Fluxes of atmospheric muons underwater depending on the small-x gluon density
更新时间:2023-05-13 06:30:01 阅读量: 实用文档 文档下载
- fluxes推荐度:
- 相关推荐
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
3
002 ebF 02 1v3812030/hp-pe:hviXraFluxesofatmosphericmuonsunderwaterdependingonthesmall-xgluondensity
AMisaki1,TSSinegovskaya2,SISinegovsky2andNTakahashi3
1WasedaUniversity,Okubo3-4-1,Shinjuku-ku,Tokyo,169-8555Japan2IrkutskStateUniversity,664003Russia3
HirosakiUniversity,036-8561Japan
E-mail:sinegovsky@api.isu.runnet.ru
Abstract.Thepromptmuoncontributiontothedeep-seaatmosphericmuon uxcanserveasatoolforprobingintothesmall-xfeatureofthegluondensityinsideofanucleon,ifthemuonenergythresholdcouldbeliftedto100TeV.Thepromptmuon uxunderwateriscalculatedtakingintoconsiderationpredictionsofrecentcharmproductionmodelsinwhichthesmall-xbehaviourofthegluondistributionisprobed.WediscussthepossibilityofdistinguishingthePQCDmodelsofthecharmproductiondi eringinthesmall-xexponentofthegluondistribution,inmeasurementsofthemuon uxatenergies10100TeVwithneutrinotelescopes.
Submittedto:J.Phys.G:Nucl.Phys.
1.Introduction
Acorrecttreatmentofthecharmhadroproductionisimportanttotheatmosphericmuonandneutrinostudies,sinceshort-livedcharmedparticles,D±,D0,
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
uxesatthegroundleveldependingstronglyonprotongluondistributionsatsmallxscale,x<10 5.
ThemuonspectraunderwatercomputedwiththemodelofPasqualietal.[2],inwhichusedweretheMRSD [5]andtheCTEQ3M[6]setsofPDFs,wererecentlydiscussed[7,8,9].Inthisnote,usingpredictionsofthePQCDmodel[3,4]forthecharmproduction,wediscussthePMcontributiontothedeep-seamuon uxatdepthstypicalforoperatingandconstructingneutrinotelescopes,AMANDA[10],ANTARES[11],Baikal[12],NESTOR[13].Duetolargedetectorvolumeandefectivearea(104 105m2)andhomogeneityofsurroundingmattertheseundericeanddeep-seainstallationshaveconsiderableadvantagesoverundergrounddetectorsforprobingveryhigh-energyatmosphericmuons.
Namely,herewetrytostudyaPM uxunderwaterdependenceonthepowerλofthesmall-xgluondistributionfunction:xg(x,Q2)∝x λ.Thenatureofthesmall-xbehaviourofthegluondensityisnowunderextensivediscussion(see,forexample,[14,15,16,17,18,19]).Thesmall-xbehaviourofthePDFsisthesubjectofthedeepinterestbecauseanunderstandingoftheunderlyingdynamicsisfaryetfrombeingclear.2.PDFsandcharmproductionmodels
Duetodominantsubprocessinheavyquarkshadroproduction,gg→
c
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
1
-V
eG1
-rs1
-s2-mc ,)θ ,µE(µφ)V3
eG / µE(10
10
10
10108
Eµ , GeV
Figure1.Verticalsea-levelmuon uxdataandpredictions.Experiments: –
Artyomovsk[24],△–Baksan[25], –MSU[26], –Frejus[27],
–MACRO[28],–LVD[29].Thelowersolidlinestandsforconventionalmuons.Therestofcurvesrepresentthetotalmuon ux,sumofpromptmuonsandconventionalones.
Pasquali,RenoandSarcevic[2](hereafterPRS–dottedlineswithnumbers1,2,3)andmodelsbyGelmini,GondoloandVarieschi[3,4](GGV–thincurveswithnumbers0.1–0.5).Thesemodelsareusedfurtherincalculationsofthedeep-seamuon ux.LetussketchoutPQCDmodels.
2.1.ThemodelbyPasquali,RenoandSarcevic
2.1.1.PRS-1.ThePRS-1model(dottedlinesin gures1,2)(identicalwiththePQCD-1inreference[9])isbasedontheMRSD set[5].ThePDFinputparametersare
thefollowings:xg(x,Q2 0.50)~xasx→0,4-momentumtransfersquaredQ20=4GeV2
;
thesealightquarkasymmetry,
d,istakingintoconsideration;theQCDscaleintheminimalsubtractionscheme(MS
4
=0.215GeV,correspondstothee ectivecouplingattheZbosonmassscaleαs(MZ2
)=0.111.ThefactorizationscaleisµF=2mc,therenormalizationoneisµR=mc,wherethecharmquarkmass,mc,ischosentobeequal1.3.Thesea-levelpromptmuon uxhasbeenparameterizedbyauthors[2]withtheequation:
lg[E3D,Λc
1µφµ(Eµ)·(cm 2ssr 1GeV2) 1]= 5.91+0.290y+0.143y2 0.0147y3,
(1)
wherey=lg(
Eµ
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
2.1.2.PRS-2.InthePRS-2model(thesameasthePQCD-2inreference[9])CTEQ3Mset[6]wasused.CorrespondinginputswhichwereutilizedinthismodelareΛ
(γ0+γ1y+γ2y2+γ3y3)
1GeV
cm 2s 1sr 1GeV 1.
