Effect of a superheating and sub-cooling heat exchanger to the performance
更新时间:2023-08-21 10:00:01 阅读量: 高等教育 文档下载
- effective推荐度:
- 相关推荐
Energy44(2012)996e1004
ContentslistsavailableatSciVerseScienceDirect
Energy
journalhomepage:/lo
cate/energy
Effectofasuperheatingandsub-coolingheatexchangertotheperformanceofagroundsourceheatpumpsystem
KadirBakirci*,DeryaColak1
DepartmentofMechanicalEngineering,AtatürkUniversity,25240Erzurum,Turkey
articleinfo
Articlehistory:
Received15November2011Receivedinrevisedform13April2012
Accepted20April2012
Availableonline7June2012Keywords:
GroundsourceheatpumpGroundheatexchangerColdclimateHeating
SuperheatingSub-cooling
abstract
Theaimofthisstudyistoevaluatetheeffectofasuperheatingandsub-coolingheatexchanger(SHCHE)totheperformanceofgroundsourceheatpumpsystemforclimaticconditionofErzurumhavingcoldclimateinTurkey.Forthispurpose,anexperimentalset-upwasconstructed.Theexperimentalapparatusconsistsofaseriesgroundheatexchanger(GHE),aliquid-to-liquidvaporcompressionheatpump,watercirculatingpumpsandothermeasurementequipments.Inthisstudy,theperformanceofthesystemswithandwithoutSHCHEwasexperimentallyinvestigated.Theexperimentswereperformedin2010forJanuaryandFebruarywhicharethecoldestmonthsoftheheatingseason.Theexperimentallyobtainedresultswereusedtocalculatethepowervaluesofthemainsystemequipments,thecoef cientofperformanceoftheheatpump(COP)andtheoverallsystem(COPS)forsystemswithandwithoutSHCHE.
Ó2012ElsevierLtd.Allrightsreserved.
1.Introduction
Turkey’sdemandforenergyandelectricityisincreasingrapidly.Turkeyisheavilydependentonexpensiveimportedenergyresourcesthatplaceabigburdenontheeconomy.Aswouldbeexpected,therapidexpansionofenergyproductionandconsumptionhasbroughtwithitawiderangeofenvironmentalissuesatthelocal,regional,andgloballevels.Withrespecttoglobalenvironmentalissues,Turkey’scarbondioxide(CO2)emissionshavegrownalongwithitsenergyconsumption.Stateshaveplayedaleadingroleinprotectingtheenvironmentbyreducingemissionsofgreenhousegases.Inthisregard,renewableenergyresourcesappeartobeoneofthemostef cientandeffectivesolutionsforcleanandsustainableenergydevelopmentinTurkey.Turkey’sgeographicallocationhasseveraladvantagesforextensiveuseofmostoftheserenewableenergysources[1].
Infuturetheworld’senergysupplymustbecomemoresustainable.Thiscanbeachievedbothbyamoreef cientuseofenergyandbyrelyingonrenewablesourcesofenergy,particularlywind,hydropower,solarandgeothermalenergy[2].Turkeyisan
*Correspondingauthor.Fax:þ904422360957.E-mailaddress:abakirci@atauni.edu.tr(K.Bakirci).1
Presentaddress:Directoryofthe12thRegionofHighways,25080Erzurum,
Turkey.
0360-5442/$eseefrontmatterÓ2012ElsevierLtd.Allrightsreserved.doi:10.1016/j.energy.2012.04.049
energyimportingnationwithmorethanhalfofourenergyrequirementsmetbyimportedfuels.Airpollutionisbecomingasigni cantenvironmentalconcerninthecountry.Achievingsolutionstoenvironmentalproblemsthatwefacetodayrequireslong-termpotentialactionsforsustainabledevelopment.Forthegovernmentsorsocietiestoattainsustainabledevelopment,muchefforthastobedevotedtoutilizingsustainableenergyresourcesintermsofrenewableenergies[3,4].
