2018年中考数学精品资料全国初中数学竞赛辅导-平行四边形

更新时间:2023-03-08 04:45:00 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2018年中考数学精品资料全国初中数学竞赛辅导-平行四边形

平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.

由平行四边形的定义决定了它有以下几个基本性质: (1)平行四边形对角相等; (2)平行四边形对边相等; (3)平行四边形对角线互相平分.

除了定义以外,平行四边形还有以下几种判定方法: (1)两组对角分别相等的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)对角线互相平分的四边形是平行四边形; (4)一组对边平行且相等的四边形是平行四边形. 例1 如图2-32所示.在EF与MN互相平分.

ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:

分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.

证 因为ABCD是平行四边形,所以

AD

BC,AB

CD,∠B=∠D.

又AE⊥BC,CF⊥AD,所以AECF是矩形,从而

AE=CF.

所以

Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以

第 1 页 共 8 页

△BEM≌△DFN(SAS),

ME=NF. ①

又因为AF=CE,AM=CN,∠MAF=∠NCE,所以

△MAF≌△NCE(SAS),

所以 MF=NF. ②

由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.

例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.

分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解. 证 作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而

△ABG≌△HBG(AAS),

所以 AB=HB. ① 在△ABE及△HBE中,

∠ABE=∠CBE,BE=BE,

所以 △ABE≌△HBE(SAS), 所以 AE=EH,∠BEA=∠BEH.

下面证明四边形EHCF是平行四边形. 因为AD∥GH,所以

∠AEG=∠BGH(内错角相等). ②

又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以

第 2 页 共 8 页

∠AGB=∠GEH.

从而

EH∥AC(内错角相等,两直线平行).

由已知EF∥HC,所以EHCF是平行四边形,所以

FC=EH=AE.

说明 本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.

人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的. 例3 如图2-34所示.∠EMC=3∠BEM.

ABCD中,DE⊥AB于E,BM=MC=DC.求证:

分析 由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此, 只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.

证 延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以

△MCF≌△MBE(AAS),

所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知

∠F=∠MDC,

又由已知MC=CD,所以

∠MDC=∠CMD,

第 3 页 共 8 页

∠MCF=∠MDC+∠CMD=2∠F.

从而

∠EMC=∠F+∠MCF=3∠F=3∠BEM.

例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.

分析 只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.

证 延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此, ∠FCH=∠CAD. ①

又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以

∠CHG=∠CFH+∠FCH=45°,

所以 ∠CFH=45°-∠FCH. ② 由①,②

∠CFH=45°-∠CAD=∠CAF,

于是在三角形CAF中,有

CA=CF.

第 4 页 共 8 页

例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:

分析 作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.

证 如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以

FA=FH.

设正方形边长为a,在Rt△ADF中,

从而

所以 Rt△ABG≌Rt△HCG(AAS),

从而

Rt△ABG≌Rt△ADE(SAS),

第 5 页 共 8 页

例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.

分析 准确地画图可启示我们证明∠GDH=∠GHD. 证 因为DEBD=FD,所以

BC,所以四边形BCED为平行四边形,所以∠1=∠4.又

所以 BC=GC=CD.

因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以

所以 ∠HDG=∠GHD,

从而GH=GD,即△GHD是等腰三角形.

练习十二

第 6 页 共 8 页

1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.

2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.

3.如图2-40所示.CB于E.求证:BE=CF.

ABCD中,AF平分∠BAD交BC于F,DE⊥AF交

4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.

5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分

第 7 页 共 8 页

第 8 页 共 8 页

本文来源:https://www.bwwdw.com/article/x46.html

Top