Evaluating holonomic quantum computation beyond adiabatic li
更新时间:2023-04-18 03:08:01 阅读量: 实用文档 文档下载
- evaluating推荐度:
- 相关推荐
a r X i v :q u a n t -p h /0208120v 1 18 A u g 2002
Evaluating holonomic quantum computation:beyond adiabatic limitation
LiXiang Cen 1,2,XinQi Li 1,2,YiJing Yan 2,HouZhi Zheng 1,and ShunJin Wang 3
1
NLSM,Institute of Semiconductors,The Chinese Academy of Sciences,Beijing 100083,People’s Republic of China
2
Department of Chemistry,Hong Kong University of Science and Technology,Kowloon,Hong Kong
3
Department of Physics,Sichuan University,Chengdu 610064,People’s Republic of China
The proposal of the optical scheme for holonomic quantum computation is evaluated based on dynamical resolution to the system beyond adiabatic limitation.The time-dependent Schr¨o dinger equation is exactly solved by virtue of the crank-ing representation and gauge transformation approach.Be-sides providing rigorous con?rmation to holonomies of the geometrical prediction that holds for the ideally adiabatic situation,the dynamical resolution enables one to evaluate elaborately the amplitude of the nonadiabatic deviation,so that the errors induced to the quantum computation can be explicitly estimated.
The recently proposed holonomic approach to quan-tum computation [1]-[4]surely predicts a striking contri-bution to the application of quantum physics.Transcend-ing the traditional dynamical means for quantum compu-tation,the holonomic approach realizes quantum infor-mation processing by endowing the quantum code with a non-trivial global topology (a gauge ?eld potential)and the associated holonomies then allow for the universal quantum computing.Speci?cally,in the scheme of holo-nomic quantum computation,information is encoded in a degenerate eigenspace of the governing Hamiltonian and the holonomies (abelian as well as non-abelian)[5]-[7]are acquired by driving the system to undergo appropri-ate loops in the parameter space adiabatically.Besides suggesting an intriguing connection between the gauge ?elds and the information processing,such a geometri-cal means for quantum manipulation is believed to have built-in fault-tolerant features [8]-[11]due to its inher-ent stability against local perturbations.Considerable attention has been addressed to this topic recently and the all-geometrical implementation for universal quan-tum gates has been proposed by optical schemes,based on laser manipulation of ions con?ned in a Paul trap [12]or neutral atoms in an optical resonator [13].
The existent exploration for holonomic quantum com-putation is based on the analysis by pure geometrical fashion.It is true that in the adiabatic limit the holon-omy associated with the evolving loop is determined by the path traced by the time-evolution ray and the cur-vature of the ray space.This involves the abelian holon-omy (the Berry phase)and the non-abelian one merely known as adiabatic connection.Nevertheless,as a whole physical problem,as the dynamics of a system generates a time-dependent physical state,a speci?ed geometrical object (the ray)is generated as well.In such a sense,
dynamics determines the holonomy through determining the ray itself and its path.Moreover,in view that the re-alistic evolution of a physical system could not be ideally adiabatic and the nonadiabaticity shall alter the time-evolution of the ray and thus inevitably induce deviation from the adiabatic consequences.The evaluation of such deviation and the resulting errors in quantum computa-tion is de?nitely a dynamical problem that goes beyond the geometrical exploration.
In this paper we employ a tractable model of the op-tical scheme to exploit this subject.For the appropri-ately chosen loops of the Hamiltonian in the parameter space,the time-dependent Schr¨o dinger equation is ex-actly solved by virtue of the cranking representation and gauge transformation approach.The derived dynami-cal evolution of the system recovers the holonomic trans-formation provided by geometrical consequences,includ-ing the simple abelian phase factor and the general non-abelian operation.Thus our results provide further con-?rmation of the geometrical prediction,and besides,the errors caused by nonadiabatic e?ects for the holonomic quantum gate operation can be estimated explicitly.For the proposed optical scheme of holonomy quantum computation [12,13],the basic idea relies on the adiabatic passage via the dark states since the dynamical evolution restricted to such a space is completely trivial.The sys-tem encoding the qubit is realized by a four-level Λ-type trapped ion (or a similar cavity atom).The three ground levels |g i (i =1,2,3)are highly degenerate and each cou-ples to the excited state |e in a tunable way.The states |g 1 and |g 2 stand for the computational bases |0 and |1 ,respectively,and |g 3 is an ancillary level required for implementation of gate operations.Such a system admits two dark states that have no contribution from the excited state.Through changing the Rabi frequen-cies and driving the dark states to undergo appropriate cyclic evolutions in an adiabatic fashion,the universal single-bit gate operations e iφ|1 1|and e iφσy can be gen-erated due to the global geometry of the bundle of the eigenspace of the dark states.