TheGSHP(groundsourceheatpump)isoneoftheef cientandsustainablemethodstoprovidespaceheatingandhotwaterforvariouskindsofbuildings.TheGSHP,worksbymeansofthevaporcompressioncycle,whichcoolsacirculating uidthat owsthroughasystemofclosedloops.Theseloopsareburiedwithinthegroundeitherhorizontally,iflandspacepermits,orverticallybymeansofboreholes.Thedirectionofheat owisfromthegroundtothecooler uidandthisheatisupgradedtoahighertemperaturethroughthevaporcompressioncyclefordeliverytothebuilding[5].Thegroundsourceheatpumpsprovideanewandcleanwayofheatingbuildingsintheworld.Theymakeuseofrenewableenergystoredintheground,providingoneofthemostenergy-ef cientwaysofheating.Theyaresuitableforawidevarietyofbuildingtypesandareparticularlyappropriateforlowenvironmentalimpactprojects[6].
Intheliterature,anumberofinvestigationshavebeencon-ductedbysomeresearchersinthedesign,modelingandtestingoftheGSHPsystems[7e18].HealyandUgursal[8]haveinvestigated
K.Bakirci,D.Colak/Energy44(2012)996e1004997
theeffectofvarioussystemparametersontheGSHPperformanceusingacomputermodel.TheyhavealsocarriedoutacomparativeeconomicevaluationtoassessthefeasibilityofusingaGSHPinplaceofconventionalheating/coolingsystemsandanairsourceheatpump.Floridesetal.[9]carriedoutastudyonthegeothermalcharacteristicsofthegroundandthepotentialofusinggroundcoupledheatpumpsinCyprus.Yuetal.[11]designedaconstanttemperatureandhumiditysystemdrivenbyagroundcoupledheatpumpandconstructedinanarchivesbuildingofShanghai.TheexperimentalresultsunderweatherconditioninShanghaiwereanalyzedand,theinvestigationoftheexperimentinayearwaspresented.Pulatetal.[15]haveinvestigatedtheperformanceofthehorizontalclosed-loopwater-to-airgroundsourceheatpumpsystemincludingtheeffectofvariousparameterssuchasleavingtemperatureofgroundheatexchangerunitandoutdoortemper-atureforwinterclimaticconditionofBursa,Turkey.Blumetal.[16]determinedandassessedtheeconomicandtechnicalfactorsthatin uencethedesignandperformanceoftheGSHPsystemsinprivatehouseholds.
Xietal.[19]presentedexperimentalstudiesonasolar-assistedgroundcoupledheatpumpsystemforspaceheating.Fouropera-tionmodesofthesystemwereinvestigatedthroughoutthecoldestperiodinwinter.Theheatpumpperformance,theboreholetemperaturedistributionsandthesolarcolletingcharacteristicsofthesystemwereanalyzed.Jeonetal.[20]analyzedtheperformanceofahybridcoolingsystemthatcombinesascrewwaterchillerwithagroundsourceheatpumpatvariouscoolingloads.
TheSHCHEisusedtosuperheatandsub-cooltherefrigerantinoutletofthecondenserandevaporatorofthevaporcompressionheatpumpsystem,respectively.Thesuperheatingandsub-coolingproceduresareappliedforimprovingthesystemef ciency.Intheliterature,availablestudiesonsub-coolingandsuperheatingeffectsofvaporcompressionrefrigerationcyclesareverylimited.Selbasetal.[21]obtainedoptimumheatexchangerareasandoptimumsub-coolingandsuperheatingtemperaturesundervariousoper-atingconditionsofvaporcompressionrefrigerationsystem.Theapplicationwasconsistedofdeterminingtheoptimumheatexchangerareaswiththecorrespondingoptimumsub-coolingandsuperheatingtemperatures.
Variousstudieshavebeencarriedoutbyresearchersinorderto
analyzetheperformanceoftheGSHPsystemsaroundtheworld.Theyperformedtheoreticalandexperimentalstudiesonthegroundsourceheatpumpsystemswithagroundheatexchangerandconcludedthatusingheatpumpsystemsarefeasible.
ThisstudyincludestheperformanceevaluationofthegroundsourceheatpumpsystemwithandwithoutSHCHEfortheclimaticconditionofErzurumhavingcoldclimateinTurkey.Anexperimentalset-up,describedinthenextsection,isconstructedandtestedonthebasisofauniversitystudy.Thecoef cientofperformanceoftheheatpumpandtheoverallsystemiscomputedfromthemeasurementsand,theenergyconsumptionofthegroundsourceheatpumpsysteminheatingseasoniscalculated.
2.Experimentalprocedureandmeasurement
ThegroundsourceheatpumpsystempresentedhereisatErzurum,Turkey,latitude:39.55 N;longitude:41.16 E;placedontheEastAnatolianRegionofTurkey.Table1givestheclimaticdataforErzurum.AschematicoverviewofthesystemisillustratedinFig.1.
