(2007-2010年)济南中考数学试题及答案

更新时间:2024-03-01 12:19:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

二00七年济南市高中阶段学校招生考试

数学试题

第I卷(选择题 共48分)

一、选择题:本大题共12个小题.每小题4分;共48分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.4的平方根是( ) A.2 B.4 C.?2 D.?4 2.下列各式中计算结果等于2x的是( ) A.x?x

336B.(2x3)2 C.2x?x

32D.2x?x

7C

3.已知:如图,AB?CD,垂足为O,EF 为过点O的一条直线,则?1与?2的关系一定 成立的是( ) A.相等 B.互余 C.互补 D.互为对顶角

E 1

A

2 F

O

B ,关于x轴的对称点的坐标为( ) 4.点P(?21)D

第3题图

1) A.(2,

?1) B.(?2,?1) C.(2,,?2) D.(15.已知一个三角形三个内角度数的比是1:5:6,则其最大内角的度数为( ) A.60

?B.75

?C.90

?D.120

?6.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是( ) A.8

B.5

C.3

D.22 7.下列说法不正确的是( )

A.有一个角是直角的菱形是正方形 C.对角线互相垂直的矩形是正方形 8.计算

B.两条对角线相等的菱形是正方形 D.四条边都相等的四边形是正方形

?2??3?(?1)13?11?(?3)2?????(?7)?9?

B.?1

2??0的结果为( )

A.1

C.4

D.?1 4C y ?3),B(0,?3), 9.已知:如图△ABC的顶点坐标分别为A(?4,C(?21),,如将B点向右平移2个单位后再向上平移4个单位到

达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则

A

1 O 1 x

B 第9题图

1 S1,S2的大小关系为( )

A.S1?S2

2B.S1?S2 C.S1?S2

D.不能确定

y 10.已知y?ax?bx的图象如图所示, 则y?ax?b的图象一定过( )

O A.第一、二、三象限 C.第二、三、四象限

B.第一、二、四象限 D.第一、三、四象限

第10题图

x 11.已知整式6x?1的值是2,y2?y的值是2,则(5x2y?5xy?7x)?(4x2y?5xy?7x)?( ) A.?11或 42B.

11或? 42C.?11或 421 1D.

11或 4212.世界上著名的莱布尼茨三角形如图所示:

11 22111 3631111 41212411111 52030205111111 63060603061111111 742105140105427????????????????????

第12题图

则排在第10行从左边数第3个位置上的数是( ) A.

1 132B.

1 360C.

1 495D.

1 660第II卷(非选择题 共72分)

注意事项:

1.第II卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.

二、填空题:本大题共5个小题.每小题3分;共15分.把答案填在题中横线上. 13.不等式2x?1?0的解集是 .

2

14.分解因式y3?4y2?4y的结果为 .

15.把12500取两个有效数字的近似数用科学记数法表示为 .

16.如图,数轴上两点A,B,在线段AB上任取一点,则点C到表示1的点的距离不大于2的概率是 .

A B ?3 0 1

第16题图

3

217.如图所示是某种型号的正六角螺母毛坯的三视图,则它的表面积为 cm.

3cm 主视图 2cm 左视图 俯视图

第17题图

三、解答题:本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分7分) (1)解方程:

x2??2; x?33?x?2x?y?6 ①(2)解方程组:?

x?2y??2②?19.(本小题满分7分)

(1)已知:如图1,在矩形ABCD中,AF?BE.求证:DE?CF;

A F E B C 第19题图1

A O B D

(2)已知:如图2,?O的半径为3,弦AB的长为4.求sinA的值.

20.(本小题满分8分)

在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.

(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;

(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. 21.(本小题满分8分)

某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型

3

第19题图2

号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.

(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;

(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.

22.(本小题满分9分)

?已知:如图,直角梯形ABCD中,AD∥BC,?A?90,BC?CD?10,sinC?4. 5(1)求梯形ABCD的面积;

(2)点E,F分别是BC,CD上的动点,点E从点B出发向点C运动,点F从点C出发向点D运动,若两点均以每秒1个单位的速度同时出发,连接EF.求△EFC面积的最大值,并说明此时E,F的位置.

A

D F B

E

第22题图

C

23.(本小题满分9分)

已知:如图,O为平面直角坐标系的原点,半径为1的?B经过点O,且与x,y轴分交于

0,AC的延长线与?B的切线OD交于点D. 点A,C,点A的坐标为?3,(1)求OC的长和?CAO的度数;

(2)求过D点的反比例函数的表达式.

y B C O 第23题图

24.(本小题满分9分)

已知:如图,在平面直角坐标系中,△ABC是直角三角形,?ACB?90,点A,C的坐

???D x

A 0),C(1,0),tan?BAC?标分别为A(?3,3. 4(1)求过点A,B的直线的函数表达式;

(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;

P?DQm?(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设A,

问是否存在这样的m使得△APQ与△ADB相似,如存在,请求出m的值;如不存在,

4

请说明理由.

y B x

A O C 第24题图

济南市2007年高中阶段学校招生考试

数学试题参考答案及评分标准

一、选择题 1.C 2.D 8.A 9.B 二、填空题 13.x??

3.B 10.C

2

4.B 11.C

45.C 12.B

6.A 7.D

1 214.y(y?2) 15.1.3?10

16.