To evaluate the gate operation e iφ|1 1|from a dynami-cal viewpoint,let us explore the state evolution generated by the periodic Hamiltonian [12,13]
H (t )=?sin θ(σ2e +σe 2)+?cos θ(σ3e e i?+σe 3e ?i?),
(1)
where θis a ?xed parameter and ?is assumed to rotate at a constant frequency γfor convenience.The equation of motion for the system is
1
i
?
dt
=
?I (t )
?)
=?x i (γ
?
)=| ψ0(0)|D (0) |2=| ψ0(T )|D (T ) |2.
(8)
Besides the leakage,the nonadiabatic evolution shall result in deviation to the desired phase factor.It fol-lows,instead of the net Berry phase,the cyclic evolution here induces a total phase (the so-called Lewis-Riesenfeld phase)
Φ= T
0 ψ0(t )|i ?
γ.(9)
The detailed depiction of the deviation for the phase fac-tor is shown in Fig.
1(b).Noting that in the adiabatic
limit,the total phase [15]
Φ=lim γ/?→0
2π
x 0(γ
γ/?=4πsin 2θ,(10)
the geometrical consequence is thus recovered.
The validity of the above evaluation is based on a presumption that the initial state |D (0) =cos θ|g 2 ?sin θ|g 3 can be generated from the computational ba-sis |g 2 and so the inverse process.Explicitly,such pro-cesses can be accomplished by the driven Hamiltonian (1)through changing the parameter θadiabatically.Con-ventionally,the nonadiabatic e?ect here shall lead to an additional error for the quantum computation.However,such an error can be in principle avoided through ap-pending a matching interaction to compensate the gauge potential term induced to the system.Speci?cally,one can use the following Hamiltonian (setting ?=0)H tot (t )=H (t )+H ad (t ),H ad (t )=i ˙θ
(t )(σ23?σ32).(11)
It follows that the dynamical invariant of the system
H tot (t )now has a form I (t )=H (t ),thus the above state transformation can be processed exactly.Physically,the interaction H ad (t )can be realized by a microwave cou-pling to the two degenerate levels |g 2 and |g 3 ,with its intensity accurately controlled through a derivative feed-back process.
Now we investigate the gate operation e iφσy achieved by the holonomic means.The corresponding evolution is generated by the Hamiltonian
H (t )=?sin θcos ?(σ1e +σe 1)
+?sin θsin ?(σ2e +σe 2)+?cos θ(σ3e +σe 3),(12)where the parameter ?=γt .As is known,the adi-abatic cyclic evolution of the Hamiltonian generates a non-abelian holonomy due to its degeneracy structure of the dark states.It can be easily worked out,from the formula of Ref.[7],that the holonomic transformation
u C =e i 2πcos θD y ,
(13)
where D y =i (|D 2 D 1|?|D 1 D 2|),and the two dark states,|D 1 =cos θ|g 1 ?sin θ|g 3 and |D 2 =|g 2 ,span the degenerate space of the starting (ending)Hamilto-nian.Note that the Hamiltonian (12)possesses an su(4)Lie algebraic structure and dynamical resolution to the system is usually very complicated.Surprisingly,as we shall show in the following,this system can be exactly solved by the gauge transformation approach [16,17],and its dynamical evolution analytically manifested thus leads to a complete understanding of the adiabatic and nonadiabatic properties for the time-dependent Hamilto-nian system.