Thecompressor(4)usedfortheheatpumpsystemisahermeticscrolltype,whichisdrivenbya2610Wattelectricalmotor.Theheatpumphasanevaporator(12)andcondenser(5);bothofwhicharewatercooledplatetypeheatexchanger.Theseequipmentshavebeeninsulatedentirelywith25mmthickrubberfoamagainstheatloss.
AsshowninFig.1,thesystemconsistsofaverticalgroundheatexchanger(3)locatedtothedepthof2Â53m,aheatpumpwithwater-to-refrigerantheatexchanger,watercirculatingpumps(1)andotherconventionalequipments.Inthesystem,theheattransfer uid(antifreeze-watermixtureof50%)whichcomesfromtheundergroundgoestothewater-sourceevaporatoroftheheatpumpwhereitreleasessomeenergy,andthen,itissenttothegroundheatexchangersbyawatercirculatingpump.However,duringtheday,theheattransferring uidthatcomesfromtheevaporatoroftheheatpumpissenttotheground.Refrigerant134awasusedasworking uid.Theverticalgroundheatexchanger(GHE)unitisasingleU-tubeplacedintwoverticalboreholesatthedepthof53m.ThepipesconnectingtheGHEtotheevaporatorwereinsulatedandburiedatthedepthof2mtominimizetheheatloss.
Inthepresentstudy,thetemperatures, owrates,pressuredrops,voltagesandcurrentsweremeasuredbyappropriateinstrumentsgiveninTable2.Thetestswereconductedon
the
Table1
ClimaticconditionofErzurumforlong-termaveragevalues.Climaticvalues
MonthsinheatingseasonNov.
Dec.Jan.Feb.Mar.Apr.AverageoutdoorÀ0.5À7.2À10.8À10.1À3.75.2temperature( C)MinimumoutdoorÀ6.8À12.6À16.9À16.7À9.8À0.9temperature( C)Maximumoutdoor6.9À1.6À4.4À3.12.611.8temperature( C)Averagerelative82.081.377.573.175.056.7humidity(%)Averagewind2.22.22.32.42.83.3velocity(m/s)Averagesunshine4.32.33.03.84.45.9duration(h)Averagesolar
8.8
7.0
8.9
12.6
16.0
17.0
radiation(MJ/m2.day)
998K.Bakirci,D.Colak/Energy44(2012)996e1004
7.Receiver8.Dryer
9. Sight glass 10. Solenoid valve 11. Expansion valve
18.Electroniccounter19.Controlpanel
20. NTC temperature indicator 21. Data acquisition card22. Computer and monitor
a
bc
Fig.1.a)Aschematicrepresentationofthesystem(withoutSHCHE)b)AschematicrepresentationoftheheatpumpwithSHCHEandc)Outsideviewsoftheheatpump.
groundsourceheatpumpsystemintheheatingperiodof2010.Themeasurementsweretakenfrom8.00a.m.to18.00p.m.withanintervalof30min.Thetemperaturesmeasuredbythethermo-couplesweremonitoredinacomputerandrecordedbyadata-acquisitioncardineachsecond,whichwaslaterusedforanalysis.
Theelectroniccounter(digitalpowermeter)wasusedtomeasurethepowerconsumptionofthecompressorand,thepowerconsumptionsofthepumpsweremeasuredbyawatt-meter.Allthemeasuringprocessesofthetemperaturesweremonitoredandcontrolledbyapersonalcomputer-baseddata-acquisitionsystem.
2.1.Uncertaintyanalysis
Experimentalerrorsanduncertaintiescanresultfrominstru-mentselection,instrumentcondition,instrumentcalibration,environment,observationandreadingandtestplanning.Theuncertaintyanalysisisneededtoprovetheaccuracyoftheexper-iments[22].AnuncertaintyanalysiswasperformedusingamethoddescribedbyHolman[23].