2 317.(123?36)

三、解答题 18.(1)解:

x2??2 x?33?x去分母得:x?2?2(x?3) ··································································································· 1分 解得:x?4 ··························································································································· 2分 经检验x?4是原方程的根. ································································································· 3分 (2)解法一:①?2?②得5x?10 ··················································································· 4分 解得:x?2 ··························································································································· 5分 将x?2代入①得y??2 ······································································································· 6分

?x?2 ······································································································· 7分 ?方程组的解为??y??2解法二:由①得y?2x?6 ③ ·························································································· 4分 将③代入②得x?2(2x?6)??2

解得:x?2 ··························································································································· 5分 将x?2代入③得y??2 ······································································································· 6分

?x?2 ······································································································· 7分 ?方程组的解为?y??2?19.(1)证明:?AF?BE,EF?EF,?AE?BF ················································· 1分

?四边形ABCD是矩形,

?∠A?∠B?90?,AD?BC,

O 5

A C B 第19题图2

?△DAE≌△CBF ························································ 2分 ?DE?CF······································································ 3分 (2)解:过点O作OC?AB,垂足为C, 则有AC?BC ·································································· 4分 ?AB?4,?AC?2 ··········································································································· 5分 在Rt△AOC中,

················································································· 6分 OC?OA2?AC2?32?22?5 ·

sinA?OC5 ················································································································· 7分 ?OA320.解:(1)?在7张卡片中共有两张卡片写有数字1 ···················································· 1分

2················································ 2分 ?从中任意抽取一张卡片,卡片上写有数字1的概率是 ·7(2)组成的所有两位数列表为: 十位数 个位数 1 2 3 或列树状图为:

1 2 3 4 十位数

1 1 1 2 3 2 3 2 3 2 3 个位数 1

(11) (12) (13)((( 21) (22) (23) 31) (32) (33) 41) (42) (43)

········································································· 6分

1 11 12 13 2 21 22 23 3 31 32 33 4 41 42 43 ?这个两位数大于22的概率为

7. ···················································································· 8分 1221.解:(1)由租用甲种汽车x辆,则租用乙种汽车(8?x)辆 ········································ 1分

由题意得:??40x?30(8?x)≥290 ····················································································· 4分

10x?20(8?x)≥100?解得:5≤x≤6 ··················································································································· 5分

即共有2种租车方案:

第一种是租用甲种汽车5辆,乙种汽车3辆; 第二种是租用甲种汽车6辆,乙种汽车2辆. ····································································· 6分 (2)第一种租车方案的费用为5?2000?3?1800?15400元; 第二种租车方案的费用为6?2000?2?1800?15600元 ··················································· 7分

······························································································ 8分 ?第一种租车方案更省费用. ·

22.解:(1)过点D作DM?BC,垂足为M,

D A 在Rt△DMC中,

6

F

B E M

第22题图

N

C

DM?CD?sinC?10?4?8 ········································· 1分 5························· 2分 CM?CD2?DM2?102?82?6 ·

?BM?BC?CM?10?6?4,?AD?4 ··············· 3分

11?S梯形ABCD?(AD?BC)DM?(4?10)?8?56························································· 4分

22(2)设运动时间为x秒,则有BE?CF?x,EC?10?x ············································ 5分 过点F作FN?BC,垂足为N,

4sinC?x 在Rt△FNC中,FN?CF?············································································· 6分

51142?S△EFC?EC?FN?(10?x)?x??x2?4x ······················································· 7分

2255当x??24?5时,S△EFC???52?4?5?10

5?2?2?????5?即△EFC面积的最大值为10 ······························································································· 8分 此时,点E,F分别在BC,CD的中点处 ·········································································· 9分 23.解:(1)?∠AOC?90,

??AC是?B的直径,?AC?2 ·························································································· 1分

又?点A的坐标为(?3,0),?OA?3 ?OC?AC2?OA2?22?(3)2?1 ············································································ 2分

OC1?,?∠CAO?30? ········································································ 3分 AC2(2)如图,连接OB,过点D作DE?x轴于点E ··························································· 4分 ?OD为?B的切线, ?sin∠CAO??OB?OD,?∠BOD?90? ·························································································· 5分

y ?AB?OB,?∠AOB?∠OAB?30?,

CD A B ?∠AOD?∠AOB?∠BOD?30??90??120?,

在△AOD中,∠ODA?180?120?30?30?∠OAD

????O E x 第23题图

················································································································· 6分 ?OD?OA?3

在Rt△DOE中,∠DOE?180?120?60

???313sin60?? ?OE?OD?cos60??OD?,ED?OD?222

7

?33? ····································································································· 7分 ?点D的坐标为???2,?2??设过D点的反比例函数的表达式为y?k x?k?3333 ············································································································· 8分 ??22433 ····························································································································· 9分 4x?y?0),C(1,0) 24.解:(1)?点A(?3,?AC?4,BC?tan∠BAC?AC?3?4?3,B点坐标为(1,3) ································· 1分 4设过点A,B的直线的函数表达式为y?kx?b,

由??0?k?(?3)?b39 得k?,b? ················································································· 2分

443?k?b?39x? ··············································································· 3分 44y (2)如图1,过点B作BD?AB,交x轴于点D, B 在Rt△ABC和Rt△ADB中,

P ?∠BAC?∠DAB ?Rt△ABC∽R△tAD,B

?D点为所求 ··································································· 4分

4O QC D x A 又tan∠ADB?tan∠ABC?, 3第24题图1

49?CD?BC?tan∠ADB?3??·················································································· 5分

34?直线AB的函数表达式为y??OD?OC?CD?13?13?,?D?,··············································································· 6分 0? ·44??(3)这样的m存在 ················································································································ 7分

在Rt△ABC中,由勾股定理得AB?5 如图1,当PQ∥BD时,△APQ∽△ABD

y P B m则?53?13?m254,解得m? ·································· 8分 1393?4A Q O C 第24题图2

D x

如图2,当PQ?AD时,△APQ∽△ADB

8

m?133?43?13?m1254,解得m? ················································································ 9分

365

济南市2008年高中阶段学校招生考试

1.-2的绝对值是( ) A.2

B.-2

C.

1 21D.?

22.下列计算正确的是( )

A.a3?a4?a7

B.a3?a4?a7

C.(a3)4?a7

D.a6?a3?a2

3.下面简单几何体的主视图是( ) .