(4)
Intable1 vesetsoftheparameterstoequation(4)arepresentedfordi erentvaluesoftheindexλofthesmall-xgluondestribution.
Table1.Parametersofthepromptmuonspectrumatsealevel(4).
0.13.122.70 0.0951.49 0.21480.23.542.71 0.0821.12 0.02850.31.802.380.045 0.820.9110.40.972.090.160 2.571.7490.50.581.840.257 4.052.455
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
3.Theconventionalmuon ux
Themainsourceoftheatmosphericmuonsupto~50TeVaredecayscosmicraypionsandkaons.The ux(conventional)of(π,K)-muonsbasedonthenuclearcascademodelby[33](seealso[32,34]).partofthisspectrumfortheverticalmaybeapproximatedwiththecm 2s 1sr 1GeV 1):
3.672
14.35EµforE1<Eµ E2,π,K
φµ(Eµ,0)=.3 4
10EµforEµ>E2
ofsecondary
iscomputedHigh-energyequation(in
(5)
whereE1=1.5878×103GeV,E2=4.1625×105GeV.
Zenith-angledistributionofatmosphericmuonsatsea-levelwascomputedinthereference[35]wheredetailcomparisonbetweenthecalculatedatmosphericmuonspectraandthesea-levelexperimentaldataatdi erentzenithangleswasmade(seealso[9]).Theconventionalmuon uxcomputedfortheverticaldirectionisshownin gure1(thelowersolidline).
Eachof vethinlinesin gure1presentsthesumoftheconventionalmuon ux(5)andtheGGVpromptmuon ux(4)correspondingtotheexponentλ=0.1,0.2,0.3,0.4,0.5(numbersnearlines).DottedlinesshowthesameforPRSmodels,equations(1-3).Forcomparisontherearealsoshowncontributionsduetothequark-gluonstringmodelandtherecombinationquark-partonone[31,32](thedash-dotlineandthedashlinerespectively).Ratiosofpromptmuon uxestotheconventionaloneareshownin gure2.Asonecansee,thecrossoverenergyforthePM uxandconventionalonecoversthewideregionfrom~150TeVto~3PeV,thatismorethanoneorderofthemagnitude.
ItisworthtonotethatoldQGSMprediction[31]athighenergiesiswithinGGVpromptmuon uxesaswellthatofRQPMiswithinPRSresults( gures1,2).4.Promptmuoncomponentofthe uxunderwater
Muonenergyspectraandangledistributionsofthe uxunderwaterwascomputedwiththemethodby[36].Thecollisionintegralinthekineticequationincludestheenergylossofmuonsduetobremsstrahlung,directe+e pairproductionandphotonuclearinteractions.Theionizationenergylossandthesmall-vpartofthelossduetoe+e pairproduction(v<2·10 4,wherevisthefractionoftheenergylostbythemuon)weretreatedascontinuousones.
Inourcalculationsofunderwatermuon uxesatdi erentzenithangles,weused,asaboundaryspectra,PQCDPM uxescalculatedonlyfortheverticaldirectionatthegroundlevel,supposingtheisotropicapproximationforpromptmuonstobeareliableatleastfor104<Eµ<106GeVatzenithanglesθ 80 .
Thepromptmuonfractionofthe uxunderwater,Rpm,de nedasratioofthepromptmuonintegralspectrumtotheconventionalone,ispresentedin gure3forthe
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
(E)
π,K
(E) / φ
D,Λc
φ
10
10
10
10
Eµ , GeV
Figure2.Ratioofthedi erentialpromptmuonspectrumatsealeveltotheconventionalone.
. pm
Ã
L '
F
FRV q K NP Z H
5430
,
5 ,
m
PS
(m *H9
**9 0567 l
**9 0567 l 356 &7(4 0 l
Figure3.Promptmuoncontributionath=4kmw.e.vs.Eµ.
