率.P一定时,F与V成正比)

动能: EK=

12mv2?p22m 重力势能Ep = mgh (凡是势能与零势能面的选择有关)

③动能定理:外力对物体所做的总功等于物体动能的变化(增量)

公式: W

= W

=W1+ W2+?+Wn= ?Ek = Ek2 一Ek1 = 1mV22?1mV12

22?W合为外力所做功的代数和.(W可以不同的性质力做功)

?外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ?既为物体所受合外力的功。

④功是能量转化的量度(最易忽视)主要形式有: 惯穿整个高中物理的主线 “功是能量转化的量度”这一基本概念含义理解。

?重力的功------量度------重力势能的变化

物体重力势能的增量由重力做的功来量度:WG= -ΔEP,这就是势能定理。

与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关. 除重力和弹簧弹力做功外,其它力做功改变机械能; 这就是机械能定理。 只有重力做功时系统的机械能守恒。 ?电场力的功-----量度------电势能的变化 ?分子力的功-----量度------分子势能的变化

?合外力的功------量度-------动能的变化;这就是动能定理。 ?摩擦力和空气阻力做功W=fd

路程

?E内能(发热)

?一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,

也就是系统增加的内能。f ?d=Q(d为这两个物体间相对移动的路程)。

⊙热学: ΔE=Q+W(热力学第一定律)

⊙电学: WAB=qUAB=F电dE=qEdE ? 动能(导致电势能改变)

W=QU=UIt=I2Rt=U2t/R Q=I2Rt

E=I(R+r)=u外+u内=u外+Ir P电源t =uIt+E其它 P电源=IE=I U +I2Rt

22⊙磁学:安培力功W=F安d=BILd ?内能(发热) ?BBLVLd?BLVd

RR⊙光学:单个光子能量E=hγ 一束光能量E总=Nhγ(N为光子数目)

光电效应Ekm?12mvm=hγ-W0 跃迁规律:hγ=E末-E初 辐射或吸收光子

2⊙原子:质能方程:E=mc2 ΔE=Δmc2 注意单位的转换换算

机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功). 守恒条件:(功角度)只有重力和弹簧的弹力做功;(能转化角度)只发生动能与势能之间的相互转化。

“只有重力做功” ≠“只受重力作用”。

在某过程中物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。

列式形式: E1=E2(先要确定零势面) P减(或增)=E增(或减) EA减(或增)=EB增(或减)

mgh1 +

12mV1?mgh2?212mV22 或者 ?Ep减 = ?Ek增

路程

除重力和弹簧弹力做功外,其它力做功改变机械能;滑动摩擦力和空气阻力做功W=fd?E内能(发热)

4.功能关系:功是能量转化的量度。有两层含义:

(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度

强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。 做功的过程是物体能量的转化过程,做了多少功,就有多少能量发生了变化,功是能量转化的量度. (1)动能定理 (2)与势能相关力做功弹簧弹力 合外力对物体做的总功=物体动能的增量.即W合?12mv22?12mv1?Ek2?Ek1??Ek2 重力 重力对物体所做的功=物体重力势能增量的负值.即WG=EP1—EP2= —ΔEP 重力做正功,重力势能减少;重力做负功,重力势能增加. 弹力对物体所做的功=物体弹性势能增量的负值.即W弹力=EP1—EP2= —ΔEP 弹力做正功,弹性势能减少;弹力做负功,弹性势能增加. 分子力对分子所做的功=分子势能增量的负值 电场力对电荷所做的功=电荷电势能增量的负值 电场力做正功,电势能减少;电场力做负功,电势能增加。注意:电荷的正负及移动方向 除重力(弹簧弹力)以外的的其它力对物体所做的功=物体机械能的增量即WF=E2—E1=ΔE ?导致与之相关的势能变化 (3)机械能变化原因 (4)机械能守恒定律 分子力 电场力 当除重力(或弹簧弹力)以外的力对物体所做的功为零时,即机械能守恒 在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即 EK2+EP2 = EK1+EP1,12mv1?mgh21?12mv22?mgh2 或 ΔEK = —ΔEP (5)静摩擦力做功的特点 (1)静摩擦力可以做正功,也可以做负功,还可以不做功; (2)在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用; (3)相互摩擦的系统内,一对静摩擦力对系统所做功的和总是等于零. (6)滑动摩擦力做功特点“摩擦所产生的热” (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功; =滑动摩擦力跟物体间相对路程的乘积,即一对滑动摩擦力所做的功 (2)相互摩擦的系统内,一对滑动摩擦力对系统所做功的和总表现为负功, 其大小为:W= —fS相对=Q 对系统做功的过程中,系统的机械能转化为其他形式的能, (S相对为相互摩擦的物体间的相对位移;若相对运动有往复性,则S相对为相对运动的路程)

焦耳定律 磁感应强度 磁通量 安培力 磁场 洛伦兹力 普遍式:Q?IRt 纯电阻电路中:Q?W?UIt?2U2Rt?Pt B?FIL,L?B ??B?S F?ILB(B?L)或F?ILBsin? 1. F=BILsinθ f=qVBsinθ 2. M=NBIScosθ 匀强磁场 M=NBIS=Kθ 辐向磁场 3. R=mvqB T=2?mqBmVqBVmUqdm(只有洛仑兹力提供向心力才成立) 4.回旋加速器 Rm=m 12mV2m?nUq T=2?mqB t磁 =n?mqB t电= 电磁力矩 电磁感应 1. ε=BLVsinθ平动切割 ε=NM?BIS(平面S平行磁感线时) ???t磁变模型ε=BLV中点 旋转切割 2.Ф=Bssinθ;e=NBSωcosωt (矩形线圈在匀强磁场中匀速转动) E有=NBS? (只有正弦) 23.焦耳热Q=I2Rt(I恒定)Q=I有Rt(I正弦变化) Q=ΔE机(I非正弦变化) 4.电量q=It q=n△ф/R BILt=BLq=mV2-mV1(只受洛仑兹力) 5.变压器U1=n12???t U2=n2???t (???t)m=U1mn1?U2m n2U1U2=n1n2 P入=P出 n1I1= n2I2 + n3I3 6. 输电 P=UI P损=(7. 电磁振荡 T=2?PU)2R线 U2送=U损+U 3达 P送=P损+P达 LC q=qmsinωt i=Imcosωt ???t法拉第电磁感应定律 普适公式:??N 导体切割:??BLv(B、L、v三者相互垂直) 自感电动势 感抗 ??L?I?t XL?2?fL