ThetotaluncertaintiesofthemeasurementsareestimatedtobeÆ1.01%forthewaterandtheantifreeze-watersolutiontempera-tures,Æ2.05%forpressures,Æ1.00%forpowerinputstothe
K.Bakirci,D.Colak/Energy44(2012)996e1004
999
Table2
Instrumentsusedinthesystemformeasurements.InstrumentMeasurement
Rotameter
Themass owratesoftheantifreeze-watersolution(approximately50%)
Copper-constantanThetemperatureoftheantifreeze-waterthermocouples
solutionenteringandleavingthegroundheatexchanger,theinletwater
temperaturetoandexitwatertemperaturefromheatingunit
Bourdon-typemanometersThepressuresofthecondenserandevaporator
MeteorologicalstationTheoutdoorairtemperaturesandhumidityWattmeterTheelectricalpowerinputtothecirculatingpump
Electroniccounter
Instantaneouspowerconsumptionsofthecompressor
NTC(negative
Thegroundtemperatureatthedepthof53m
temperaturecoef cient)sensor
compressorandÆ3.00%forthecirculatingpumps.TheuncertaintyinreadingvaluesofthetableisassumedtobeÆ0.20%.Thetotaluncertaintiesassociatedwithmass owrateofthewaterandantifreeze-watersolutionareestimatedtobeÆ7.15%.ThetotaluncertaintiesassociatedwithenergyreceivedfromtheðQ_conÞandwithheatextractedfromthegroundðQ_condenser
groÞareÆ7.23%.
ThetotaluncertaintiesassociatedwiththeCOPandCOPSareÆ7.30andÆ7.28%,respectively.
3.Climatepropertiesandenvironment3.1.Weatherdata
Theexperimentalgroundsourceheatpumpsystemwasestab-lishedandtestedinErzurumprovincehavinganaltitudeof1869mandthecoldestclimateinTurkey.TheclimaticconditionsofErzurumforlong-termaveragevalues(monthlyaverageminimum,maximumandmeanoutdoortemperature,themonthlyaveragesofrelativehumidity,windvelocity,solarradiationandsunshinedurationsfortheheatingseason)aregiveninTable1.TheannualheatingandcoolingdegreedaysforErzurumwithabasetemper-atureof18 Carefoundtobe4870[24].
ThehoursofthesmallesttemperaturebinofÀ19.5 C(À21 C/À18 C)observedforErzurumintheEastAnatoliaRegionofTurkeyare17inJanuaryandFebruary.Also,thehoursofthetemperaturebinfromÀ21 Cto18 CforErzurumare7498intheaverageof1995e2005.Thisprocedurecanaccountforthepart-loadperfor-manceofheating,ventilatingandair-conditioningequipmentaswellasforthevaryingperformanceofheatpumpsystemsandprimaryHVACequipment[25].
3.2.Soilcharacteristics
Erzurumisanintermountainsedimentarybasinwith
aMiocene-Quaternaryvolcanicbasement,andesiticebasalticlava owsand ssureeruptionslava.ThegroundstructureinthecitycentreofErzurumispredominantlyalluvialstructureuntilthethicknessof1kmfromsurface.Also,thegroundstructureofthecitycentreisgravel,sandandalittleclay.ThelocalityofPalandoken(inthesouthoftheCentre)isthevolcanicrockpiecesconsistingofbasalt.ThelocalityofSanayi(inthewestoftheCentre)issand,thingravelandalittleclaysometimesand,thelocalityofDadaskent(intheeastoftheCentre)isthinsandandclay[18].
3.3.Environment
Ingeneral,CO2emissionsarehighasfossilfuelsareusedinourcountry.Theheatpumpsconsumelessprimaryenergythanconventionalheatingsystemsand,theyareanimportanttech-nologyforreducingemissionsofgasesthatharmtheenviron-ment[5].Theheatpumpsystemsarethemostef cientformofelectricheating,providingtwotothreetimesmoreheatingthantheequivalentamountofenergytheyconsumeinelectricity.Signi cantemissionreductionsareavailablethroughtheapplicationoftheheatpumpsystem(HPS)inbothresidentialandcommercialbuildings[26].Residentialfossilfuelheatingsystemsproducedanywherefrom1.2to36timestheequivalentCO2emissionsoftheHPS.TheCO2emissionreductionsfrom15%to77%wereachievedthroughtheuseoftheHPS[27].Itisknownthattheheatpumpssigni cantlyreducetheCO2emis-sionseverydaywhilsttheyprovidecentralanddomestichotwaterheating[28].Theheatpumpsofferthemostenergy-ef cientwaytoprovideheatingandcoolinginmanyapplica-tions,astheycanuserenewableheatsourcesinoursurround-ings[29].