Similar to the cranking method used above,we intro-duce the unitary gauge transformation
U g (t )=e ?γt (σ12?σ21)
(14)
2
to the equation of motion for the system,from which a covariant Schr¨o dinger equation is stemmed
|Ψg(t) =U?1g(t)|Ψ(t) ,
i
?
?t
=?sinθ(σ1e+σe1)
+?cosθ(σ3e+σe3)+iγ(σ12?σ21).(16) In view that the above Hamiltonian is time independent, the basic solutions|Ψn g(t) to the covariant equation(15) can be easily obtained and the corresponding eigenvalues are as follows
E1,2=±√
2
ˉ? 1? ?)2cos2ˉθ 1/2,
E3,4=±√
2
ˉ? 1+ ?)2cos2ˉθ 1/2,(17)
where
ˉ?=? 1+(γ/?)2.(18)
The dynamical basis of the system(12)can be directly obtained as|Ψn(t) =U g|Ψn g(t) ,from which one can see that E n has the natural implication related to the total phase.Now the time evolution operator generated by the Hamiltonian(12)can be given
U C(T)=
4
n=1|Ψn(T) Ψn(0)|
=
4
n=1e?iE n2π
γ
=
±cosθ,and the phase-equipped dynamical bases|Ψ1(t) and|Ψ2(t) have the form
|Ψ1(t) =√
2
e?iγt cosθ[(cosθcosγt+i sinγt)|g1 +(cosθsinγt?i cosγt)|g2 ?sinθ|g3 ],
|Ψ2(t) =√
2
e iγt cosθ[(cosθcosγt?i sinγt)|g1
+(cosθsinγt?i cosγt)|g2 ?sinθ|g3 ].(20)
One can verify that they are the instantaneous eigen-states of the Hamiltonian(12)with a two-degeneracy eigenvalue0,and the equipped phases are just the Berry phases accordingly.Thus the cyclic evolution restricted to the space spanned by these two states is purely geo-metrical and can be denoted as
u(T)=e?i2πcosθ|Ψ1(0) Ψ1(0)|+e i2πcosθ|Ψ2(0) Ψ2(0)|
(21) with|Ψ1(0) =(|D1 ?i|D2 )/√
2.It can be easily recognized that the opera-tor(21)is just the non-abelian holonomy(13),thus the geometrical nature is veri?ed again.
The above dynamical resolution to the system is im-portant.Besides o?ering a vivid veri?cation to the re-markable formula of non-abelian holonomy[7],which holds for the ideally adiabatic situation,it enables one to evaluate elaborately the amplitude of the nonadiabaticity deviation and the resulting errors to the holonomic gate operation e iφσy.In detail,the population transfer from the initial state|Ψ(0) =|g2 is pictured in Fig.2.The leakage out of the computational space can be estimated by the projection(see also Fig.2)
η(θ,
γ
?1??2are tunable.One can see that the bases|g1g1 , |g1g2 ,and|g2g1 are decoupled from the evolution,and
the component|g2g2 serving as the code|11 evolved in an enclosed space spanned by{|g2g2 ,|g3g3 ,|ee }.In-troducing the su(3)generators explicitly
A e2=e i2?1|ee g2g2|,A e3=e i2?1|ee g3g3|,
A23=|g2g2 g
3
g3|,A?μν=Aνμ,(25)
the Hamiltonian(24)can be rewritten as
H eff=g sinθ(A2e+A e2)+g cosθ(A3e e i?+A e3e?i?).
(26) Obviously this Hamiltonian possesses an su(3)algebraic structure isomorphic to that of system(1),thus all the
discussions therein also hold for the present system.
It should be noted that,the e?ective Hamiltonian(24),
respecting a second-order process of the interaction,is quite a rough description of the model.Speci?cally,it ignores the same second-order process induced by virtual
photons excitation in the self-transitions of the states: |g2(3) →|g2(3) and|e →|e .It can be anticipated that such self transitions shall dress the energy levels of the ions and lift the degeneracy of the ground states,
which in turn a?ects the desired gate operation.Detailed exploration of this point shall be presented in a future report.