容抗 XC?12?fC ?mR交变电动势、电流 最大值:?m?BS? Im? 瞬时值:e??msin?t i?Imsin?t 正弦或余弦交流电有效值 理想变压器 振荡电路周期频率 电磁波、光波波长

四. 光学、原子物理 物理概念规律名称 折射定律、折射率 sinisinr?n?1n??U1U2?m2,U?Um2;In2n1?Im2 ?n1n2,I1I2? LC 频率:f12?LC周期:T?2???cf? 公式 cv 临界角 光的波长 sinC? ??光子能量 光电效应方程 能级跃迁 质能关系 元素衰变 vf E?h? 12mvm2?h??W h??E初?E终 E?mc,?E??mc tt22?1?N?N0???2?T?1?T,m?m0?? ?2? 1.n1sin1=n2sin2 n1λ1=n2λ2 n1V1=n2V2 n红< n紫 υ2.nsinC=1sin90°紫光最易发生全反射 红光学 <υ紫(频率) 3.Pt=nhυ=nhc?=nhv?介 小孔透过光子数 ?r22?Ldnn总 4?R4.干涉 ΔS=nλ明条纹 ΔS=(2n-1)λ/2 暗条纹 Δx=?(条纹间距)

d=?介4 增透膜 ΔS=2d=nλ明条纹 ΔS=2d=(2n-1)λ/2 暗条纹 5. hυ= W+1mV2 2原子物理学 1. rn=n2r1 En=E1n2 (E1= -13.6ev) 22 (En=E电势能n+Ekn) (k2. hυ=ΔE 3.ΔE=Δer2n?mVnrn) mC 24. 静止在磁场中的原子核发生α衰变(外切);β衰变(内切) (M-m)V1=mV2 r1r2?q2q1 Δm21亏C=2mV2?212(M?m)V1 2热学: 1.热力学第一定律:W + Q = ?E 等温变化 ?E=0 绝热变化Q=0 等容变化:W=0 2.Q=cm?t 太阳辐射SQ??R2E地?4?r2E太(球壳模型) 3.PV=n RT=

mMRT (R=8.31为普适气体恒量,n为摩尔数)

解物理计算题一般步骤●物理的一般解题步骤:

①看懂文句,

②弄清题述物理现象、状态、过程。 ③明确对象所处的状态,所经历的过程.

1审题: ④状态或过程所对应的物理模型,所联系的物理知识,物理量,物理规律. (是解题的关健) ⑤找出状态或过程之间的联系.

⑥明确己知和侍求,

⑦挖掘在文字叙述(语言表达)中的隐含条件,(这往往是解题的突破口)。

(如:光滑,匀速,恰好,缓慢,距离最大或最小,有共同速度,弹性势能最大或最小等等)

对象:整体或隔离体(系统)、

2.选对象、找状态、划过程(整体思想): 找准状态

研究过程:准确划分(全过程还是分过程)。

对所选对象在某状态或过程中(全或分)进行:受力,运动,做功特点分析。

受力情况

3.分析: 运动情况 必要时画出受力、运动示意图或其它图辅助解答。

做功情况 及能量专化情况。

定性分析受哪些力(方向、大小、个数);做什么性质的运动(v、a);及各力做功的情况等。 搞清各过程中相互的联系,如:上一个程的末状态就是下一过程的初状态。

4.依?(运动、受力、做功或能量转化)特点?选择适当的物理规律:

(对象所处状态或发生过程中的)

①牛二及运动学公式;

(三把“金钥匙”) ②动量定理及动量守恒定律;

③动能定理、机械能守恒定律及功能关系等。

注意:用能的观点解有时快捷,动量定理,动能定理,功能关系可用以不同性质运动阶段的全过程。

设出题中没有直接给出的物理量

5.运用规律列式前(准备) 建立坐标

规定正方向等。

6所选的物理规规律用何种形式建立方程, 有时可能要用到数学的函数关系或几何关系式.

主干方程式要依课本中的“原绐公式”形式进行列式,

不同的状态或过程对应不同的规律。及它们之间的联系,统一写出方程。并给予序号标明。 6.统一单位制,将己知物理量代入方程(组)求解结果。

7.检验结果:必要时进行分析讨论,结果是矢量的要说明其方向。

选准研究对象,正确进行受力、运动、做功情况分析,弄清所处状态或发生的过程。是解题的关健。

过程往往涉及多个分过程,不同的过程中受力、做功不同,选用不同的规律,但要注意不同过程中相互联系的物理量。有时也可不必分析每个过程的物量情景,而把物理规律直接应用于整个过程,会使解题步骤大为简化。

一个过程,两个状态,及过程中的受力、做功情况。

解物理计算题一般步骤●物理的一般解题步骤:

1.审题:是解题的关健,明确己知和侍求,看懂文句,弄清题述物理现象、状态、过程。

挖掘隐含在文字叙述中的条件,从语言文字中挖掘隐含条件(这往往是解题的突破口)。 (如:光滑,匀速,恰好,缓慢,距离最大或最小,有共同速度,弹性势能最大或最小等等)

2.选对象和划过程:隔离体或整体(系统)、找准状态和准确划分研究过程(全过程还是分过程)。

3.分析:对所选对象在某状态或过程中(全或分)进行:受力分析、运动分析、做功情况分析及能量专化分析。有必要时画出受力、运动示意图或光路图辅助解答。

定性分析受哪些力(方向、大小、个数);做什么性质的运动(v、a);及各力做功的情况等。 搞清各过程中相互的联系,如:上一个程的末状态就是下一过程的初状态。 4.依对象所处状态或发生过程中的运动、受力、做功等特点,选择适当的物理规律:

(三把“金钥匙”)①牛二及运动学公式;②动量定理及动量守恒定律;

③动能定理、机械能守恒定律及功能关系等。

注意:用能的观点解有时快捷,动量定理,动能定理,功能关系可用以不同性质运动阶段的全过程。

5.在依规律列式前设出题中没有直接给出的物理量,建立坐标,规定正方向等。

依据(所选的对象在某种状态或划定的过程中)的受力,运动,做功特点, 选择依?物理规规律,并确定用何种形式建立方程,有时可能要用到几何关系式.