A. B. C. D. 正面

4.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑物之一,其工程占地面积为

62828平方米,将62828用科学记数法表示是(保留三个有效数字) ( ) A.62.8?103 B.6.28?104

y C.6.2828?104 D.0.62828?105

C 5.已知?ABC在平面直角坐标系中的位置如图所示,将?ABC向右平移6个单位,则平移后A点的坐标是( )

A.(?2,1)

B.(2,1)

A B 1 O 1 x C.(2,?1) D.(?2,?1) 6.四川省汶川发生大地震后,全国人民“众志成城,抗震救灾”,积极开展捐款捐物献爱心活动.下表是我市某中学初一·八班50名同学捐款情况统计表:

捐款数(元) 10 人 数(人) 3 15 10 20 10 30 15 50 5 60 2 70 1 80 1 第5题图

90 1 100 2 根据表中提供的信息,这50名同学捐款数的众数是( ) A.15 B.20 C.30 D.100 7.如图:点A、B、C都在⊙O上,且点C在弦AB所对的优弧上, 若?AOB?72?,则?ACB的度数是( ) A.18° B.30° C.36° D.72°

18.如果xa?2y3与?3x3y2b?1是同类项,那么a、b的值分别是( ) A 3O C

B

第7题图

9

?a?1A.?

b?2??a?0B.?

b?2??a?2C.?

b?1??a?1D.?

b?1?9.“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学

们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是( ) A.60张 B.80张 C.90张 D.110张 10.关于x的一元二次方程2x2?3x?a2?1?0的一个根为2,则a的值是( )

A.1

B.3 C.?3 D.?3

S(吨) 11.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调

30 进物资2小时后开始调出物资(调进物资与调出物资的速度均

保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关

系如图所示,这批物资从开始调进到全部调出需要的时间是( ) A.4小时 B.4.4小时 10 C.4.8小时 D.5小时

12.如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直

角顶点A在直线y=x上,其中A点的横坐标为1,且两条直

k

角边AB、AC分别平行于x轴、y轴,若双曲线y?(k≠0)

x 得 分 评卷人 二、填空题:本大题共5个小题.每小题3分,共15分.把答案填在题中横线上.

A 与?ABC有交点,则k的取值范围是( ) A.1?k?2 B.1≤k≤3 C.1≤k≤4 D.1≤k?4

O O 4 t(时)

第11题图

2 y C A B 1 x 第12题图 13.当x?3,y?1时,代数式(x?y)(x?y)?2y的值是 .

14.分解因式:x2?2x?3= .

15.如图,在?ABC中,EF为?ABC的中位线,D为BC

边上一点(不与B、C重合),AD与EF交于点O,连接DE、DF,要使四边形AEDF为平行四边形,需要添加条件 .(只添加一个条件)

16.如图:矩形纸片ABCD,AB=2,点E在BC上,且

10

E B

O

F C

D 第15题图 A

D

B

E

第16题图

C

AE=EC.若将纸片沿AE折叠,点B恰好落在AC上, 则AC的长是 .

17.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长

度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so.研究15、12、10这三个数的倒数发现:1111???.我们称15、12、10这三个数为一组调和数.现有一组调和数:x、5、121510123(x>5),则x的值是 .

三、解答题:本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤. 得 分 评卷人

18.(本小题满分7分)

(1)解方程:2(x?1)?1?0.

(2)解不等式组? 得 分 评卷人 ?2x?4?0?3?x?6①②,并把解集在数轴上表示出来.

???1

19.(本小题满分7分)

A D

(1)已知:如图1,AB∥DE,AC∥DF,BE=CF.

求证:AB=DE.

B E C

F

第19题图1

(2)已知:如图2,?PAC?30?,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.

P

F E A D O B 11 C 得 分 评卷人

20.(本小题满分8分)

完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解) .. 得 分 评卷人

21.(本小题满分8分)

教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格. 得 分 评卷人

22.(本小题满分9分)

共计19元 共计18元

康乃馨 第三束

水仙花

某大草原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙

12

两个医疗站,如图,在A地北偏东45°、B地北偏西60°方向上有一牧民区C.一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I:从A地开车沿公路到离牧民区C最近的D处,再开车穿越草地沿DC方向到牧民区C.方案II:从A地开车穿越草地沿AC方向到牧民区C. 已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.

(1)求牧民区到公路的最短距离CD.

(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.

(结果精确到0.1.参考数据:3取1.73,2取1.41) 得 分 评卷人

23.(本小题满分9分)

C 北

45° 60° D 第22题图

A

已知:如图,直线y??3x?43与x轴相交于点A,与直线y?3x相交于点P. (1)求点P的坐标.

(2)请判断?OPA的形状并说明理由.

(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.

求:① S与t之间的函数关系式. y ② 当t为何值时,S最大,并求S的最大值.

P E B

O x F A 得 分 评卷人 第23题图 24.(本小题满分9分)

,0).已知:抛物线y?ax2?bx?c(a≠0),顶点C (1,?3),与x轴交于A、B两点,A(?1

13

(1)求这条抛物线的解析式. (2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,PN⊥DB

PMPN于N,请判断是否为定值? 若是,请求出此定值;若不是,请说明理由. ?BEAD(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP ,FG分别与边.AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断成立,请给出证明;若不成立,请说明理由.

PAEF是否成立.若?PBEGy E

M O P A B x

N D

C

第24题图 一、选择题

1.A 2.B 3.C 4.B 5.B 6.C 7.C 8.A 9.B 10.D 11.B 12.C 二、填空题

13.9 14.(x?3)(x?1) 15. BD=CD,OE=OF,DE∥AC等 16.4 17.15 三、解答题 18.

(1)解:2x?2?1?0 ................................................................................................. 1分

2x?1 ............................................................................................................. 2分

1x? ............................................................................................................... 3分

2(2)解:解①得x>-2 ................................................................................................ 4分

解②得x<3 .................................................................................................... 5分 ∴此不等式组的解集是-2<x<3 ...................................................................... 6分 解集在数轴上表示正确 ............................................................................................ 7分 19.