4.Energyanalysis
Themeasuredvaluessuchasthetemperaturechangesofthewaterandtheantifreeze-watersolution,the owratesandtheelectricalpowerinputwereusedtodeterminetheperformancethesystem.TheusefulheatobtainedfromthecondenserQ_of
conis
calculatedas,
Q_con¼m
_wcwðTcwoÀTcwiÞ(1)
Theextractedheatfromthegroundisgivenbythefollowingequation;
Q_gro¼m
_awcawðTeaiÀTeaoÞ(2)
wherem
_wandm_awarethe owrateofthewaterinthecondenserandtheantifreeze-watersolutionintheevaporator,respectively.TheCOP(theheatpump)iscalculatedas;
COP¼
Q_W
con(3)
comTheCOPS(theoverallsystem)iscalculatedas;
COPS¼
Q_W
con
comþW(4)
pThepowerinputtoacirculatingpumpW
_piscomputedfromthefollowingequation;
W
_Vp¼IppcosðfÞ(5)
whereIpisthecurrentofthepump,Vpisthevoltageofthepumpandcos(f)isthepowerfactor.
1000
Table3
Technicaldetailsoftheexperimentalset-up.
Location:Erzurum,Turkey(lat.39.55 N;long.41.16 E)Weatherinformation(yearlyaveragevalues)Averageoutdoortemperature( C)Minimumoutdoortemperature( C)Maximumoutdoortemperature( C)Averagerelativehumidity,(%)Averagesunshineduration(h)
Averagesolarradiation(MJ/m2.day)Averagewindvelocity(m/s)
GroundheatexchangerinformationType
Diameter(mm)Deep(m)
HeatpumpinformationCapacity(kW)CompressortypeEvaporatortypeCondensertype
Compressorpowerinput(kW)Capacityofcooling(kW)
Maximumdischargepressure(bar)Compressordisplacement(m3/h)Refrigeranttype
K.Bakirci,D.Colak/Energy44(2012)996e1004
4.7À2.812.264.66.415.62.7Vertical32
2Â53
7
HermeticscrollPlatePlate
2.61(3.5HP)5.7299.4R-134a
5.Resultsanddiscussions
Inthisstudy,theperformanceofthegroundsourceheatpumpsystemwithverticalgroundheatexchangerwas
experimentallyanalyzedinErzurum,Turkey.Theexperimentalresultswereobtainedintheheatingseasonof2010.JanuaryandFebruaryarethecoolestmonthsoftheheatingseasonintheregion.Therefore,theexperimentaldataweregivenonlyforthesemonths.
Thetechnicaldetailsoftheexperimentalset-uparegiveninTable3.Fig.2showsthevariationsintheinlet-outlettempera-turesoftheheattransfer uidstotheevaporatorandthecondenserwithtimeofdayforthesystemswithandwithoutSHCHE.AsseeninFig.2,whilethetemperatureofthecondenseroutlet(Tcwo)forJanuaryvariesinthebandof49.6e61.0 C,itvariesinthebandof47.9e51.4 CforFebruaryduringtheexper-imentscarriedoutwithSHCHE.ThesametemperatureforJanuaryandFebruaryvariesinthebandof47.7e53.0 Cand47.2e50.2 C,respectively,duringtheexperimentscarriedoutwithoutSHCHE.Fig.2showsalsothehourlyvariationsoftheinlettemperaturesoftheevaporator.Theinlettemperaturesoftheevaporatorhavethemaximumvalueinlocaltimeof08:00foralltheexperimentalconditions.
Fig.3showsthevariationsinthecondenserpower,theGHE(evaporator)powerandthecompressorpowerwiththetimeofdayforthesystemswithandwithoutSHCHE.Fig.4showsthedailyvariationsofthegroundtemperatureatthedepthof53mforthesystemswithandwithoutSHCHE.AsseeninFig.4,theaveragegroundtemperaturesforthesystemswithandwithoutSHCHEare6.6and6.5 CforJanuary,respectively.ThesetemperaturesforthesystemswithandwithoutSHCHEare5.7and5.8 CforFebruary,respectively.
a
Temperature (°C)
20151050-5-1008:00
2015
Temperature (°C)
16:00
18:00
1050-5
10:0012:0014:00
b
Time of day
7060
-1008:00
7060Temperature (°C)
5040302008:00
10:0012:0014:0016:0018:00
Time of day
Temperature (°C)
5040302008:00
10:0012:0014:0016:0018:00
Time of day
10:0012:0014:0016:0018:00
Time of day
With (Jan. 20) and without (Jan. 23) SHCHE With (Feb. 05) and without (Feb. 03) SHCHE
Fig.2.Variationsininlet-outlettemperatureswithtimeofdayforthesystemswithandwithoutSHCHE,fora)Evaporatorandb)Condenser.
