最新人教版八年级数学下册期末考试卷及答案

更新时间:2023-04-08 23:50:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

--

期末综合检测

一、选择题(每小题3分,共30分)

1.(2013·鞍山中考)要使式子有意义,则x的取值范围是( )

A.x>0???

B.x≥-2

C.x≥2???D.x≤2

2.矩形具有而菱形不具有的性质是()

A.两组对边分别平行?

B.对角线相等 C.对角线互相平分??D.两组对角分别相等

3.下列计算正确的是( )

A.×=4? B.+=C.÷=2???

D.=-15

4.(2013·陕西中考)根据表中一次函数的自变量x与函数y的对应值,可得p的值为( )

x[来源:Zx-2 0 1

y 3[p0

A.1 ?B.-1 ??C.3 ?D.-3

5.(2013·盐城中考)某公司10名职工的6月份工资统计如下,该公司10名职工6月份工资的众数和中位数分别是()

工资(元) 2 000 2 200 2 400 2 600

人数(人) 1 3 4 2

A.2400元、2400元? B.2400元、2300元

C.2200元、2200元?? D.2200元、2300元

6.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形

的是()

A.AB∥DC,AD∥BC?

B.AB=DC,AD=BC

C.AO=CO,BO=DO??D.AB∥DC,AD=BC

7.(2013·巴中中考)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周

--

--

-- 长是( )

A.24 ??B.16 C.

4 ? D.2

8.如图,△ABC 和△DC E都是边长为4的等边三角形,点B,C,E 在同一条直线上,连接BD,则BD 的长为( )

A.? ??B.2? C.3 ?D.4

9.正比例函数y=k x(k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k的图象大致是( )

10.(2013·黔西南州中考)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x

A .x <? B.x<3

C.x> D .x>3

二、填空题(每小题3分,共24分)

11.计算:-= .

12.(2013·恩施州中考)函数y=的自变量x 的取值范围是 .

13.已知a,b ,c 是△ABC 的三边长,且满足关系式

+|a-b|=0,则△ABC 的形状为 .

14.(2013·十堰中考)某次能力测试中,10人的成绩统计如下表,则这10人成绩的平均数

--

为.

分数 5 4 3 2 1

人数3 1 2 2 2

15.(2013·资阳中考)在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取值范围为 .

16.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件,

使四边形AECF是平行四边形(只填一个即可).

17.(2013·泉州中考)如图,菱形ABCD的周长为8,对角线AC和BD相交于点

O,AC∶BD=1∶2,则AO∶BO= ,菱形ABCD的面积S=.

18.(2013·上海中考)李老师开车从甲地到相距240km的乙地,如果油箱剩

余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么

到达乙

地时油箱剩余油量是L.

三、解答题(共66分)

19.(10分)计算:(1)9+7-5+2.

(2)(2-1)(+1)-(1-2)2.

20.(6分)(2013·荆门中考)化简求值:÷·,其中a=-2.

21.(6分)(2013·武汉中考)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集. 22.(8分)(2013·宜昌中考)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F 为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.

(1)请你判断所画四边形的形状,并说明理由.

(2)连接EF,若AE=8cm,∠A=60°,求线段EF的长.

23.(8分)(2013·昭通中考)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是A

D边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于

--

--

-- 点N ,连接MD ,AN.

(1)求证:四边形AMDN 是平行四边形.

(2)当AM 为何值时,四边形AMDN 是矩形?请说明理由.

24.(8分)(2013·鄂州中考)小明、小华在一栋电梯楼前感慨楼房真高.

小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知

道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让

我们来量一量吧!”小明、小华在楼体两侧各选A,B两点,测量数据如图,

其中矩形CD EF 表示楼体,

AB =150m,C D=10m ,∠A=30°,∠B =45°(A,C,D ,B 四点在同一直

线上),问:

(1)楼高多少米?

(2)若每层楼按3m 计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1

.73,≈ 1.41,≈2.24) 25.(10分)(2013·株洲中考)某生物小组观察一植物生长,得到植物高度y (单位:c m)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴).

(1)该植物从观察时起,多少天以后停止长高?

(2)求直线AC 的解析式,并求该植物最高长多少厘米?

26.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:

甲、乙射击成绩统计表

平均数 中位数[来 方差[来 命中10环的次数 甲

7 0 乙 1

甲、乙射击成绩折线图

(1)请补全上述图表(请直接在表中填空和补全折线图).

(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.

(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?

答案解析

--

1.【解析】选D.根据题意得2-x≥0,解得x≤

2.

2.【解析】选B.矩形与菱形的两组对边都分别平行,故选项A不符合题意;矩形的对角线相等,菱形的对角线不一定相等,故选项B正确;矩形与菱形的对角线都互相平分,故选项C不符合题意;矩形与菱形的两组对角都分别相等,故选项D不符合题意.

3.【解析】选C .×==2,与不能合并,÷==

=2,==15,因此只有选项C正确.

4.【解析】选A.一次函数的解析式为y=k x+b(k≠0),

∵x=-2时y=3;x=1时y=0,

∴解得

∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.

5.【解析】选A.这10个数据中出现次数最多的数据是2400,一共出现了4次,所以众数是2400;这10个数据按从小到大的顺序排列,位于第5个的是2400,第6个的也是2400,故中位数是

=2400.