(1)证明:∵AB∥DE,∴∠B=∠DEF

∵AC∥DF,∴∠F=∠ACB ................................................................................... 1分 ∵BE=CF,∴BE+EC= CF + EC即BC=EF ....................................................... 2分 ∴△ABC≌△DEF

∴AB=DE ....................................................... 3分 (2)解:过点O作OG⊥AP于点G

连接OF ..................................................... 4分 ∵ DB=10,∴ OD=5

14

P F G E A D O B C 第19题图2

∴ AO=AD+OD=3+5=8

∵∠PAC=30°

11∴ OG=AO=?8?4cm ........................... 5分

22∵ OG⊥EF,∴ EG=GF

∵ GF=OF2?OG2?52?42?3

∴ EF=6cm ................................................. 7分

20.解:组成的所有坐标列树状图为:

第一次

1

-1

第二次

1 (1,1)

-1 (1,-1)

2 (1,2)

-2

1 -1 (-1,-1)

2 -2

(1,-2) (-1,1)

(-1,2) (-1,-2)

第一次

2 -2

第二次

1 (2,1)

-1 (2,-1)

2 (2,2)

-2 (2,-2)

1 (-2,1)

-1 (-2,-1)

2 -2

(-2,2) (-2,-2)

........................................ 5分

或列表为:

第一次第二次 1 (1,1) (1,?1) (1,2) (1,?2) ?1 (?1,1) (?1,?1) (?1,2) (?1,?2) 2 (2,1) (2,?1) (2,2) (2,?2) -2 (?2,1) (?2,?1) (?2,2) (?2,?2) 1 -1 2 -2

........................................ 5分 123方法一:根据已知的数据,点(m,n)不在第二象限的概率为?

16443? .................................................................................................... 8分 16421.解:设康乃馨每支x元,水仙花每支y元 ........................................................... 1分 方法二:1-

15

?3x?y?19由题意得:? ................................................................................... 4分

2x?2y?18??x?5解得:? ......................................................................................................... 6分

y?4?第三束花的价格为x?3y?5?3?4?17 ............................................................... 7分 答:第三束花的价格是17元. ........... ............................................................... 8分

22.解:(1)设CD为x千米,

由题意得,∠CBD=30°,∠CAD=45° ∴AD=CD=x ...................................... 1分

xC 在Rt△BCD中,tan30°= BD

∴ BD=3x ...................................... 2分 AD+DB=AB=40

∴ x?3x?40 ................................3分

A

D

45° 60° B

解得 x≈14.7

∴ 牧民区到公路的最短距离CD为14.7千米. ................................................. 4分 (若用分母有理化得到CD=14.6千米,可得4分)

(2)设汽车在草地上行驶的速度为v,则在公路上行驶的速度为3v,

在Rt△ADC中,∠CAD=45°,∴ AC=2CD 方案I用的时间t1?第22题图

ADCDAD?3CD4CD ............................................... . 5分 ???3vv3v3vAC?v2CD .......................................................................... . 6分 v方案II用的时间t2?∴ t2?t1?=2CD4CD? v3v(32?4)CD ....................................................................................................... . 7分

3v∵ 32?4>0

∴ t2?t1>0 .......................................................................................................... . 8分 ∴方案I用的时间少,方案I比较合理 ............................................................. . 9分

??y??3x?4323.解:(1)? ................................................................................... 1分

??y?3x??x?2解得:? .................................................................................................... 2分

??y?23∴点P的坐标为(2,23) ........................................................................................ 3分

16

(2)将y?0代入y??3x?43 ?3x?43?0

∴ x?4,即OA=4 ..................................................................................................... 4分 做PD⊥OA于D,则OD=2,PD=23 ∵ tan∠POA=23?3 2∴ ∠POA=60° .......................................................................................................... 5分 ∵ OP=22?(23)2?4

∴△POA是等边三角形. ......................... 6分

(3)① 当0

在Rt△EOF中,∵∠EOF=60°,OE=t

∴EF=

y P 13t,OF=t

22B E ∴S=

132·OF·EF=t ................................ 7分 28O F D A x 当4

易知:CE=PE=t-4,AE=8-t ∴AF=4-

第23题图1 13t,EF=(8-t) 2211t)=t 22 y P E ∴OF=OA-AF=4-(4-∴S=

1(CE+OF)·EF 2B C =

113(t-4+t)×(8-t) 222A O F x =-

33t2+43t-83.................................. 8分 8第23题图2 ② 当0

32t, t=4时,S最大=23 8当4

338163t2+43t-83=-3(t-)2+3 88338163 时,S最大=3388163>23,∴3 ........................................................ 9分 ∵当t=时,S最大=333

17

24.解:(1)设抛物线的解析式为y?a(x?1)2?3 .................................................... 1分 将A(-1,0)代入: 0?a(?1?1)2?3 ∴ a?3 .......................................... 2分 43339∴ 抛物线的解析式为y?(x?1)2?3,即:y?x2?x? ............................ 3分

4424(2)是定值,

PMPN??1 ...................................................................................... 4分 BEAD∵ AB为直径,∴ ∠AEB=90°,∵ PM⊥AE,∴ PM∥BE

PMAP∴ △APM∽△ABE,∴ ① ?BEAB同理:

PNPB ② .............................................................................................. 5分 ?ADABPMPNAPPB............................................................................ 6分 ????1

BEADABAB① + ②:

(3)∵ 直线EC为抛物线对称轴,∴ EC垂直平分AB

∴ EA=EB ∵ ∠AEB=90°

∴ △AEB为等腰直角三角形. ∴ ∠EAB=∠EBA=45° ...................... 7分 如图,过点P作PH⊥BE于H,

由已知及作法可知,四边形PHEM是矩形, ∴PH=ME且PH∥ME 在△APM和△PBH中 ∵∠AMP=∠PHB=90°, ∠EAB=∠BPH=45° ∴ PH=BH

且△APM∽△PBH

PAPM∴ ?PBBH∴

PAPMPM ① .................... 8分 ??PBPHME在△MEP和△EGF中,

∵ PE⊥FG, ∴ ∠FGE+∠SEG=90° ∵∠MEP+∠SEG=90° ∴ ∠FGE=∠MEP ∵ ∠PME=∠FEG=90° ∴△MEP∽△EGF PMEF∴ ② ?MEEG由①、②知:

PAEF ............................................................................................. 9分 ?PBEG(本题若按分类证明,只要合理,可给满分)

济南市2009年高中阶段学校招生考试

18

数 学 试 卷

注意事项:

1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共2页,满48分;第Ⅱ卷共6页,满分72分.本试题共8页,满分120分,考试时间为120分钟.