K.Bakirci,D.Colak/Energy44(2012)996e10041001
a
Condenser power (kW)
8
8
Condenser power (kW)
66
44
2
2
008:00
10:0012:0014:0016:0018:00
008:00
10:0012:0014:0016:0018:00
b
GHE (evaporator) power (kW)
Time of day
8
Time of day
8GHE (evaporator) power (kW)
66
44
22
008:00
10:0012:0014:0016:0018:00
008:00
10:0012:0014:0016:0018:00
Time of day
Time of day
c
Compressor power (kW)
88Compressor power (kW)
66
44
22
008:00
10:0012:0014:0016:0018:00
008:00
10:0012:0014:0016:0018:00
Time of dayTime of day
With (Jan. 20) and without (Jan. 23) SHCHE With (Feb. 05) and without (Feb. 03) SHCHE
Fig.3.DailypowervaluesofthesystemswithandwithoutSHCHE,for(a)Condenserpower,(b)GHE(evaporator)powerand(c)Compressorpower.
14
14Ground temperature (°C)
12Ground temperature (°C)
108642008:00
12108642008:00
10:0012:0014:0016:0018:00
10:00
Time of day
12:0014:00Time of day
16:0018:00
With (Jan. 20) and without (Jan. 23) SHCHEWith (Feb. 05) and without (Feb. 03) SHCHE
Fig.4.Dailyvariationsofthegroundtemperatureatthedepthof53mforthesystemswithandwithoutSHCHE.
1002K.Bakirci,D.Colak/Energy44(2012)996e1004
a
654COP
321008:00
654COP
321008:00
10:00
12:0014:00Time of day
16:0018:0010:00
12:0014:00Time of day
16:0018:00
b
654COPS
COPS
6
54321008:00
321008:00
10:00
12:0014:00Time of day
16:0018:0010:00
12:0014:00Time of day
16:0018:00
With (Jan. 20) and without (Jan. 23) SHCHE With (Feb. 05) and without (Feb. 03) SHCHE
Fig.5.Performancecoef cientsversustimeofdayforthesystemswithandwithoutSHCHE,fora)Heatpumpandb)Overallsystem.
Fig.5showsthevaluesoftheperformancecoef cientoftheheatpump(COP)andoverallsystem(COPS)versustimeofdayforthesystemswithandwithoutSHCHE.AsshowninFig.5,thevaluesoftheCOPforthesystemswithandwithoutSHCHEvaryfrom2.1to2.7andfrom2.4to2.6inJanuary,whiletheychangefrom2.6to3.3andfrom2.7to3.3inFebruary,respectively.Additionally,thevaluesoftheCOPSforthesystemswithandwithoutSHCHEvaryfrom1.9to2.5andfrom2.1to2.3inJanuary,whiletheychangefrom2.4to3.1andfrom2.5to3.1inFebruary,respectively.TheaveragevaluesoftheCOPforthesystemswithandwithoutSHCHEarecalculatedtobe2.31and2.47inJanuary,whiletheyarecalculatedtobe2.73and2.81inFebruary,respectively.TheaveragevaluesoftheCOPSforthesystemswithandwithoutSHCHEarealsocalculatedtobe2.07and2.19inJanuary,whiletheyarecalculatedtobe2.55and2.62inFebruary,respectively.Thevariationsintheinlet-outlettemperaturedifferences(TeaiÀTeao)oftheantifreeze-watersolutiontotheGHEunitwithtimeofdayforthesystemswithandwithoutSHCHEaregiveninFig.6.
ThedailyaveragevaluesofthemeasureddataandcalculatedresultsaregiveninTable4.Thesevaluesconsistoftheaveragevaluesofthemeasurementsof21recordedfrom8.00a.m.to18.00p.m.withanintervalof30min.AsseeninTable4,thecondensationpressuresinaverageareabout15barand,thisvalueisveryreasonablebecausethemaximumdischargepressurelimitofthecompressoris29bar.