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
( K q
m
K,p
( K q ,
m
l l (m ! 7H9
m
L '
F
5 ,
m
PS
FRVq
NP Z H
NP
Figure4.Ratioofthepromptmuon uxunderwatertotheconventionaloneasafunctionofcosθatEµ≥100TeV.
depthof4kmofthewaterequivalent(w.e.)andforcosθ=0.2.Asisseenfromthis gure,Rpmrelatedtothegluondensityslopeλ=0.5isafactor3greaterthanthatforλ=0.1atEµ 10TeV.
Zenith-angledistributionsofthepromptmuoncontributionatdepths1-4kmw.e.,calculatedforEµ>100TeV,areshownin gure4.HereweusedpredictionsoftheGGVmodelfortwovaluesofthegluondensityexponent,λ=0.1(dash)andλ=0.5(solid).Asonecanseein gure4,Rpmincreasesfortheverticaldirectionfromabout0.2atthedepthoftheBaikalNT(1.15km)[12]toabout0.5attheNESTORdepth(~4km)[13].Forthelargerzenithangles,θ~75 ,thiscontributionbecomesapparentlysizableatdepths3 4km.Di erencesinthepredictionsowingtoachangeofλ,from0.1to0.5(seeh=2and3kmw.e.),arealsoclearlyvisible:theratioRpm(λ=0.5)/Rpm(λ=0.1)ath=2kmw.e.growsfromabout1.5toabout5ascosθchangesfrom1to0.2.
Herewesupposednodi erencesbetweenPRSandGGVcalculationsapartfromthoserelatedtothecharmproductioncrosssections.Actuallyoneneedstocomparetheprimaryspectrumandcomposition,nucleonandmesonproductioncrosssectionsandotherdetailsoftheatmosphericnuclearcascadebeingusedinabovecomputations.Thesesourcesofuncertaintieswouldbeconsideredelsewhere.
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
5.Summary
Inordertotestthesmall-xgluondistributione ectwehavecomputeddeep-seapromptmuon uxesusingpredictionsofcharmproductionmodelsbasedonNLOcalculationsofthePQCD[2]-[4].ThepossibilitytodiscriminatethePQCDmodels,di eringintheslopeofthegluondistribution,seemstobeachievableinmeasurementsoftheunderwatermuon uxatenergies50-100TeV.
Hardlyappearedatsealevelforenergiesupto105GeV( gures1,2),adependenceonthespectralindexλofthesmall-xgluondistributionbecomesmoredistinctatdepths3 4kmw.e.( gures3,4).Atthedepthof4kmandattheangleof~78 onecouldobservethePM uxtobeequal,forλ=0.5,totheconventionaloneevenformuonenergy~10TeV(thecrossoverenergy).Whileforλ=0.1thecrossoverenergyisabout70TeV.Forthehighenergythreshold,Eµ>100TeV,andath 3kmw.e.,theratioRpmisnearlyisotropicupto~60 .The“crossoverzenithangle”atagivendepth,θc(h),dependsapparentlyonthesmall-xexponentλofthegluondensityinsidecollidingnucleons:
cosθc|λ=0.5 0.3andcosθc|λ=0.1 0.1forh=3kmw.e.
References
[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22]
LearnedJGandMannheimK2000Ann.Rev.Nucl.Part.Sci.50,679.PasqualiL,RenoMHandSarcevicI1999Phys.Rev.D59,034020.GelminiG,GondoloPandVarieschiG2000Phys.Rev.D61,056011.GelminiG,GondoloPandVarieschiG2001Phys.Rev.D63,036006.MartinAD,StirlingWJandRobertsRG1993Phys.Rev.D47,867.
LaiHLetal.1995Phys.Rev.D51,4763;LaiHLetal.1997Phys.Rev.D55,1280.MisakiA.etal1999Proc.26ICRC(SaltLakeCity)vol2,p139,hep-ph/9905399.NaumovVA,SinegovskayaTSandSinegovskySI2000Phys.Atom.Nucl.63,1923.SinegovskayaTSandSinegovskySI2001Phys.Rev.D63,096004.AndresEetal.(AMANDACollaboration)2000Astropart.Phys.13,1.AmramPetal.(ANTARESCollaboration)2000Astropart.Phys.13,127.BelolaptikovIAetal.(BaikalCollaboration)1997Astropart.Phys.7,263.
AnassontzisEGetal.(NESTORCollaboration)2000Nucl.Phys.B(Proc.Suppl.)85,153.AnderssonB(SmallxCollaboration)2002Smallxphenomenology:Summaryandstatus,hep-ph/0204115.
BallRDandLandsho PV2000J.Phys.G:Nucl.Part.Phys.26,672.KaidalovAB2001ReggepolesinQCD,hep-ph/0103011.SchleperP2001Softhadronicinteractions,hep-ex/0102051.VogtR2000Prog.Part.Nucl.Phys.45,S105.
YoshidaR(onbehalfofZEUSandH1Collaboration)2001HERAsmall-xand/ordi raction,hep-ph/0102262.