主干方程式要依课本中的“原绐公式”形式进行列式,有时要用到数学函数关系式或几何关系方程。不同的状态或过程对应不同的规律。及它们之间的联系,统一写出方程。并给予序号标明。 6.统一单位制,将己知物理量代入方程(组)求解结果。

7.检验结果:必要时进行分析讨论,结果是矢量的要说明其方向。

选准研究对象,正确进行受力、运动、做功情况分析,弄清所处状态或发生的过程。是解题的关健。

过程往往涉及多个分过程,不同的过程中受力、做功不同,选用不同的规律,但要注意不同过程中相互联系的物理量。有时也可不必分析每个过程的物量情景,而把物理规律直接应用于整个过程,会使解题步骤大为简化。一个过程,两个状态,及过程中的受力、做功情况。 物理解题诀窍歌: 确定平衡体,作出受力图。 分解合成巧应用,平衡条件掌握牢。 受力过程详分析,所列方程细推敲。 a是桥梁,把运动学和力学来沟通。 对联: 概念、公式、定理、定律。 对象、条件、状态、过程。 物理审题要认真 物理条件要分清 物理状态心要明 定理、定律形式多 如何选取要活灵 成绩高低看基础 决胜高考看平时 始末状态要分清,联系状态(量)心要明。 零参考选取需巧妙,规律应用要活灵。 变力做功莫怕难,功能关系尽开颜。 状态清楚参量明,条件变化要分清。 重力电场力相类似,联系对比巧应用。 千难万难力学难,关健过好力学关。 电路结构要分清,各路参量心要明。 安培定则常使用,左力右电是规律。 牛顿有三定律,力学有三把锁匙。 热力学有三定律,几学光学有三条主光线。 物理光学概念清,原子结构模型定。 光电效应要理解,能级跃迁会应用。

[计算说明]

1、单个物体问题情景

物体平衡(+直线运动规律) 平抛运动+万有引力

F=m a + 直线运动 圆周运动+万有引力 P=FV(以不变功率运行等) 圆周运动+功能关系 2、多个物体问题以“动量+功能”组合见多,出现机会最大

3、①力电综合以电荷在电场、磁场中运动为多,体现出力、电、磁三主干内容学科内综合。②磁场中电路的部分导体切割磁感线运动,综合物体的平衡、电路(欧姆定律)、磁场(安培力)、电磁感应四大内容,重新成为高考热点。 4、要熟悉电子绕核运行时动能与等效电流、光子能量与太阳辐射等问题的分析 5、解力学问题的一般程序

?选对象(整体法和隔离法)、选过程(全过程和分阶段过程)

?分析研究对象的受力情况(各力大小方向、是否恒力、做功与否、冲量等)和运动情况(初末速度、动量、动能等) ? F=ma+匀变速直线运动规律 恒力作用下物理问题 功能关系—— 通常涉及位移情况时 选合适的物理规律列式 动量理论—— 通常涉及时间情况时 变力作用下物理问题 —— “功能关系+动量理论” ?解方程,验根

6、典型电荷在电场、磁场中运动的专题问题 ?极板间加电场(图甲) ......

① 不同时刻从b点由静止释放电荷,讨论其往返运动情况。 ② 电荷从中央a点射入,讨论电荷仍从中央线处射的条件等 ③ 电荷从b点由静止释放,讨论其到达另一极板的条件

④ 极板电压改为u=U0cosωt等情况时,讨论电荷从a点连续高速入射时,电荷持续出射时间间隔

(7)一对作用力与反作用力做功的特点 (1)作用力做正功时,反作用力可以做正功,也可以做负功,还可以不做功; 作用力做负功、不做功时,反作用力亦同样如此. (2)一对作用力与反作用力对系统所做功的总和可以是正功,也可以是负功,还可以零. (8)热学 外界对气体做功 (9)电场力做功 (10)电流做功 外界对气体所做的功W与气体从外界所吸收的热量Q的和=气体内能的变化W+Q=△U (热力学第一定律,能的转化守恒定律) W=qu=qEd=F电SE (与路径无关) (1)在纯电阻电路中w?uIt?I2Rt?u2Rt(电流所做的功率=电阻发热功率) (2) 在电解槽电路中,电流所做的功率=电阻发热功率+转化为化学能的的功率 (3) 在电动机电路中,电流所做的功率=电阻发热功率与输出的机械功率之和 P电源t =uIt= +E其它;W=IUt ?I2Rt (11)安培力做功 安培力所做的功对应着电能与其它形式的能的相互转化,即W安=△E电, 安培力做正功,对应着电能转化为其他形式的能(如电动机模型); 克服安培力做功,对应着其它形式的能转化为电能(如发电机模型); 且安培力作功的绝对值,等于电能转化的量值, W=F安d=BILd ?内能(发热) (12)洛仑兹力永不做功 (13)光学 洛仑兹力只改变速度的方向,不改变速度的大小。 光子的能量: E光子=hγ;一束光能量E光=N×hγ(N指光子数目) 在光电效应中,光子的能量hγ=W+(14)原子物理 (15)能量转化和守恒定律 12mv 2原子辐射光子的能量hγ=E初—E末,原子吸收光子的能量hγ= E末—E初 爱因斯坦质能方程:E=mc2 对于所有参与相互作用的物体所组成的系统,其中每一个物体的能量数值及形式都可能发生变化,但系统内所有物体的各种形式能量的总合保持不变 功和能的关系贯穿整个物理学。现归类整理如下:常见力做功与对应能的关系 常见的几种力做功 力的种类 做功的正负 ①重力mg ②弹簧的弹力kx ③分子力F+ – + – + 分子 能量关系 对应的能量 变化情况 重力势能EP 弹性势能E弹性 分子势能E分子 电势能E电势 内能Q 电能E电 动能Ek 机械能E机械 减小 增加 减小 增加 减小 增加 减小 增加 增加 增加 增加 减小 增加 减小 数量关系式 mgh=–ΔEP W弹=–ΔE弹性 W分子力=–ΔE分子 qU =–ΔE电势 fs相对– + – – 安培④电场力Eq ⑤滑动摩擦力f ⑥感应电流的安培力F = Q – + – + – W安培力=ΔE电 W合=ΔEk WF=ΔE机械 ⑦合力F合 ⑧重力以外的力F 汽车的启动问题: 具体变化过程可用如下示意图表示.关键是发动机的功率是否达到额定功率, 恒定功 率启动 速度V↑F=P定v?a=F??fm? 当a=0即F=f时,v达到最大vm 保持vm匀速

∣→→→变加速直线运动→→→→→→→∣→→→→匀速直线运动→→??