8
8
6Teai-Teao (°C)
6Teai-Teao (°C)
44
2
2
008:00
10:00
12:0014:00Time of day
16:0018:00
008:00
10:0012:0014:0016:0018:00
Time of day
With(Jan. 20)andwithout (Jan. 23)SHCHEWith(Feb. 05)andwithout(Feb. 03)SHCHE
Fig.6.Variationsininlet-outlettemperaturedifferences(TeaiÀTeao)oftheantifreeze-watersolutiontotheGHEunitwithtimeofdayforthesystemswithandwithoutSHCHE.
K.Bakirci,D.Colak/Energy44(2012)996e1004
1003
Table4
MeasuredandcalculatedparametersinaverageforthesystemwithoutSHCHE(January23,2010andFebruary03,2010).Item
Jan.23,Feb.03,Unit
Total
2010
2010
uncertainty(%)MeasuredparametersEvaporationpressure2.642.59BarÆ2.05Condensationpressure14.7714.69BarÆ2.05Temperatureofrefrigerant2.351.52 C
Æ1.01atthecompressorinletTemperatureofrefrigerant81.2781.31
CÆ1.01atthecondenserinletTemperatureofrefrigerant48.4347.73
CÆ1.01atthecondenseroutletTemperatureofrefrigerantÀ7.83À8.24
C
Æ1.01attheevaporatorinletCondensingtemperature54.6054.38
CÆ1.01EvaporatingtemperatureÀ2.95À3.46
CÆ1.01Flowrateofantifreeze-water0.2880.333kgsÀ1
Æ7.15solutionintheevaporatorFlowrateofwaterinthe0.267
0.324
kgsÀ1
Æ7.15
heatingunitorthecondenser
Indoorairtemperature
11.749.73
CÆ1.01Currentofcirculatingpump0.600.60AÆ1.00attheGHE
Currentofcirculatingpump0.690.69AÆ1.00attheheatingunitTwo-phasevoltage220.0220.0VÆ1.00Temperatureof
1.74
1.11
C
Æ1.01
antifreeze-watersolutionattheevaporatorinletTemperatureof
À2.30À2.65
CÆ1.01
antifreeze-watersolutionattheevaporatoroutletSupplywatertemperature49.5648.41
CÆ1.01oftheheatingunit
Returnwatertemperature45.1144.68
C
Æ1.01oftheheatingunit
Powerinputtothecompressor2.001.85kWÆ1.00Calculatedparameters
Powerinputtothecirculating0.1190.119kWÆ3.00pumpattheGHE
Powerinputtothecirculating0.1370.137kWÆ3.00pumpattheheatingunitHeatingloadofthecondenser4.9555.207kWÆ7.23Coolingloadoftheevaporator3.6023.907kWÆ7.23HeatingCOP(theheatpump)
2.4702.809eÆ7.30HeatingCOPS(theoverallsystem)
2.190
2.621
e
Æ7.28
6.Conclusions
Theperformanceofaverticalgroundsourceheatpumpsystemwasinvestigatedexperimentally.Inthestudy,theexperimentalresultsweregivenforthemonthsofJanuaryandFebruaryintheheatingseasonof2010.TheexperimentalresultsindicatethattheaveragevaluesoftheCOPandtheCOPSareapproximately2.31and2.07withSHCHEand2.47and2.19withoutSHCHEinJanuary,whiletheyareapproximately2.73and2.55withSHCHEand2.81and2.62withoutSHCHEinFebruary,respectively.Additionally,theresultsshowthatthesystemswithandwithoutSHCHEarenotverydifferentintermsofthecoef cientofperformancebutthesystemwithSHCHEcanbepreferredforhighercondenseroutlettemperature.
Theheatpumpsystemsareenvironmentallyfriendly.Theinitialcostsoftheheatpumpsystemsarehigher,buttheyhavelowoperating,maintenance,andlifecyclecostsandalongerlifeexpectancythanmostconventionalsystems.Also,theheatpumpsystemsprovideheating,coolingandhotwaterinmanyapplications.Thegroundsourceheatpumpsystemspresent
tremendousenvironmentalbene tswhencomparedtotheconventionalsystems.Therefore,thesesystemscanbeusedtominimizeenvironmentalimpactsandairemission.
Acknowledgment
TheauthorsthanktheAtatürkUniversityResearchFund(ProjectNo:2005/25)andTheScienti candTechnologicalResearchCouncilofTurkey(TUBITAK,ProjectNo:106M068)duetotheir nancialsupportforthisresearch.