2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内. 3.第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效. 4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.

第Ⅰ卷(选择题 共48分)

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.?3的相反数是( ) A.3 B.?3 C.

1 3D.?1 3正面

(第2题图)

2.图中几何体的主视图是( )

A. B. D. C.

E

3.如图,AB∥CD,直线EF与AB、CD分别相交于G、

D C H.∠AGE?60?,则∠EHD的度数是( )

H

30?60?A. B. C.120? D.150?

B A

G 4.估计20的算术平方根的大小在( )

F

A.2与3之间 B.3与4之间

(第3题图)

C.4与5之间 D.5与6之间

5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A.35.9?10平方米 B.3.60?10平方米 C.3.59?10平方米 D.35.9?10平方米

6.若x1,x2是一元二次方程x?5x?6?0的两个根,则x1+x2的值是( )

19

25554A.1 B.5 C.?5 D.6 7.“只要人人都献出一点爱,世界将变成

捐款人数 美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组20 织献爱心捐款活动.班长将捐款情况进行了15 统计,并绘制成了统计图.根据右图提供的

10 信息,捐款金额的众数和中位数分别是..5 ( )

0 A.20、20 B.30、20 C.30、30 D.20、30 8.不等式组?13620 8 3 10 20 30 50 100

金额(元)

(第7题图)

?2x?1?3的解集在数轴上表

?3x?5≤1示正确的是( )

0 1 2 0 1 2

A. B.

0 1 0 2 1 2

C. D.

9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB?6cm,高OC?8cm.则这个圆锥漏斗的侧面积是( ) A.30cm B.30?cm C.60?cm D.120cm

CE A D

O

B C B A O

(第9题图) (第10题图)

10.如图,矩形ABCD中,AB?3,BC?5.过对角线交点O作OE?AC交AD于E,则AE的长是( )

A.1.6 B.2.5 C.3 D.3.4

11.如图,点G、D、C在直线a上,点E、F、A、B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是( ) ....

20

2222G D C a

b

s s s s O A.

t O B.

t O C.

t O D.

t 12.在平面直角坐标系中,对于平面内任一点?a,b?,若规定以下三种变换:

①f?a,b?=??a,b?.如,f?13,,????13?; ②g?a,b?=?b,a?.如,g?13,,???31?;

③h?a,b?=??a,?b?.如,h?13,?3?.????1,?3按照以上变换有:f?g?2,那么fh?5,?3??f??3,2???3,2?,A.??5,?3? B.?5,3? C.?5,?3?

D.??5,3?

????等于( )

21

注意事项:

1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.

2.答卷前将密封线内的项目填写清楚.考试时间,一律不得使用计算器.

第Ⅱ卷(非选择题 共72分)

二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上) 13.分解因式:x?9? .

14.如图,?O的半径OA?5cm,弦AB?8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是 cm.

B

O A

B A P O

(第14题图) (第15题图)

15.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是 . 16.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球冠军球队的五名主力队员的身高如下表:(单位:厘米) 号码 身高 4 7 9 10 181 23 179 178 180 182 则该队主力队员身高的方差是 厘米2.

17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:

(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD?60?;

(2)根据手中剩余线的长度出风筝线BC的长度为70米; (3)量出测倾器的高度AB?1.5米.

根据测量数据,计算出风筝的高度CE约为 米.(精确到0.1米,3?1.73)

2C

B A 60°

D E

(第17题图)

三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分7分) (1)计算:?x?1??2?1?x? (2)解分式方程:

221?. x?3x?119.(本小题满分7分)

22

(1)已知,如图①,在AE?CF.

?ABCD中,E、F是对角线BD上的两点,且BF?DE.求证:

A

A D

F O

C E

D

E

B C B

(第19题图 ①) (第19题图②)

CA与?O相切于点A.CO(2)已知,如图②,AB是?O的直径,连接CO交?O于点D,的延长线交?O于点E.连接BE、BD,∠ABD?30?,求∠EBO和∠C的度数.

20.(本小题满分8分)

有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b. ..(1)写出k为负数的概率;

(2)求一次函数y?kx?b的图象经过二、三、四象限的概率.(用树状图或列表法求解)

?1 ?2 ?3

正面

背面

23

21.(本小题满分8分)

自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息: 职工 月销售件数(件) 月工资(元) 甲 200 乙 180 1800 1700 (1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?

(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?

22.(本小题满分9分)

已知:如图,正比例函数y?ax的图象与反比例函数y?

k

的图象交于点A?3, 2?.x

(1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值? (3)其中0?m?3,过点M作直线MN∥x轴,M?m,n?是反比例函数图象上的一动点,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形

OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

23.(本小题满分9分)

y B M D A OC (第22题图)

x 如图,在梯形ABCD中,AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发

沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒. (1)求BC的长.

(2)当MN∥AB时,求t的值.

(3)试探究:t为何值时,△MNC为等腰三角形. A D

N 24

B M

(第23题图)

C

24.(本小题满分9分)

已知:抛物线y?ax2?bx?c?a?0?的对称轴为x??1,与x轴交于A,B两点,与y轴交于点C,其中A??3, ?2?.0?、C?0,(1)求这条抛物线的函数表达式.

(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.

(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

y A O B x C (第24题图)

济南市2009年高中阶段学校招生考试

数学试题参考答案及评分标准

一、选择题(本大题共12个小题,每小题4分,共48分) 题号 答案 1 2 3 4 5 6 7 8 9 C 10 D 11 B 12 B A B C C B B C C 二、填空题(本大题共5个小题,每小题3分,共15分) 13. ?x?3??x?3? 14.3 15.

2 16.2 17.62.1 2三、解答题(本大题共7个小题,共57分) 18.(本小题满分7分)

(1)解:?x?1??2?1?x?

