七年级-7章-平面图形的认识(二)1
更新时间:2024-06-18 16:42:01 阅读量: 综合文库 文档下载
七年级 第七章:平面图形的认识(二)
课标要求:
1.相交线与平行线
(1)识别同位角、内错角、同旁内角。
(2)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
(3)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。
(4)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。 *了解平行线性质定理的证明。
(5)能用三角尺和直尺过已知直线外一点画这条直线的平行线。
(6)探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。
(7)了解平行于同一条直线的两条直线平行。 2.图形的平移
(1)通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。 (2)认识并欣赏平移在自然界和现实生活中的应用。 (3)运用图形的轴对称、旋转、平移进行图案设计。 3.三角形
(1)理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。 (2)探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。 4.多边形
(1)了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。
重点难点:
重点:掌握直线平行的条件与性质;掌握平移的基本性质;掌握三角形相关概念(内角、外角、中线、高线、角平分线),会画出任意三角形的角平分线、中线、高线;掌握多边形的内角和与外角和定理,并能利用此进行相关角度的计算。
难点:平行线条件与性质的探索过程,平行线间的距离,能进行相关线段和差及角度和差的计算。
知识梳理
一.三线八角:
两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD被直线EF所截,直线 为截线,直线___ 、___称为被截线,两条直线AB、CD被直线EF所截可得8个角,这样的图形就是我们通常所说的“三线八角”.
(一)、
这八个角中有:
1、对顶角:∠1与∠3,∠2与∠4,∠5与∠7,∠6与∠8.
2、邻补角有:∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1,∠5与∠6,∠6与∠7, ∠7与∠8,∠8与∠5. (二)、同位角,内错角,同旁内角:
1、同位角:两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的二 个角叫 。 如图中的∠1与∠5分别在直线AB、CD的上侧,又在第三条直线EF的右侧,所以∠1与∠5是同位角,它们的位置相同,在图中还有∠2与 ,∠4与 ,∠3与∠7也是同位角.
2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二 个角叫 。
如上图中∠2与∠8在直线AB、CD的内侧(即AB、CD之间),且在EF的两旁,所以∠2与∠8是内错角.同理,∠3与 也是内错角.
3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条直线的同旁的 两个角叫 。.
如上图中的∠2与∠5在直线AB、CD内侧又在EF的同旁,所以∠2与∠5是同旁内角,同理,∠3与 也是同旁内角. 4、
因此,两条直线被第三条直线所截,共得4对同位角,2对内错角, 对同旁内角.
.二. 直线平行的条件(判定):
1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简记为: 相等,两直线平行
2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为: 相等,两直线平行
3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为: 互补,两直线平行
三.平行线的性质:
1、两条平行线被第三条直线所截,同位角相等.简记为: 两直线平行, 相等
2、两条平行线被第三条直线所截,内错角相等.简记为:
两直线平行, 相等
3、两条平行线被第三条直线所截,同旁内角互补,简记为:
两直线平行, 互补 4、两平行线之间的距离相等
5、如果两个角的两边分别平行,那么这两个角相等或互补。
四.平移
1.图形的平移
在平面内,将一个图形沿着某个______移动一定的______,这样的图形运动叫做图形的______.如图1,______和______,______和______可以平移互相得到.
由此,我们可以看出:图形的平移有两个重要因素,即______和______. 2. 图形的平移的要素:方向、距离。
将图2平移得到图3后,我们可以看出点A对应点A1,点D对应点D1,点______对应点______,点______对应点______.如图2、3,对应点的连线AA1或DD1表示平移的方向和距离,还可以用_________表示. 3. 图形平移的性质:
(1)图形的平移不改变图形的 与 ,只改变 。并且平移不改变直线的方向。
(2)图形平移后,对应点的连线 或在同一直线上且 (3)图形平移后,对应线段平行或在同一直线上且相等, (4)图形平移后,对应角相等。
A A’ C C’ B B’
△ABC向右平移相同距离得到△A’B’C’,其中A与A’是对应点,线段AB与线段A’B’是 对应线段, 与∠A’是对应角. (5)平移把直线变成与它平行的直线.
(6)两条平行线中的一条可以通过平移与另一条重合
归纳:综上所述,平移前后的两个图形的___ 和 ___相同,__ 和 ____相等
4. 平移作图:
确定一个图形平移后的位置所需条件为: 1、图形原来的位置 2、平移的方向 3、平移的距离
5. 两直线之间的距离:
如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为 之间的距离。
五.认识三角形
(一). 三角形的有关概念:
1、由不在同一直线上的三条线段,首位顺次相接所组成的图形叫做三角形. 2、三角形有三条边、三个顶点和三个内角. 记作: (1)点A、B、C叫做______.
(2)线段AB、BC、AC叫做______ . (3) ∠A、∠B、∠C叫做______.
(4)线段AB是∠C的______,也可以用______表示;线段BC 是∠A的______,也可以用______表示;线段AC是∠B的______, 也可以用______表示.
(二). 三角形分类:
1、三角形按边分类:
?不等边三角形?角三形三角形?腰和底不相等的等腰???等腰三角形等腰三角形?等边三角形?
等边三角形
注:
1) 我们把只有两条边相等的三角形叫做等腰三角形,相等的两边叫做这个等腰三角形的腰;把三边都相等的三角形叫做等边三角形(或正三角形).
2)等边三角形是特殊的等腰三角形,切记不能将三角形按边分成不等边三角形、等腰三角形和等边三角形三类. 2、三角形按角分类:
(1)三个内角都是锐角的三角形叫做锐角三角形. (2)有一个内角是直角的三角形叫做直角三角形.