恒定 加速度启动

a定=F?f定mP↑=F定v↑当P=P额时 即P随v的增大而增大 F=≠0, a=P额v?? ?当a=0时,v达到最a定=F定?fm即F一定 F??fmv还要增大 大vm,此后匀速 ∣→→匀加速直线运动→→→→∣→→→变加速(a↓)运动→→→→→∣→匀速运动→

(1)若额定功率下起动,则一定是变加速运动,因为牵引力随速度的增大而减小.求解时不能用匀变速运动的规律来解.

(2)特别注意匀加速起动时,牵引力恒定.当功率随速度增至预定功率时的速度(匀加速结束时的速度),并不是车行的最大速度.此后,车仍要在额定功率下做加速度减小的加速运动(这阶段类同于额定功率起动)直至a=0时速度达到最大.

高考物理力学常见几类计算题的分析(2010、3、) 高考题物理计算的常见几种类型 题型常见特点 (1)一般研究单个物体的阶段性运动。 (2)力大小可确定,一般仅涉及力、速度、加速度、位移、时间计算,通常不涉及功、能量、动量计算问题。 考查的主要内容 (1)运动过程的阶段性分析与受力分析 (2)运用牛顿第二定律求a (3)选择最合适的运动学公式求位移、速度和时间。 (4)特殊的阶段性运动或二物体运动时间长短的比较常引入速度图象帮助解答。 解题时应注意的问题 (1)学会画运动情境草,并对物体进行受力分析,以确定合外力牛顿运动的方向。 定律的应(2)加速度a计算后,应根据物用与运动体加减速运动确定运动学公式如学公式的何表示(即正负号如何添加) 应用 (3)不同阶段的物理量要加角标予以区分。 (1)功、冲量的正负判定及其表达式写法。 (1)未特别说明时,动能中速度(2)动能定理、动量定理表达式的建立。 二大定理应用:(1)均是相对地而言的,动能不能用运动学速度分量表示。 一般研究单个物体(3)牛顿第二定律表达式、运动:若出现二个物公式与单一动量定理表达是完全等(2)功中的位移应是对地位移;体时隔离受力分析,价的;牛顿第二定律表达式、运动学功的正负要依据力与位移方向间位移公式与单一动能定理表达是完夹角判定,重力和电场力做功正分别列式判定。 (2)题目出现“功”、全等价的;二个物体动能表达式与系负有时也可根据特征直接判定。 “动能”、“动能增统能量守恒式往往也是等价的。应用(3)选用牛顿运动定律及运动学加(减少)”等字眼,时要避免重复列式。 公式解答往往比较繁琐。 常涉及到功、力、初(4)曲线运动一般考虑到动能定理应(4)运用动量定理时要注意选取末速度、时间和长度用,圆周运动一般还要引入向心力公正方向,并依据规定的正方向来式应用;匀变速直线运动往往考查到确定某力冲量,物体初末动量的量计算。 二个定理的应用。 力学二大正负。 定理与二二大定律应用:(1)一大定律的般涉及二个物体运动 (2)题目常出现“光滑应用 水平面”(或含“二(1)系统某一方向动量守恒时运用(1)运用动量守恒定律时要注意物体间相互作用力动量守恒定律。 选择某一运动方向为正方向。 等大反向”提示)、(2)涉及长度量、能量、相对距离(2)系统合外力为零时,能量守“碰撞”、“动量”、计算时常运用能量守恒定律(含机械恒式要力争抓住原来总能量与后“动量变化量”、“速能守恒定律)解题。 来总能量相等的特点列式;当合度”等字眼,给定二物(3)等质量二物体的弹性碰撞,二外力不为零时,常根据做多少功体质量,并涉及共同物体会交换速度。 转化多少能特征列式计算。 速度、最大伸长(压(4)最值问题中常涉及二物体的共(3)多次作用问题逐次分析、列缩量)最大高度、临同速度问。 式找规律的意识。 界量、相对移动距离、作用次数等问题。 (1)涉及天体运动(1)物体行星表面处所受万有引力(1)注意万有引力定律表达式中问题,题目常出现近似等于物体重力,地面处重力往往的两天体间距离r距与向心力公式万有引力“卫星”、“行星”、远大于向心力 中物体环绕半径r的区别与联系。 定律的应“地球”、“表面”(2)空中环绕时万有引力提供向心力。 (2)双子星之间距离与转动半径用(一般出等字眼。 (3)物体所受的重力与纬度和高度往往不等,列式计算时要特别小在选择题中) (2)涉及卫星的环有关,涉及火箭竖直上升(下降)时心。 绕速度、周期、加速要注意在范围运动对重力及加速度(3)向心力公式中的物体环绕半

度、质量、离地高度等计算 (3)星体表面环绕速度也称第一宇宙速度。 的影响,而小范围的竖直上抛运动则不用考虑这种影响。 (4)当涉及转动圈数、二颗卫星最近(最远距离)、覆盖面大小问题时,要注意几何上角度联系、卫星到行星中心距离与行星半径的关系。 径r是所在处的轨迹曲率半径,当轨迹为椭圆时,曲率半径不一定等于长半轴或短半轴。 (4)地面处重力或万有引力远大于向心力,而空中绕地球匀速圆周运动时重力或万有引力等于向心力。

●电学部分一:静电场:

静电场:概念、规律特别多,注意理解及各规律的适用条件;电荷守恒定律,库仑定律

1.电荷守恒定律:元电荷e?1.6?10?19C 2.库仑定律:F?KQqr2 条件:真空中、点电荷;静电力常量k=9×109Nm2/C2

三个自由点电荷的平衡问题:“三点共线,两同夹异,两大夹小”

中间电荷量较小且靠近两边中电量较小的;q1q2?q2q3?q1q3

常见电场的电场线分布熟记,特别是孤立正、负电荷,等量同种、异种电荷连线上及中垂线上的场强分布,电场线的特点及作用.

3.力的特性(E):只要有电荷存在周围就存在电场 ,电场中某位置场强: ...

E?

Fq

(定义式)E?KQr2(真空点电荷)E?Ud(匀强电场E、d共线)叠加式E=E1+ E2+??(矢量合成)

4.两点间的电势差:U、UAB:(有无下标的区别) ...