=x?2x?1?2?2x ···························································································· 2分 =x?3 ·················································································································· 3分

25

222

(2)解:去分母得:2?x?1??x?3 ·············································································· 1分 解得x??1 ········································································································ 2分 检验x??1是原方程的解 ················································································· 3分 所以,原方程的解为x??1 ············································································· 4分 19.(本小题满分7分)

(1)证明:∵四边形ABCD是平行四边形,

∴AD?BC,AD∥BC. ∴∠ADE?∠FBC ······················································································ 1分 在△ADE和△CBF中,

∵AD?BC,∠ADE?∠FBC,DE?BF ∴△ADE≌△CBF ···················································································· 2分 ∴AE?CF ····································································································· 3分

A

A D

F O E C D E B C B

(第19题图 ①) (第19题图②)

(2)解:∵DE是?O的直径

∴∠DBE?90? ······························································································ 1分 ∵∠ABD?30?

∴∠EBO?∠DBE?∠ABD?90??30??60? ········································· 2分 ∵AC是?O的切线

∴∠CAO?90? ······························································································ 3分 又∠AOC?2∠ABD?60?

∴∠C?180??∠AOC?∠CAO?180??60??90??30? ······················· 4分

20.(本小题满分8分) 解:(1)k为负数的概率是 (2)画树状图

第一次

第二次

或用列表法: 第二次 第一次 2 ··································································································· 3分 3开始

?1 ?2?23 ?1 3

3?2 1

?1 (?2,?1) (3,?1) ?2 (?1,?2) (3,?2) 3 (?1,3) (?2,3) ?1 ?2 3 ·········································································· 5分

26

共有6种情况,其中满足一次函数y?kx?b经过第二、三、四象限,

即k?0,b?0的情况有2种 ··························································································· 6分 所以一次函数y?kx?b经过第二、三、四象限的概率为

21? ··································· 8分 6321.(本小题满分8分)

解:(1)设职工的月基本保障工资为x元,销售每件产品的奖励金额为y元 ················· 1分

由题意得??x?200y?1800 ·························································································· 3分

?x?180y?1700?x?800 ······························································································ 4分

y?5?解这个方程组得?答:职工月基本保障工资为800元,销售每件产品的奖励金额5元. ································· 5分

(2)设该公司职工丙六月份生产z件产品 ··········································································· 6分

由题意得800?5z≥2000 ·························································································· 7分 解这个不等式得z≥240

答:该公司职工丙六月至少生产240件产品 ········································································· 8分 22.解:(1)将A?3,2?分别代入y? ∴k?6,a?kk,y?ax中,得2?,3a?2 x32 ······································································································ 2分 36

∴反比例函数的表达式为:y? ········································································· 3分

x2 正比例函数的表达式为y?x ··········································································· 4分

3y (2)观察图象,得在第一象限内,

当0?x?3时,反比例函数的值大 于正比例函数的值.

B M D A OC x ·························· 6分 (第22题图) ·

(3)BM?DM ···································································································· 7分 理由:∵S△OMB?S△OAC?1?k?3 2 ∴S矩形OBDC?S四边形OADM?S△OMB?S△OAC?3?3?6?12

OB?12 即OC? ∵OC?3 ∴OB?4 ················································································································ 8分 即n?4

27

63? n2333∴MB?,MD?3??

222∴MB?MD ··········································································································· 9分

∴m?23.(本小题满分9分) 解:(1)如图①,过A、D分别作AK?BC于K,DH?BC于H,则四边形ADHK是矩形

∴KH?AD?3. ······································································································ 1分

在Rt△ABK中,AK?AB?sin45??42.2?4 2BK?AB?cos45??42?2········································································· 2分 ?4 ·

2在Rt△CDH中,由勾股定理得,HC?52?42?3

∴BC?BK?KH?HC?4?3?3?10 ······························································ 3分 A D A D

N

B C B C K H G M

(第23题图①) (第23题图②) ADGB(2)如图②,过D作DG∥AB交BC于G点,则四边形是平行四边形

∵MN∥AB ∴MN∥DG ∴BG?AD?3 ∴GC?10?3?7 ·································································································· 4分 由题意知,当M、N运动到t秒时,CN?t,CM?10?2t. ∵DG∥MN

∴∠NMC?∠DGC 又∠C?∠C

∴△MNC∽△GDC

CNCM? ·········································································································· 5分 CDCGt10?2t即? 5750解得,t? ·········································································································· 6分

17∴

(3)分三种情况讨论:

①当NC?MC时,如图③,即t?10?2t

28

∴t?10 ·················································································································· 7分 3A D A D

N N

B B C M H E M

(第23题图④) (第23题图③)

②当MN?NC时,如图④,过N作NE?MC于E 解法一:

由等腰三角形三线合一性质得EC?C

11MC??10?2t??5?t 22EC5?t?在Rt△CEN中,cosc? NCtCH3? 又在Rt△DHC中,cosc?CD55?t3? ∴t525解得t? ·············································································································· 8分

8解法二:

∵∠C?∠C,?DHC??NEC?90? ∴△NEC∽△DHC

NCEC? DCHCt5?t即? 5325∴t? ·················································································································· 8分

811③当MN?MC时,如图⑤,过M作MF?CN于F点.FC?NC?t

22∴

解法一:(方法同②中解法一)

1tFC3cosC??2?

MC10?2t560解得t?

17解法二:

∵∠C?∠C,?MFC??DHC?90? ∴△MFC∽△DHC ∴

B

A D

N F C

H M

(第23题图⑤)

FCMC? HCDC29

1t10?2t即2?

3560∴t?

17102560综上所述,当t?、t?或t?时,△MNC为等腰三角形 ···················· 9分

817324.(本小题满分9分)

?b?2a?1??解:(1)由题意得?9a?3b?c?0 ············································································· 2分

????c??22?a??3?4?解得?b?

3??c??2??224x?x?2 ······························································ 3分 33(2)连结AC、BC.因为BC的长度一定,所以△PBC周长最小,就是使

PC?PB最小.B点关于对称轴的对称点是A点,AC与对称轴x??1的交点即为所求的点P.

∴此抛物线的解析式为y?设直线AC的表达式为y?kx?b

y E A P C O B D x ??3k?b?0,则?

b??2? ···························································· 4分

2??k??解得?3

??b??2∴此直线的表达式为y??把x??1代入得y??∴P点的坐标为??1,?(第24题图)

2x?2. ········································································ 5分 34 3??4?···················································································· 6分 ? ·3?(3)S存在最大值 ································································································· 7分

30

理由:∵DE∥PC,即DE∥AC. ∴△OED∽△OAC.