6.【解析】选 D.由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故选项A不符合题意;由“AB=DC,AD=BC”可知,四边形ABCD的两组对边分别相等,则该四边形是平行四边形.故选项B不符合题意;由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故选项C不符合题意;由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故选项D符合题意.

7.【解析】选C.∵四边形ABCD是菱形,AC=6,BD=4,

AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,

∴在Rt△AOB中,AB===,

∴菱形的周长为4×AB=4.

8.【解析】选D.∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=

--

--

60°,BC=CD=4,

∴∠BDC=∠CBD=30°,∴∠BDE=90°.

∴BD ==4.

9.【解析】选A.∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴一次函数y =x+k的图象经过第一、二、三象限.

10.【解析】选A.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是,∴不等式2x

11.【解析】-=3-=.

答案:

12.【解析】3-x≥0且x+2≠0,解得x≤3且x≠-2.

答案:x≤3且x≠-2

13.【解析】∵+|a-b|=0,∴c2-a2-b2=0,且a-b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.

答案:等腰直角三角形

14.【解析】×(5×3+4×1+3×2+2×2+1×2)=×(15+4+6+4+2)=×31=3.1.所以这10人成绩的平均数为3.1.

答案:3.1

15.【解析】∵在一次函数y=(2-k)x+1中,y随x的增大而增大,∴2-k>0,∴k<2.

答案:k<2

16.【解析】若添加的条件是AF=CE,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.

答案:AF=CE(答案不唯一)

--

--17.【解析】∵四边形 ABCD 是菱形,∴AO=CO,BO=DO, ∴AC=2AO,BD=2BO,∴AO∶BO=1∶2; ∵菱形ABCD的周长为 8 ,∴AB=2 , ∵AO∶BO=1∶2,∴A O=2,BO=4,∴菱形 ABCD的面积 S= ×2×4×4=16. 答案:1∶2 1618.【解析】设 y 与 x 之间的函数关系式为 y=kx+b,由函数图象,得
解得
则 y=答案:2
x+3.5.当x=240 时,y=-
×240+3.5=2(L).
19.【解析】(1)9 +7 -5 +2
=9 +14 -20 +
=
=
.
(2)(2 -1)( +1)-(1-2 )2
=2 × +2 - -1-(1-4 +12)
=6+2 - -1-1+4 -12
=(2-1+4) -8=5 -8.
20.【解析】
÷
·
--

--

-- =

··=,

当a=-2时,原式====. 21.【解析】∵直线y=2x+b经过点(3,5), ∴5=2×3+b ,解得b=-1,

∵2x +b ≥0,∴2x-1≥0,解得x ≥.

22.【解析】(1)菱形.

理由:∵根据题意得:AE=AF=ED=DF,

∴四边形AEDF 是菱形.

(2)如图,连接EF ,∵AE=AF,∠A =60°, ∴△E AF 是等边三角形,∴EF =AE=8cm .

23.【解析】(1)∵四边形ABCD 是菱形,∴ND ∥AM, ∴∠N DE=∠MA E,∠DN E=∠AME,

∵点E 是AD 中点,∴D E=AE,

在△N DE和△MAE 中,

∴△NDE ≌△MAE(A AS),∴N D=MA ,

∴四边形AM DN是平行四边形.

(2)AM=1. 理由如下:∵四边形AB CD 是菱形,∴AD=AB=2, ∵平行四边形AMDN 是矩形,

--

∴DM⊥AB,即∠DMA=90°,

∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=1.

24.【解析】(1)设楼高为xm,则CF=DE=xm,

∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,

∴AF=2CF=2xm,

在Rt△ACF中,根据勾股定理得

AC===xm,

∵∠BDE=90°,∠B=45°,∴BD=xm,

∴x+x=150-10,解得

x===70-70(m),

∴楼高70-70(m).

(2)x=70-70≈70(1.73-1)=70×0.73=51.1(m)<3×20(m),∴我支持小华的观点,这楼不到20层.

25.【解析】(1)∵CD∥x轴,

∴从第50天开始植物的高度不变.

答:该植物从观察时起,50天以后停止长高.

(2)设直线AC的解析式为y=kx+b(k≠0),

∵直线经过点A(0,6),B(30,12),

∴解得

所以,直线AC的解析式为y=x+6(0≤x≤50),

当x=50时,y=×50+6=16.

--

--

-- 答:直线A C的解析式为y=x +6(0

≤x ≤50),该植物最高长16cm.

26.【解析】(1)根据折线统计图得乙的射击成绩为:2,4,6,7,7,8,8,9,9,10,则平均数为

=7(环),中位数为7.5环,方差为

[(2-7)2

+(4-7)2 +(6-7)2+(8-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2+(10-7)2]=5.4(环2);

甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7,则甲第八次射击的成绩为70-(9+6+7+6+2+7+7+8+9)=9(环),成绩为2,6,6,7,7,7,8,9,9,9,中位数为7(环),方差为

[(2-7)2

+(6-7)2+(6-7)2+(7-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)

2 +(9-7)2]=4(环2),

补全如下:甲、乙射击成绩统计表

平均数 中位数 方差 命中10环的次数 甲

7 7 4 0 乙 7 7.5 5.4 1 甲、乙射击成绩折线图

(2)由甲的方差小于乙的方差,得到甲胜出.

(3)希望乙胜出,规则为9环与10环的总环数大的胜出,因为乙9环与10环的总数为28,甲9环与10环的总数为27.

--

-- --

本文来源:https://www.bwwdw.com/article/x7ol.html

Top