静电力做功U是(电能?其它形式的能) 电动势E是(其它形式的能?电能)

UAB?WA?Bq??A-?B?Ed=-UBA=-(UB-UA) 与零势点选取无关)

电场力功W=qu=qEd=F电SE (与路径无关) 5.某点电势?描述电场能的特性:??..

WA?0q(相对零势点而言)

理解电场线概念、特点;常见电场的电场线分布要求熟记,

特别是等量同种、异种电荷连线上及中垂线上的场强特点和规律

6.等势面(线)的特点,处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表

面(距导体远近不同的等势面的特点?),导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;表面曲率大的地方等势面越密,E越大,称为尖端放电。应用:静电感应,静电屏蔽

7.电场概念题思路:电场力的方向?电场力做功?电势能的变化(这些问题是电学基础) 8.电容器的两种情况分析 ①始终与电源相连U不变;

当d↑?C↓?Q=CU↓?E=U/d↓ ; 仅变s时,E不变。

②充电后断电源q不变:

当d↑?c↓?u=q/c↑?E=u/d=

q/cd12?4?kq? s2

不变;仅变d时,E不变;

qU'L2mdv2209带电粒子在电场中的运动qU=mv;侧移y=,偏角tgф=

qU'Lmdv20

? 加速 W?qu加?qEd?12mv0 ① v0?22qum加 ?偏转(类平抛)平行E方向: 加速度:a?Fm?qEm2?qU偏dm ② 再加磁场不偏转时:qBv0?qE?qU偏d 水平:L1=vot ③ 竖直:y?12at ④ 2竖直侧移:y侧?12at2?1qE2mt2?1qU偏2mdt2?qUL1偏2022mdv?U偏L14dU2?qdBL12mU偏22 加 v0、U偏来表示;U偏、U加来表示;U偏和B来表示 竖直速度:Vy =at=qU偏L1v0偏dm?qBLm1 tg?=V?V0?atV0?qUL120mdv?U偏L12dU加?qL1dBmU偏2 (θ为速度方向与水平方向夹角) ?若再进入无场区:做匀速直线运动。 水平:L2=vot2 ⑤ 竖直:y2?vyt2?at1t2=L2tan? (简捷) ⑥ y2?qU偏L1L220dmv?U偏L1L22dUL12加?qdBL1L2mU偏偏2 总竖直位移: y?y1?y2?(③圆周运动 ?L2)qUL12dmv0?(L12?L2)U偏L12dU加?(L12?L2)qdBL1mU偏2 ④在周期性变化电场作用下的运动 结论: ①不论带电粒子的m、q如何,在同一电场中由静止加速后,再进入同一偏转电场,它们飞出时的侧移和偏转角是相同的(即它们的运动轨迹相同) ②出场速度的反向延长线跟入射速度相交于O点,粒子好象从中心点射出一样 (即b?ytan??L2) 证:tg??vyvo?gtvo1 tg??2gt2vot?gt2vo tg??2tg?(??的含义?)

恒定电流:

I=

qt(定义)=

?q?t I=nesv(微观) I=

uR=

ur'I =

ER?r;R=

uI(定义)电阻定律:R=?LS(决定)

部分电路欧姆定律:I?UR ?U=IR?R?UI 闭合电路欧姆定律:I =

εR?r

路端电压: U = ? -I r= IR

2 输出功率: P出 = Iε-I2r =

?P出P总IR

2电源热功率: Pr?Ir 电源效率: ?=

UεR =

R+r

电功: W=QU=UIt=I2Rt=U2t/R 电功率P==W/t =UI=U2/R=I2R 电热:Q=I2Rt

对于纯电阻电路: W=IUt=IRt?2U2Rt P=IU =IR?2U2R

对于非纯电阻电路: W=IUt ?I2Rt P=IU?I2r

E=I(R+r)=u外+u内=u外+Ir P电源=uIt= +E其它 P电源=IE=I U +I2Rt 单位:J ev=1.9×10-19J 度=kwh=3.6×106J 1u=931.5Mev 电路中串并联的特点和规律应相当熟悉

1、联电路和并联电路的特点(见下表): 两个基本特点 三个重要性质 电压 电流 电阻 电压 功率 2、记住结论:

串联电路 U=U1+U2+U3+?? I=I1=I2=I3=?? R=R1+R2+R3+?? U/R=U1/R1=U2/R2=U3/R3=??=I P/R=P1/R1=P2/R2=P3/R3=??=I2 并联电路 U=U1=U2=U3=?? I=I1+I2+I3+?? 1R?1R1?1R2?R=R1R2 R1+R2IR=I1R1=I2R2=I3R3=??=U PR=P1R1=P2R2=P3R3=??=U2 ①并联电路的总电阻小于任何一条支路的电阻;

②当电路中的任何一个电阻的阻值增大时,电路的总电阻增大,反之则减小。

3、电路简化原则和方法

①原则:a、无电流的支路除去;b、电势相等的各点合并;c、理想导线可任意长短;d、理想电流表电阻为零,理想电压表电阻为无穷大;e、电压稳定时电容器可认为断路

②方法:

a、电流分支法:先将各节点用字母标上,判定各支路元件的电流方向(若无电流可假设在总电路两端加上电压后判定),按电流流向,自左向右将各元件,结点,分支逐一画出,加工整理即可;

b、等势点排列法:标出节点字母,判断出各结点电势的高低(电路无电压时可先假设在总电路两端加上电压),将各节点按电势高低自左向右排列,再将各节点间的支路画出,然后加工整理即可。注意以上两种方法应结合使用。