ODOE2?mOE?,?.即 OCOA2333∴OE?3?m,AE?3,OE?m

22∴方法一:

连结OP

S?S四边形PDOE?S△OED?S△POE?S△POD?S△OED

=

1?3?411?3???3?m?????2?m??1???3?m???2?m? 2?2?322?2?323m?m ····································································································· 8分 423∵??0

4333∴当m?1时,S最大???? ··································································· 9分

424=?方法二:

S?S△OAC?S△OED?S△AEP?S△PCD

=

11?3?1341?3?2???3?m???2?m???m???m?1 22?2?2232323332m?m???m?1?? ····································································· 8分 42443∵??0

43∴当m?1时,S最大? ···················································································· 9分

4=?

济南市2010年初三年级学业水平考试

数 学 试 题

注意事项:

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟. 2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.

3.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.

4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.

第Ⅰ卷(选择题 共48分)

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只

31

有一项是符合题目要求的.) 1.2+(-2)的值是

1 A.-4 B.?

4C.0 D.4

2.一组数据0、1、2、2、3、1、3、3的众数是 A.0 B.1 C.2 D.3

3.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为

D. 第3题图 C. B. A.

4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400

第4题图 吨.将28400吨用科学记数法表示为

A.0.284×105 吨 B.2.84×104吨 C.28.4×103吨 D.284×102吨 ?x?y?45.二元一次方程组?的解是

x?y?2??x?3 A.?

y??7??x?1B.?

y?1??x?7C.?

y?3??x?3D.?

y??1?6.下列各选项的运算结果正确的是

20

C.x6?x2?x3 D.(a?b)2?a2?b2 15 7.在一次体育课上,体育老师对九年级一班的40名同学进行了10 立定跳远项目的测试,测试所得分数及相应的人数如图所示,5

0 则这次测试的平均分为

53540A.分 B.分 C.分 D.8分

4338.一次函数y??2x?1的图象经过哪几个象限 A.一、二、三象限 C.一、三、四象限

B.一、二、四象限 D.二、三、四象限

A.(2x2)3?8x6 B.5a2b?2a2b?3

人数(人)

6分 8分 10分

第7题图

分数

A O M B

N D

9.如图所示,正方形ABCD中,对角线AC、BD交于点O,点M、N分别为OB、OC的中点,则cos∠OMN的值为

1A.

232B. C.

22D.1

第9题图

C 10.二次函数y?x2?x?2的图象如图所示,则函数值y<0时

x的取值范围是

y 32

-1 O 2 x 第10题图

A.x<-1 B.x>2

C.-1<x<2 D.x<-1或x>2

11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+??+8n(n是正

整数)的结果为

??

⑴ 1+8=?

⑵ 1+8+16=?

第11题图

1+8+16+24=?

A.(2n?1)2 B.(2n?1)2 C.(n?2)2 D.n2 12.如图所示,矩形ABCD中,AB=4,BC=43,点E是折线段A-D-C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有

A.2个 B.3个 C.4个 D.5个 绝密★启用前

济南市2010年初三年级学业水平考试

数 学 试 题

注意事项:

1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.

第Ⅱ卷(非选择题 共72分) 得 分 评卷人 A E P D

B

第12题图

C

二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在

中的横线上.)

D △ABC沿水平方向形,若∠B=31°,

13.分解因式:A 2x?2x?1= . 14.如图所示,△DEF是

向右平移后的对应图

B C E

∠C=79°,则∠D的度数

第14题图

度.

2315.解方程的结果是 . ?x?12x?3F

116.如图所示,点A是双曲线y??在第二象限的分支上的任意一点,点B、C、D分别是

xy 点A关于x轴、原点、y轴的对称点,则四边形ABCD的面积1y??是 . xD A

33

O 1 B C 第16题图

x

17.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则

△ABC外接圆半径的长度为 . y

A

O x

C B 第17题图

三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 得 分 评卷人

18.(本小题满分7分)

?x?2??x⑴解不等式组:?

??2x≤4

⑵如图所示,在梯形ABCD中,BC∥AD,AB=DC,点M是AD的中点. 求证:BM=CM.

B

得 分 评卷人 15?2C

19.(本小题满分7分) +(?3)0

A M

第18题图

D ⑴计算:

⑵如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=3. 求线段AD的长.

C

34

A D

第19题图

B

得 分 评卷人

20.(本小题满分8分)

如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).

请你用列表法或树状图求a与 b的乘积等于2的概率. 得 分 评卷人

21.(本小题满分8分)

1 -4 2 -3 第20题图

如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长. 16米 A D 草坪 得 分 评卷人

22.(本小题满分9分)

B 第21题图

C

如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).

⑴求线段AD所在直线的函数表达式. ⑵动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?

y

C D

得 分 评卷人

23.(本小题满分9分)

P

已知:△ABC是任意三角形. O B A x ⑴如图1所示,点M、P、N分别是边AB、BC、CA的中点.求证:∠MPN=∠A. 第22题图

35

⑵如图2所示,点M、N分别在边AB、AC上,且

AM1AN1?,?,点P1、P2是边AB3AC3BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由. AM1AN1⑶如图3所示,点M、N分别在边AB、AC上,且,,点P1、??AB2010AC2010P2、??、P2009是边BC的2010等分点,则∠MP1N+∠MP2N+??+∠MP2009N=____________.

(请直接将该小问的答案写在横线上.) A M M B N C

B C

B P1

??

P2 ?? P2009 C

第23题图3

A N

M A N

P

第23题图1

P1 P2

第23题图2

得 分 评卷人

24.(本小题满分9分)

如图所示,抛物线y??x2?2x?3与x轴交于A、B两点,直线BD的函数表达式为

y??3x?33,抛物线的对称轴l与直线BD交于点C、与x轴交于点E.

⑴求A、B、C三个点的坐标. ⑵点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.