在直角三角形ABC中,∠C=90°,AC、BC叫做直角三角形的直角边,AB叫做直角 三角形的斜边。 用“Rt”表示直角,直角三角形ABC可表示为:Rt△ABC. 直角三角形的两个锐角互余.即 =90°. (3)有一个内角是钝角的三角形叫做钝角三角形.
AAABCBCBC(三). 三边关系:
1、三角形任意两边之和大于 ,两边之差小于第三边;
(判断三条线段能否构成一个三角形时,就看这三条线段是否满足任何两边之和大于第三边,其简便方法是看两条较短线段的和是否大于第三条最长的线段.)
(四). 三角形的性质:
三角形具有稳定性
(五). 三角形的角平分线、中线和高:
如图,点D、E、F都在AB上.
1. 角平分线:
1) 在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的 叫做三角形的角平分线. 2) 若∠ACE=∠ECB=
1∠ACB(即CE平分∠ACB),则 是△ABC的角平分线. 22. 高:
1).从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的 叫做三角形的高线,简称三角形的高.
2).若CF⊥AB(即∠AFC=∠BFC=90°),则 是△ABC的高. 3. 中线:
1). 在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线. 2).若AD=BD=
1AB(即D是AB的中点)时,则CD是△ABC的中线. 2说明:
①三角形有 条角平分线, 条中线, 条高线,它们都是线段。
②三角形三条角平分线,三条中线都在三角形的内部,但高不一定(钝角三角形有两条在外部,直角三角形时有两条恰好是两条直角边). ③三角形三条角平分线交于一点,三条中线交于一点,三条高线线所在的 交于一点. 三角形的中线 三角形的角平分线 三角形的高
三条中线交于三角形内一点 三条角平分线交于三角形内一点 锐角三角形的三条高交于三角形内一点; 直角三角形的三条高交于边上; 钝角三角形的三条高交于三角形外一点
(六). 三角形的内角和定理:
1、三角形的内角:
①三角形的三个内角的和等于 . ②推论:直角三角形的两个锐角 .
2、三角形的外角:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角.
图中的∠CBD称为△ABC的一个外角
② 三角形的一个外角等于与它不相邻的 的和. ③ 三角形的外角和等于 . 3、注意:
①“外角”是三角形的外角,不是它相邻内角的外角.对三角形的外角,称某个角是某个三角 形的外角,而不称三角形某个角的外角
六.多边形的内角和与外角和
1. 过n边形的一个顶点可以作______条对角线,将n边形分割成______个三角形,所以n边形的内角和=______个三角形的内角和,即n边形的内角和=______·180o. 2. 多边形的内角:
(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°; 3. 多边形的外角:
(1)多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的
(2)任意多边形的外角和等于 . 4.对角线条数公式:n边形的对角线有条;
5.正多边形定义:各边相等,各角也相等的多边形是正多边形.
考点归纳:
(六). 三角形的内角和定理:
1、三角形的内角:
①三角形的三个内角的和等于 . ②推论:直角三角形的两个锐角 .
2、三角形的外角:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角.
图中的∠CBD称为△ABC的一个外角
② 三角形的一个外角等于与它不相邻的 的和. ③ 三角形的外角和等于 . 3、注意:
①“外角”是三角形的外角,不是它相邻内角的外角.对三角形的外角,称某个角是某个三角 形的外角,而不称三角形某个角的外角
六.多边形的内角和与外角和
1. 过n边形的一个顶点可以作______条对角线,将n边形分割成______个三角形,所以n边形的内角和=______个三角形的内角和,即n边形的内角和=______·180o. 2. 多边形的内角:
(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°; 3. 多边形的外角:
(1)多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的
(2)任意多边形的外角和等于 . 4.对角线条数公式:n边形的对角线有条;
5.正多边形定义:各边相等,各角也相等的多边形是正多边形.
考点归纳:






正在阅读:
七年级-7章-平面图形的认识(二)106-18
公司安全生产操作规程01-22
生产车间级安全培训试题(含答案)07-12
五年级上学期古诗文诵读必背篇目09-19
15m以上高墩安全专项施工方案05-28
教科版高中物理必修1第四章《物体的平衡》word导学案05-23
蚂蚁团结作文精选15篇05-02
非谓语动词专练100题10-17
高尿酸血症的表现有哪些03-11
模板计算书00210-13
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 图形
- 平面
- 认识
- 年级
- 浅谈中小学美术课开展现状
- 孔子关于“仁、义、忠、信、恕、勇、智、礼、孝”的学说整理。
- 年产值3000万锂电pack生产线项目可行性研究报告-详细
- 2017智慧树孙子兵法中的思维智慧章节作业答案
- 2010《大学语文》(专升本)复习资料
- 《大学》心解(八)
- 基于对话思维的新中式环境艺术设计
- 初中物理资源与评价九年级答案
- 大学物理化学上学期各章节复习题及答案(傅献彩版)
- 四川省成都七中2011届高三“二诊”模拟检测(文综) - 图文
- 夹江县2010届初中毕业会考适应性考试 - 图文
- 重庆市西南大学附中2018-2019学年上学期高一期末考试物理试卷 Wo
- 2015新版PEP六年级下册Recycle Mike’s happy days教案
- 大学实用英2复习题
- 大爱师兄修行体会
- 临时用电安全技术交底
- 通达信 函数字典
- 通风与空调工程资料目录
- “十三五”重点项目-太阳能光电建筑项目商业计划书
- 2012年江南大学硕士研究生入学复试考试大纲(染整工艺原理)