4、滑动变阻器的几种连接方式

注意:F

=B I L ①、B⊥I时;②、B || I时;③、B与I成夹角时

f洛= q B v

①、B⊥v时,f洛最大,f洛= q B v

(f B v三者方向两两垂直且力f方向时刻与速度v垂直)?导致粒子做匀速圆周运动。 ②、B || v时,f洛=0 ?做匀速直线运动。

③、B与v成夹角时,(带电粒子沿一般方向射入磁场),

可把v分解为(垂直B分量v⊥,此方向匀速圆周运动;平行B分量v|| ,此方向匀速直线运动。) ?合运动为等距螺旋线运动。安培力的冲量:BILΔt=mΔv

带电粒子在洛仑兹力作用下的圆周(或部分圆周)运动 带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范),找圆心和确定半径 ........................规律:qBv?mv2R?R?mv (不能直接用) qB T?2?Rv?2?mqB 1、找圆心:①(圆心的确定)因f洛一定指向圆心,f洛⊥v任意两个f洛方向的指向交点为圆心; ②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。 22、求半径(两个方面): ①物理规律qBv?mvR?R?mvqB ②由轨迹图得出与半径R有关的几何关系方程 ( 解题时应突出这两条方程 ) 几何关系:速度的偏向角?=偏转圆弧所对应的圆心角(回旋角)?=2倍的弦切角? 相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。 3、求粒子的运动时间:偏向角(圆心角、回旋角)?=2倍的弦切角?,即?=2? t?圆心角(回旋角)2?(或3600×T t =圆心角(回旋角)×T 2?(或360)0)4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件 a、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。 b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。 注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。

专题:带电粒子在复合场中的运动

一、复合场的分类:1、复合场:2、叠加场: 二、带电粒子在复合场电运动的基本分析

三、电场力和洛伦兹力的比较

1.在电场中的电荷,不管其运动与否,均受到电场力的作用;

而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用. 2.电场力的大小F=Eq,与电荷的运动的速度无关;

而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关. 3.电场力的方向与电场的方向或相同、或相反;

而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.

4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,

而洛伦兹力只能改变电荷运动的速度方向.不能改变速度大小 5.电场力可以对电荷做功,能改变电荷的动能; 而洛伦兹力不能对电荷做功,不能改变电荷的动能. 6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;

匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆

弧.

四、对于重力的考虑 重力考虑与否分三种情况.

五、复合场中的特殊物理模型

1.粒子速度选择器

如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子

沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关 若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加. 若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.

2.磁流体发电机

如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速。喷入偏转磁场B中.在洛伦兹力作用下,正、

负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.

3.电磁流量计.

电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛伦兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.

由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B

4.质谱仪:如图所示:组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片. 原理:加速场中qU=?mv2 选择器中: Bqv=Eq ?v?偏转场中:d=2r,qvB2=mv/r 比荷:质量m?qm?2EB1B2d2

EB1 B1B2dq2E

作用:主要用于测量粒子的质量、比荷、研究同位素. 5.回旋加速器

如图所示:组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U

作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.

要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期. 关于回旋加速器的几个问题:

(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动‘

(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等: f?1T?qB2?m

(3)回旋加速器最后使粒子得到的能量,可由公式EK?12mv?2qBR2m222来计算,

在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.

电磁感应:.

1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。

内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

发生电磁感应现象的这部分电路就相当于电源,在电源的内部电流的方向是从低电势流向高电势。(即:由负到正)

2.[感应电动势的大小计算公式]

1) E=BLV (垂直平动切割) 2) E?n???t?n?B?s?t?nB??s?t??=?(普适公式) ε∝

???t(法拉第电磁感应定律)

3) E= nBSωsin(ωt+Φ);Em=nBSω (线圈转动切割)

4)E=BL2ω/2 (直导体绕一端转动切割) 5)*自感E自=nΔΦ/Δt==L

?I?t ( 自感 )

3.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,这就是楞次定律。 内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 B感和I感的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I感的B是阻碍产生I感的原因) B原方向?;B原?变化(原方向是增还是减);I感方向?才能阻碍变化;再由I感方向确定B感方向。

楞次定律的多种表述 ①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。 ③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。(增反、减同) ④楞次定律的特例──右手定则

在应用中常见两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。

磁通量的变化与相对运动具有等效性:磁通量增加相当于导体回路与磁场接近,磁通量减少相当于导体回路与磁场远离。因此,

从导体回路和磁场相对运动的角度来看,感应电流的磁场总要阻碍相对运动; 从穿过导体回路的磁通量变化的角度来看,感应电流的磁场总要阻碍磁通量的变化。 能量守恒表述:I感效果总要反抗产生感应电流的原因

电磁感应现象中的动态分析,就是分析导体的受力和运动情况之间的动态关系。 一般可归纳为:

导体组成的闭合电路中磁通量发生变化?导体中产生感应电流?导体受安培力作用? 导体所受合力随之变化?导体的加速度变化?其速度随之变化?感应电流也随之变化 周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动

“阻碍”和“变化”的含义

感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。

磁通量变化 产生 感应电流

阻碍

产生

感应电流的磁场

4.电磁感应与力学综合

方法:从运动和力的关系着手,运用牛顿第二定律

(1)基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二列方程求解.

电磁感应 (2)注意安培力的特点: 导体运动v 感应电动势E

闭欧合姆 阻电定碍 路律

安培力F 磁场对电流的作用 感应电流I (3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.

5.电磁感应与动量、能量的综合

方法:

(2)从受力角度着手,运用牛顿运动定律及运动学公式

变化过程是:导线受力做切割磁力线运动,从而产生感应电动势,继而产生感应电流,这样就出现与外力方向相反的安培力作用,于是导线做加速度越来越小的变加速直线运动,运动过程中速度v变,电动势BLv也变,安培力BIL亦变,当安培力与外力大小相等时,加速度为零,此时物体就达到最大速度.

(2)从动量角度着手,运用动量定理或动量守恒定律

①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.

②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.

(3)从能量转化和守恒着手,运用动能定律或能量守恒定律

①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.

?电能??????内能(焦耳热) ②能量转化特点:其它能(如:机械能)??????安培力做负功电流做功6.电磁感应与电路综合

方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:

(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画出等效电路图.

(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.