①求证:AN=BM. ②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.

y D l C M N A O E P 第24题图 B x

36

济南市2010年初三年级学业水平考试

数学试题参考答案及评分标准

一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C D C B D A B B B C A C 二、填空题

13. (x?1)2 14. 70 15. x??9 16. 4 17. 13 三、解答题

18.(1)解:??x?2>?x①

??2x≤4

解不等式①,得x>?1, ··································································· 1分 解不等式②,得x≥-2, ···································································· 2分 ∴不等式组的解集为x>?1. ···································································· 3分 (2) 证明:∵BC∥AD,AB=DC,

∴∠BAM=∠CDM, ····································································· 1分 ∵点M是AD的中点,

∴AM=DM, ················································································ 2分

∴△ABM≌△DCM, ···································································· 3分 ∴BM=CM. ················································································· 4分 19.(1)解:原式=5?2(5?2)(5?2)?(?3)0 ·

·························································· 1分 =5-2+1 ················································································ 2分 =5-1 ··················································································· 3分

(2)解:∵△ABC中,∠C=90o,∠B=30o,

∴∠BAC=60o,

∵AD是△ABC的角平分线,

∴∠CAD=30o, ··············································································· 1分 ∴在Rt△ADC中,AD?ACcos30? ··················································· 2分

37

=3×23 ················································ 3分

=2 . ························································ 4分

20.解:a与b的乘积的所有可能出现的结果如下表所示: b a 1 2 -3 -4

·················································································································· 6分 总共有16种结果,每种结果出现的可能性相同,其中ab=2的结果有2种, ··························································································································· 7分

1∴a与 b的乘积等于2的概率是. ··························································· 8分

821.解:设BC边的长为x米,根据题意得 ··················································· 1分

32?x x?················································································· 4分 ?120,

2 解得:x1?12,x2?20, ··········································································· 6分

∵20>16,

∴x2?20不合题意,舍去, ·································································· 7分

答:该矩形草坪BC边的长为12米. ··············································· 8分 22. 解:⑴∵点A的坐标为(-2,0),∠BAD=60°,∠AOD=90°,

∴OD=OA·tan60°=23,

∴点D的坐标为(0,23), ··························································· 1分 设直线AD的函数表达式为y?kx?b,

1 1 2 -3 -4 2 2 4 -6 -8 -3 -3 -6 9 12 -4 -4 -8 12 16 ????2k?b?0?k?3,解得, ?????b?23?b?23∴直线AD的函数表达式为y?3x?23. ········································ 3分 ⑵∵四边形ABCD是菱形, ∴∠DCB=∠BAD=60°, ∴∠1=∠2=∠3=∠4=30°, AD=DC=CB=BA=4, ········································································· 5分 如图所示:

y ①点P在AD上与AC相切时, P2 D AP1=2r=2, 2 3 ∴t1=2. ·································································································· 6分

②点P在DC上与AC相切时,

38

C P1 P3 1 4 A O P4 第22题图

B x CP2=2r=2, ∴AD+DP2=6, ∴t2=6. ········································ 7分 ③点P在BC上与AC相切时, CP3=2r=2, ∴AD+DC+CP3=10, ∴t3=10. ········································ 8分 ④点P在AB上与AC相切时, AP4=2r=2, ∴AD+DC+CB+BP4=14, ∴t4=14, ∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切. ··························································· 9分

23. ⑴证明:∵点M、P、N分别是AB、BC、CA的中点, ∴线段MP、PN是△ABC的中位线,

A

∴MP∥AN,PN∥AM, ······················ 1分

∴四边形AMPN是平行四边形, ······ 2分

M N ∴∠MPN=∠A. ······························· 3分

⑵∠MP1N+∠MP2N=∠A正确. ······················ 4分 1 2 如图所示,连接MN, ···························· 5分 AMAN1∵A=∠A, ??,∠ABAC3C B PP

1

2

∴△AMN∽△ABC,

MN1∴∠AMN=∠B,?,

BC3第23题图

1∴MN∥BC,MN=BC, ························ 6分

3∵点P1、P2是边BC的三等分点, ∴MN与BP1平行且相等,MN与P1P2平行且相等,MN与P2C平行且相等, ∴四边形MBP1N、MP1P2N、MP2CN都是平行四边形, ∴MB∥NP1,MP1∥NP2,MP2∥AC, ······································································ 7分 ∴∠MP1N=∠1,∠MP2N=∠2,∠BMP2=∠A, ∴∠MP1N+∠MP2N=∠1+∠2=∠BMP2=∠A. ···································································· 8分 ⑶∠A. ······················································ 9分

24.解:⑴令?x2?2x?3?0,

解得:x1??1,x2?3, ∴A(-1,0),B(3,0) ································ 2分

N

y

D

l

M

C

F

A O E P B x

39

第24题图

∵y??x2?2x?3=?(x?1)2?4, ∴抛物线的对称轴为直线x=1,

将x=1代入y??3x?33,得y=23, ∴C(1,23). ···································· 3分 ⑵①在Rt△ACE中,tan∠CAE=

CE?3, AE∴∠CAE=60o,

由抛物线的对称性可知l是线段AB的垂直平分线, ∴AC=BC, ∴△ABC为等边三角形, ···································································· 4分 ∴AB= BC =AC = 4,∠ABC=∠ACB= 60o, 又∵AM=AP,BN=BP, ∴BN = CM, ∴△ABN≌△BCM, ∴AN=BM. ···························································································· 5分 ②四边形AMNB的面积有最小值. ···················································· 6分 设AP=m,四边形AMNB的面积为S,

3由①可知AB= BC= 4,BN = CM=BP,S△ABC=×42=43,

4∴CM=BN= BP=4-m,CN=m, 过M作MF⊥BC,垂足为F,

3(4?m), 则MF=MC?sin60o=233211(4?m)=?m?3m, ·∴S△CMN=CN?MF=m?························· 7分 2422∴S=S△ABC-S△CMN

32m?3m) =43-(?4=3(m?2)2?33 ············································································· 8分 4∴m=2时,S取得最小值33. ··························································· 9分

40

本文来源:https://www.bwwdw.com/article/x6ia.html

Top