3.1.2等式的性质教案 新人教版

更新时间:2023-11-17 19:17:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

3.1.2《等式的性质》教案

教学内容

课本第82页至第84页. 教学目标

1.知识与技能

会利用等式的两条性质解方程. 2.过程与方法

利用天平,通过观察、分析得出等式的两条性质. 3.情感态度与价值观

培养学生参与数学活动的自信心、合作交流意识. 重、难点与关键

1.重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程. 2.难点:由具体实例抽象出等式的性质.

3.关键:了解和掌握等式的两条性质是掌握一元一次方程的解法的关键. 教具准备 投影仪. 教学过程 一、引入新课

我们可以估算出某些方程的解,但是仅依靠估算来解比较复杂的方程是很困难的.这一点上一节课我们已经体会到.因此,我们还要讨论怎样解方程.因为,方程是含有未知数的等式,为了讨论解方程,我们先来研究等式有什么性质? 二、新授

1.什么是等式?

用等号来表示相等关系的式子叫等式. 例如:m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式,?我们可以用a=b表示一般的等式.

2.探索等式性质.

观察课本图3.1-2,由它你能发现什么规律?

从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还保持平衡. 从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是保持平衡. 等式就像平衡的天平,它具有与上面的事实同样的性质. 等的性质1:等式两边都加(或减)同一个数(或式子),结果相等.

例如等式:1+3=4,把这个等式两边都加上5结果仍是等式即1+3+5=4+5,把等式两边都减去5,结果仍是等式,即1+3-5=4-5.

怎样用式子的形式表示这个性质? 如果a=b,那么a±c=b±c.

运用性质1时,?应注意等号两边都加上(或减去)同一个数或同一个整式才能保持所得结果仍是等式,否则就会破坏相等关系,例如,对于等式3+4=7,?如果左边加上5,右边加上6,那么3+4+5≠7+6. 观察课本图3.1-3,由它你能发现什么规律?

可以发现,如果把平衡的天平两边的量都乘以(或除以)同一个量,天平还保持平衡.

类似可以得到等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等. 怎样用式子的形式表示这个性质? 如果a=b,那么ac=bc.

ab如果a=b,(c≠0),那么=.

cc性质2中仅仅乘以(或除以)同一个数,而不包括整式(含字母的),?要注意与性质1的区别.

运用性质2时,应注意等式两边都乘以(或除以)同一个数,?才能保持所得结果仍是等式,但不能除以0,因为0不能作除数.

例2:利用等式的性质解下列方程:

1(1)x+7=26; (2)-5x=20; (3)-x-5=4.

3分析:解方程,就是把方程变形,变为x=a(a是常数)的形式. 在方程x+7=26中,要去掉方程左边的7,因此两边都减去7. 解:(1)根据等式性质1,两边同减7,得: x+7-7=26-7 于是 x=19

我们可以把x=19代入原方程检验,?看看这个值能否使方程的两边相等,?将x=19代入方程x+7=26的左边,得左边=19+7=26=右边,所以x=19是方程x+7=26?的解.

(2)分析:-5x=20中-5x表示-5乘x,其中-5是这个式子-5x的系数,式子x?的系数为1,-x的系数为-1,如何把方程-5x=20转化为x=a形式呢?即把-5x的系数变为1,应把方程两边同除以-5.

解:根据等式性质2,两边都除以-5,得 ?5x20? ?5?5于是x=-4

11(3)分析:方程-x-5=4的左边的-5要去掉,同时还要把-x的系数化为1,如何去掉-5呢?根据

33两个互为相反数的和为0,所以应把方程两边都加上5. 解:根据等式性质1,两边都加上5,得 1-x-5+5=4+5 3化简,得-x=9

1再根据等式性质2,两边同除以-(即乘以-3),得

31-x·(-3)=9×(-3) 3于是 x=-27

同学们自己代入原方程检验,看看x=-27是否使方程的两边相等.