功能关系:电磁感应现象的实质是不同形式能量的转化过程。因此从功和能的观点入手,

分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。

棒平动切割B时达到的最大速度问题;及电路中产生的热量Q;通过导体棒的电量问题 ①vm?F合外RBL22 (F合外为导体棒在匀速运动时所受到的合外力)。 求最大速度问题,尽管达最大速度前运动为变速运动,感应电流(电动势)都在变化,但达最大速度之后,感应电流及安培力均恒定,计算热量运用能量观点处理,运算过程得以简捷。 ②Q=WF -Wf-12mv2m (WF 为外力所做的功; Wf-为克服外界阻力做的功); ?R??t?n??R?t??t?n??R③流过电路的感应电量q?I?t? . 【例】长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。将线圈以向右的速度v匀速拉出磁场,求: ① 拉力F大小; ② 拉力的功率P; ③ 拉力做的功W; ④ 线圈中产生的电热Q; ⑤通过线圈某一截面的电荷量q。 LLB v F E?BL2V,I?2ER,F?BIL2,?F?BL2L1VR??R22BL2VR?V;22?V;P?FV?V;W?FL1?解析: Q?W?V;q?I?t?ERt?与v无关。特别要注意电热Q和电荷q的区别,其中 q与速度无关! 交变电流 电磁场

交变电流(1)中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。

中性面的特点:a.线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但

产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。

?Φ?t=0;

变化规律e=NBSωsinωt=Emsinωt;i=Imsinωt;(中性面位置开始计时),最大值Em=NBSω ...四值:①瞬时值②最大值③有效值电流的热效应规定的;对于正弦式交流U=22Um2=0.707Um ④平均值

不对称方波:I?I1?I2 不对称的正弦波

I?2Im1?Im2222

求某段时间内通过导线横截面的电荷量Q=IΔt=εΔt/R=ΔΦ/R

我国用的交变电流,周期是0.02s,频率是50Hz,电流方向每秒改变100次。

瞬时表达式:e=e=220

2sin100πt=311sin100πt=311sin314t

线圈作用是“通直流,阻交流;通低频,阻高频”.

a、限流连接:如图,变阻器与负载元件串联,电路中总电压为U,此时负载Rx的电压调节范围红为

URxRx?Rp~U,

其中Rp起分压作用,一般称为限流电阻,滑线变阻器的连接称为限流连接。

b 、分压连接:如图,变阻器一部分与负载并联,当滑片滑动时,两部分电阻丝的长度发生变化,对应电阻也发生变化,根据串联电阻的分压原理,其中UAP=

RAPRAP?RPBU

,当滑片P自A端向B端滑动时,负载上的电压范围为0~U,显然比限流时调

节范围大,R起分压作用,滑动变阻器称为分压器,此连接方式为分压连接。

一般说来,当滑动变阻器的阻值范围比用电器的电阻小得多时,做分压器使用好;反之做限流器使用好。

5、含电容器的电路:分析此问题的关键是找出稳定后,电容器两端的电压。

6、电路故障分析:电路不正常工作,就是发生故障,要求掌握断路、短路造成的故障分析。

电路动态变化分析(高考的热点)各灯、表的变化情况

1程序法:局部变化?R总?I总?先讨论电路中不变部分(如:r)?最后讨论变化部分 局部变化Ri??R总??I总??U内??U露??再讨论其它 2直观法:

①任一个R增必引起通过该电阻的电流减小,其两端电压UR增加.(本身电流、电压)

②任一个R增必引起与之并联支路电流I并增加; 与之串联支路电压U串减小(称串反并同法) ?Ii?局部 Ri????与之串、并联的电阻u??i?I并? ??U串?当R=r时,电源输出功率最大为Pmax=E2/4r而效率只有50%,

路端电压跟负载的关系

(1)路端电压:外电路的电势降落,也就是外电路两端的电压,通常叫做路端电压。 (2)路端电压跟负载的关系

当外电阻增大时,电流减小,路端电压增大;当外电阻减小时,电流增大,路端电压减小。

定性分析:R↑→I(=

E

)↓→Ir↓→U(=E-Ir)↑ R+r

E E

R↓→I(=)↑→Ir↑→U(=E-Ir)↓

R+r

特例:

外电路断路:R↑→I↓→Ir↓→U=E。

0 E0

外电路短路:R↓→I(=)↑→Ir(=E)↑→U=0。

r0

U U r=0 U内=I1r U=I1R O I 图象描述:路端电压U与电流I的关系图象是一条向下倾斜的直线。U—I图象如图所示。

直线与纵轴的交点表示电源的电动势E,直线的斜率的绝对值表示电源的内阻。

路端电压随电流的变化图线中注意坐标原点是否都从零开始

闭合电路中的功率

(1)闭合电路中的能量转化qE=qU外+qU内

在某段时间内,电能提供的电能等于内、外电路消耗的电能的总和。

电源的电动势又可理解为在电源内部移送1C电量时,电源提供的电能。 (2)闭合电路中的功率:EI=U外I+U内I ?EI=IR+Ir

说明电源提供的电能只有一部分消耗在外电路上,转化为其他形式的能,另一部分消耗在内阻上,转化为内能。

2

2

E2

(3)电源提供的电功率:又称之为电源的总功率。P=EI=

R+rE2

R↑→P↓,R→∞时,P=0。 R↓→P↑,R→0时,Pm=。

r(4)外电路消耗的电功率:又称之为电源的输出功率。P=U外I 定性分析:I=

ERE U外=E-Ir= R+rR+r

E2

) 外max=4r

从这两个式子可知,R很大或R很小时,电源的输出功率均不是最大。 RE2E2

定量分析:P外=U外I==(当R=r时,电源的输出功率为最大,P

(R+r)2(R-r)2+4rR

U P 图象表述: 2

ER=r E 4r

E/2

I R O O Rr R E/2r E/r 1 2

从P-R图象中可知,当电源的输出功率小于最大输出功率时,对应有两个外电阻R1、R2时电源的输出功率相等。可以证明,R1、R2和r必须满足:r=R1R2。

(5)内电路消耗的电功率:是指电源内电阻发热的功率。 rE2

P内=U内I= R↑→P内↓,R↓→P内↑。

(R+r)2P外R

(6)电源的效率:电源的输出功率与总功率的比值。η==

PR+r

当外电阻R越大时,电源的效率越高。当电源的输出功率最大时,η=50%。

电学实验专题

测电动势和内阻

(1)直接法:外电路断开时,用电压表测得的电压U为电动势E ;U=E (2)通用方法:AV法测要考虑表本身的电阻,有内外接法;

①单一组数据计算,误差较大

②应该测出多组(u,I)值,最后算出平均值

③作图法处理数据,(u,I)值列表,在u--I图中描点,最后由u--I图线求出较精确的E和r。

(3)特殊方法 (一)即计算法:画出各种电路图

E?I1(R1?r)E?I2(R2

?r)E?I1I2(R1-R2)

I2-I1r?I1R1-I2RI2-I12(一个电流表和两个定值电阻)

E?u1?I1rE?u2?I2r

E?I1u2-I2u1I1-I2

r?u2-u1I1-I2

(一个电流表及一个电压表和一个滑动变阻器)