This work was supported in part by the Postdoctoral
Science Foundation,the special funds for Major State Basic Research Project No.G001CB3095,the National Natural Science Foundation No.10175029of China,and the Research Grants Council of the Hong Kong Govern-ment.
?
) determined by Eq.(7).
[16]S.J.Wang,F.L.Li and A.Weiguny,Phys.Lett.A180,
189(1993).
[17]S.Wang,B.Hu,Q.Jie,and B.Li,Algebraic dynam-
ics,gauge transformation,and geometric phase(private
communication).
[18]K,Molmer and A.Sorensen,Phy.Rev.Lett.82,1835
(1999).
Caption of Fig.1:
Deviation induced by nonadiabaticity for abelian holonomy.(a)The overlapηfor the parametersθ∈(0,π/2)andγ/?∈[0,1];(b)The total phaseΦfor θ∈[0,π]andγ/?∈[0,1].
Caption of Fig.2:
Deviation induced by nonadiabaticity for non-abelian holonomy.The initial state is prepared in|D2 .The two solid curves show the results for the population of the target state on|D1 and|D2 ,as a function of1?cosθ,respectively.The dashed curve depicts the total populationηon the computational space.Figures(a),
(b),(c)and(d)correspond toγ/?=0.01,0.2,0.5and
0.8,respectively.
4
正在阅读:
Evaluating holonomic quantum computation beyond adiabatic li04-18
高炉富氧喷煤学习材料02-12
工业园区天然气利用推介会活动方案参考模板12-15
关于2011级高职学生毕业设计(毕业作业)安排的通知102-02
蓝染惣右介语录02-11
部编版语文八年级下册一单元教案合集《社戏》《回延安》《安塞腰06-29
读《公司就是自己的家》有感-汤兴强06-13
微原作业答案03-15
化工专业硫铁矿接触法制硫酸的生产工艺毕业设计 - 图文04-27
浙江农业保险经营模式研究05-24
- 1Unit5 Beyond Babies 2
- 2LI Salon preparation sheet中级
- 3Multiseparability and Superintegrability for Classical and Quantum Systems
- 4Thermo Field Dynamics and quantum algebras
- 5Tuning the dipolar interaction in quantum gases
- 6Quantum ESPRESSO 4.3 用户手册
- 7Quantum Group Covariance and the Braided Structure of Deformed Oscillators
- 8The existence problem for dynamics of dissipative systems in quantum probability
- 9Computing inspirals in Kerr in the adiabatic regime. I. The
- 103 工程任务及规模li - 图文
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- computation
- Evaluating
- holonomic
- adiabatic
- quantum
- beyond
- li
- “换客大会”以物换物活动策划书(完整版)
- 上海市2014年会计从业资格无纸化考试《会计电算化》模拟试卷1
- 初级中学单词phonics归类(全册总表)
- 八年级下册物理实验教学计划
- 宣城市宣州区住建委行政权力运行流程图【模板】
- 《1000以内数的认识》教学设计公开课
- 爱国主义精神调查报告及问卷
- 河北省石家庄市49中2011届高三语文第二次月考【会员独享】
- 2022年西南大学文学院635哲学通论之马克思主义哲学原理考研强化
- 苏教版生物七下《精卵结合孕育新的生命》word同步练习
- 三类城市语言文字工作评估达标实施方案 2
- 2022新人教版部编本三年级上册语文一块奶酪教学设计与反思
- 幼儿园小班户外体育活动:走平衡木
- 会计新手们记账凭证摘要如何写复习课程
- 伤亡控制、安全达标、文明施工等管理目标
- 原告马全明诉被告上海浦东金属穿孔厂专利侵权纠纷一案
- 北京第二外国语学院《 综合考试(法)》考研真题笔记及参考书
- 基于PageRank的微博排名MapReduce算法研究_舒琰
- 存量房买卖居间服务合同通用版
- 【教与学新教案】九年级数学下册26.1.2反比例函数的图象和性质(