3.补充例题:下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? (1)解方程:x+12=34

解:x+12=34=x+12-12=34-12=x=22 (2)解方程-9x+3=6 解: -9x+3-3=6-3 于是 -9x=3 所以 x=-3

2x?1(3)解方程-1=

33解:两边同乘以3,得2x-1=-1 两边都加上1,得 2x-1+1=-1+1 化简,得 2x=0

两边同除以2,得 x=0 分析:(1)错,解方程是根据等式的两个性质,将方程变形,所以不能用连等号;

?9x31?(2)错,最后一步是根据等式的性质2,两边同除以-9,即,于是x=-. 9?93

(3)错,两边同乘以3,应得2x-3=-1 两边都加3,得 2x=2 两边同除以2,得 x=1 本题还可以这样解答:

2x1两边都加上1,得-1+1=-+1

332x2化简,得==

3323两边都除以(或乘以),得x=1

32三、巩固练习

1.课本第84页练习.

(1)两边同加上5,得x=11,把x=11代入方程左边=11-5=6=右边,所以x=11?是方程的解.

10(2)两边同除以0.3,即乘以,得x=150,检验略.

31(3)解法1:两边都减去2,得2-x-2=3-2

41化简,得-x=1

4两边同乘以-4,得x=-4

解法2:两边都乘以-4,得-8+x=-12 两边都加上8,得x=-4

1检验:将x=-4代入方程,2-x=3的左边,得:

412-×(-4)=2+1=3 4方程的左右两边相等,所以x=-4是方程的解. 一般采用方法1. 2.补充练习. 回答下列问题:

(1)从a+b=b+c,能否得到a=c,为什么? (2)从ab=bc能否得到a=c,为什么?

ac(3)从=,能否得到a=c,为什么?

bb(4)从a-b=c-b,能否得到a=c,为什么? (5)从xy=1,能否得到x=

1,为什么? y解:(1)从a+b=b+c,能得到a=c,根据等式性质1,两边同减去b,就得a=c.

(2)从ab=bc不能得到a=c,因为b是否为0不确定,所以不能根据等式的性质2,?在等式的两边同除以b.

ac(3)从=能得到a=c,根据等式性质2,两边都乘以b.

bb(4)从a-b=c-b能得到a=c,根据等式性质1,两边都加b. (5)从xy=1能得到x=

1由xy=1隐含着y≠0,因此根据等式的性质2,在等式两边都除以y. y

四、课堂小结

在学习本节内容时,要注意几个问题:

1.根据等式的两条性质,对等式进行变形必须等式两边同时进行,即:?同时加或减,同时乘或除,不能漏掉一边.

2.等式变形时,两边加、减、乘、除的数或式必须相同.

3.利用性质2进行等式变形时,须注意除以的同一个数不能是0. 五、作业布置

1.课本第85页习题3.1第4、7、8题. 2.思考课本第85习题3.1第10、11题. 3.选用课时作业设计. 课时作业设计 一、填空题.

1.在等式2x-1=4,两边同时________得2x=5.

222.在等式x-=y-,两边都_______得x=y.

333.在等式-5x=5y,两边都_______得x=-y.

14.在等式-x=4的两边都______,得x=______.

35.如果2x-5=6,那么2x=________,x=______,其根据是________.

16.如果-x=-2y,那么x=________,根据________.

437.在等式x=-20的两边都______或______得x=________.

4二、判断题.(对的打“∨”,错的打“×”) 8.由m-1=4,得m=5. ( ) 9.由x+1=3,得x=4. ( )

x10.由=3,得x=1. ( )

3x11.由=0,得x=2 ( )

212.在等式2x=3中两边都减去2,得x=1.( ) 三、判断题.

13.下列方程的解是x=2的有( ). A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0

14.下列各组方程中,解相同的是( ). A.x=3与2x=3 B.x=3与2x+6=0 C.x=3与2x-6=0 D.x=3与2x=5 四、用等式的性质求x. 15.(1)x+2=5; (2)3=x-3; (3)x-9=8;

y(4)5-y=-16; (5)-3x=15; (6)--2=10;

32(7)3x+4=-13; (8)x-1=5.

3五、检验下列各小题括号里的数哪个是它前面方程的解. 16.3-2x=9+x(x=2,x=-2).

17.5x-1=2x+3(x=1,x=

43). 18.(2x-1)(x+3)=0(x=12,x=1,x=-3).

19.x2+2x-3=0(x=1,x=-1,x=-3).

本文来源:https://www.bwwdw.com/article/x32v.html

Top