E?u1?E?u2?u1R1u2R2rr

E?u1u2(R1-R2)u2R1-u1R2

r?(u1-u2)R1R2(一个电压表和两个定值电阻) u2R1-u1R2(二)测电源电动势ε和内阻r有甲、乙两种接法,如图 甲法中:所测得ε和r都比真实值小,ε乙法中:ε测=ε真,且r测= r+rA。

(三)电源电动势ε也可用两阻值不同的电压表A、B测定,单独使用A表时,读数是UA,单独使用B表时,读数是UB,用A、B两表测量时,读数是U,则ε=UAUB/(UA-U)。

/r测=ε测/r真;

电阻的测量

AV法测:要考虑表本身的电阻,有内外接法;多组(u,I)值,列表由u--I图线求。怎样用作图法处理数据 欧姆表测:测量原理

两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小

使用方法:机械调零、选择量程(大到小)、欧姆调零、测量读数时注意挡位(即倍率)、拨off挡。 注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 电桥法测:

R1R2?R3RX?R?R2R3R1

半偏法测表电阻: 断s2,调R1使表满偏; 闭s2,调R2使表半偏.则R表=R2;

G R1 R2 S2 V R2 R1 S S1

一、测量电路( 内、外接法 ) 记忆决调 “内”字里面有一个“大”字 计算比较法 类型 电路图 R测与R真比较 条件 己知Rv、RA及Rx大致值时 内 V A RV A R测=UR?UAIUIv?IR?=RX+RA > RX RxRvRx?RvRx?Rv?RA 适于测大电阻 Rx >RARv 外 RR测=

若I有较大变化(即u1-u2?I1-I2)说明v有较大电流通过,采用内接法

u1I1若u有较大变化(即u1-u2?I1-I2)说明A有较强的分压作用,采用内接法

u1I1测量电路( 内、外接法 )选择方法有(三) ①Rx与 Rv、RA粗略比较

② 计算比较法 Rx 与

RARv 比较

③当Rv、RA及Rx末知时,采用实验判断法: 二、供电电路( 限流式、调压式 ) 电路图 电压变化范围 电流变化范围 优势 选择方法 R限流 Rx?R滑E~E ERx?R滑ERx~ERxRx比较小、R滑 比较大, 电路简单 附加功耗小 电压变化范围大 R滑全>n倍的Rx 通电前调到最大 Rx比较大、R滑 比较小 R滑全>Rx/2 通电前调到最小 0~调压 要求电压 从0开始变化 0~E 以“供电电路”来控制“测量电路”:采用以小控大的原则

电路由测量电路和供电电路两部分组成,其组合以减小误差,调整处理数据两方便 R滑唯一:比较R滑与Rx 确定?控制电路 R滑不唯一:实难要求?确定控制电路?R滑 实难要求:①负载两端电压变化范围大。 ②负载两端电压要求从0开始变化。 ③电表量程较小而电源电动势较大。 有以上3种要求都采用调压供电。 无特殊要求都采用限流供电 Rx

按题设实验要求组装电路,画出电路图,能把实物接成实验电路,精心按排操作步骤,过程中需要测?物理量,结果表达式中各符号的含义.

(1)选量程的原则:测u I,指针超过1/2, 测电阻刻度应在中心附近.

(2)方法: 先画电路图,各元件的连接方式(先串再并的连线顺序)

明确表的量程,画线连接各元件,铅笔先画,查实无误后,用钢笔填,

先画主电路,正极开始按顺序以单线连接方式将主电路元件依次串联,后把并联无件并上.

(3)注意事项:表的量程选对,正负极不能接错;导线应接在接线柱上,且不能分叉;不能用铅笔画 用伏安法测小电珠的伏安特性曲线:测量电路用外接法,供电电路用调压供电。 (4)实物图连线技术

无论是分压接法还是限流接法都应该先把伏安法部分接好;即:先接好主电路(供电电路).

对限流电路,只需用笔画线当作导线,从电源正极开始,把电源、电键、滑动变阻器、伏安法四部分依次串联起来即可(注意电表的正负接线柱和量程,滑动变阻器应调到阻值最大处)。

对分压电路,应该先把电源、电键和滑动变阻器的全部电阻丝三部分用导线连接起来,然后在滑动变阻器电阻丝两端之中任选一个接头,比较该接头和滑动触头两点的电势高低,根据伏安法部分电表正负接线柱的情况,将伏安法部分接入该两点间。

实物连线的总思路 分压(滑动变阻器的下两个接线柱一定连在电源和电键的两端) 画出电路图→连滑动变阻器→

限流(一般连上一接线柱和下一接线柱) (两种情况合上电键前都要注意滑片的正确位

电表的正负接线柱 →连接总回路: 总开关一定接在干路中 导线不能交叉

微安表改装成各种表:关健在于原理

首先要知:微安表的内阻、满偏电流、满偏电压。 采用半偏法先测出表的内阻;最后要对改装表进行较对。 (1)改为V表:串联电阻分压原理

ugRg?u-ugR?R?(u-ugug)R?(n-1)Rg (n为量程的扩大倍数)

(2)改为A表:并联电阻分流原理

IgRg?(I-Ig)R?R?(3)改为欧姆表的原理

IgI-IgRg?1n-1Rg (n为量程的扩大倍数)

两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小

磁场 基本特性,来源,

方向(小磁针静止时极的指向,磁感线的切线方向,外部(N?S)内部(S?N)组成闭合曲线 要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健)

脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁感线分布图 能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图)

磁场安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验

安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量

F安=B I L

推导? f洛=q B v 建立电流的微观图景(物理模型)

从安培力F=ILBsinθ和I=neSv推出f=qvBsinθ。 典型的比值定义

(E=

Fq E=k

Qr2) (B=

FI L B=k

Ir2 ) (u=

wa?bq?A?WA?0q) ( R=

uI R=?LS) (C=

Qu C=

? s4? k d)

磁感强度B:由这些公式写出B单位,单位?公式

F?E①B=

I L ; ②B=

S ; ③E=BLv ? B=

Lv ;④B=k

Ir2(直导体);⑤B=?NI(螺线管)

⑥qBv = m

v2R ? R =

mvqB ? B =

mvqR ; ⑦qBv?qE?B?Evu?dv?udv

电学中的三个力:F

=q E =q F安=B I L f洛= q B v

du

本文来源:https://www.bwwdw.com/article/x952.html

Top