MartinAD,RobertsRG,StirlingWJandTorneRS1999Nucl.Phys.B(Proc.Suppl.)79,iHLetal2000Eur.Phys.J.C12,375.
KuraevEA,LipatovLNandFadinVS1976Zh.Eksp.Teor.Fiz.71,840;KuraevEA,LipatovLNandFadinVS1977Zh.Eksp.Teor.Fiz.72,377;BalitskyIIandLipatovLN1978Yad.Fiz.Yad.Fiz.28,1597.BrodskySJetal1999JETPLett.70,155,hep-ph/9901229;
[23]
The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater i
Fluxesofatmosphericmuonsunderwater9
[24][25][26][27][28][29][30][31][32][33][34][35][36]
KimVT,LipatovLNandPivovarovGB1999TheNext-to-LeadingdynamicsoftheBFKLPomeron,hep-ph/9911242.
KhalchukovFFetal1985Proc.19ICRC(LaJolla)vol8,p12.BakatanovVNetal.1992Yad.Fiz.55,2107.
ZatsepinGTetal.Bull.oftheRussianAcad.ofSci.Ser.Phys.199458,2050.RhodeW1994Nucl.Phys.B(Proc.Suppl.)35,250.
AmbrosioMetal(MACROCollaboration)1995Phys.Rev.D52,3793.AgliettaMetal(LVDCollaboration)1998Phys.Rev.D58,092005;AgliettaMetal(LVDCollaboration)1999Phys.Rev.D60,112001.KaidalovAB1982Phys.Lett.B116,459;
KaidalovABandPiskunovaOI1986Sov.J.Nucl.Phys.43,1545.BugaevEVetal1989NuovoCimentoC12,41.BugaevEVetal1998Phys.Rev.D58,054001.
VallAN,NaumovVAandSinegovskySI1986Sov.J.Nucl.Phys.198644,806.NaumovVA,SinegovskayaTSandSinegovskySI1998NuovoCimentoA111,129.
SinegovskayaTS1999Proc.SecondBaikalSchoolonFundamentalPhysics“InteractionofRadiationandFieldswithMatter”(Irkutsk:IrkutskUniversityPress)vol2,p598(inRussian).NaumovVA,SinegovskySIandBugaevEV1994Phys.Atom.Nucl.57,412;hep-ph/9301263.
正在阅读:
Fluxes of atmospheric muons underwater depending on the small-x gluon density05-13
旋挖成孔施工方案03-29
语文版九上《陈毅市长》word学案06-23
大祥固色剂2016.7.404-18
疾病预防控制工作绩效考核04-05
《垃圾分类》国旗下的讲话范文03-23
空气动力学作业05-15
蔡校博客里的考研重点单词01-30
坚守绝对忠诚做到两个维护”对照检查材料07-30
- 1Can lepton flavor violating interactions explain the atmospheric neutrino problem
- 2QCD phase diagram for small densities from simulations at imaginary mu
- 310.Progress in probability density function methods for turb
- 4Collective modes of spin, density, phase and amplitude in exotic superconductors
- 5Models of solar energetic particle fluxes- the main requirements and development prospects
- 6Adaptive Depth Control for Autonomous Underwater Vehicles Based on Feedforward Neural Netwo
- 7Models of solar energetic particle fluxes- the main requirements and development prospects
- 8Module1Unit1 We lived in a small house
- 9Evolution of Cosmological Density Distribution Function from the Local Collapse Model
- 10Evolution of Cosmological Density Distribution Function from the Local Collapse Model
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- atmospheric
- underwater
- depending
- density
- Fluxes
- muons
- small
- gluon
- 职业生涯规划演示文稿
- 第一章 企业战略管理导论
- 小区设计说明Word版
- 武银42号附件:湖北省证券保险业金融机构反洗钱工作评估实施细则
- 石家庄钢铁有限责任公司12&183;9”煤气中毒事故调查报告_安全管理网
- 2015江苏省会计从业资格(必备资料)
- 水族传统酿酒工艺的文化解读
- 2014高考政治热点专题二:扩内需_稳增长
- 小学生每天5分钟安全教育记录
- 2011年北京市大兴区初三化学第一学期期末试题及答案
- 长春瑞滨联合奈达铂治疗乳腺癌肺转移临床观察
- 铁路桥梁隧道标志
- 二年级看图写话《我来帮忙》教案
- 计算机图形学实验03
- 2020浙江大学中国古代文学考研参考书 经验 真题
- AMAZON购物以及转运公司的操作
- 柯城区中央农村环保专项资金环境综合整治项目公示
- 第6章 建筑内部排水系统的计算-用
- 高校教师年度工作总结
- 糖尿病足个案查房(1)