References
[1]KaragozS,BakirciK.SustainableenergydevelopmentinTurkey.Energy
Sources(PartB)2010;5(1):63e73.
[2]BilenK,OzyurtO,BakirciK,KarsliS,ErdoganS,YilmazM,etal.Energy
production,consumption,andenvironmentalpollutionforsustainabledevelopment:acasestudyinTurkey.RenewableandSustainableEnergyReviews2008;12(6):1529e61.
[3]KaygusuzK.RenewableandsustainableenergyuseinTurkey:areview.
RenewandSustainableEnergyReviews2002;6(4):339e66.
[4]DincerI.Renewableenergyandsustainabledevelopment:acrucialreview.
RenewandSustainableEnergyReviews2000;4(2):157e75.
[5]WoodCJ,LiuH,RiffatSB.Aninvestigationoftheheatpumpperformanceand
groundtemperatureofapiledfoundationheatexchangersystemforaresi-dentialbuilding.Energy2010;35(12):4932e40.
[6]OmerAM.Ground-sourceheatpumpssystemsandapplications.Renewable
andSustainableEnergyReviews2008;12:344e71.
[7]LienauPJ.Geothermalheatpumpperformanceandutilityprogramsinthe
UnitedStates.EnergySources1997;19:1e8.
[8]HealyPF,UgursalVI.Performanceandeconomicfeasibilityofground-coupled
heatpumpsincoldclimate.InternationalJournalofEnergyResearch1997;21:857e70.
[9]FloridesGA,PouloupatisPD,KalogirouS,MessaritisV,PanayidesI,
ZomeniZ,etal.ThegeothermalcharacteristicsofthegroundandthepotentialofusinggroundcoupledheatpumpsinCyprus.Energy2011;36(8):5027e36.
[10]InalliM,EsenH.Experimentalthermalperformanceevaluationofahorizontal
ground-sourceheatpumpsystem.AppliedThermalEngineering2004;24(14e15):2219e32.
[11]YuX,WangRZ,ZhaiXQ.Yearroundexperimentalstudyonaconstant
temperatureandhumidityair-conditioningsystemdrivenbygroundsourceheatpump.Energy2011;36(2):1309e18.
[12]PetitPJ,MeyerJP.Economicpotentialofverticalground-sourceheatpumps
comparedtoair-sourceairconditionersinSouthAfrica.Energy1998;23:137e43.
[13]Hepbasl A.Performanceevaluationofaverticalground-sourceheatpump
systeminIzmir,Turkey.InternationalJournalofEnergyResearch2002;26:1121e39.
[14]LiX,ChenZ,ZhaoJ.Simulationandexperimentonthethermalperformance
ofU-verticalgroundcoupledheatexchanger.AppliedThermalEngineering2006;26:1564e71.
[15]PulatE,CoskunS,UnluK,YamankaradenizNA.Experimentalstudyofhori-zontalgroundsourceheatpumpperformanceformildclimateinTurkey.Energy2009;34(9):1284e95.
[16]BlumP,CampilloG,KolbelT.Techno-economicandspatialanalysisof
verticalgroundsourceheatpumpsystemsinGermany.Energy2011;36(5):3002e11.
[17]FanR,JiangY,YaoY,MaZ.Theoreticalstudyontheperformanceofan
integratedground-sourceheatpumpsysteminawholeyear.Energy2008;33(11):1671e9.
[18]BakirciK.Evaluationoftheperformanceofaground-sourceheat-pump
systemwithseries(GHE)groundheatexchangerinthecoldclimateregion.Energy2010;35(7):3088e96.
[19]XiC,HongxingY,LinL,JinggangW,WeiL.Experimentalstudiesonaground
coupledheatpumpwithsolarthermalcollectorsforspaceheating.Energy2011;36(8):5292e300.
[20]JeonJ,LeeS,HongD,KimY.Performanceevaluationandmodelingofahybrid
coolingsystemcombiningascrewwaterchillerwithagroundsourceheatpumpinabuilding.Energy2010;35(5):2006e12.
[21]SelbasR,K z lkanO,SencanA.Thermoeconomicoptimizationofsubcooled
andsuperheatedvaporcompressionrefrigerationcycle.Energy2006;31(12):2108e28.
[22]OzgenerO,HepbasliA.Experimentperformanceanalysisofasolarassisted
ground-sourceheatpumpgreenhouseheatingsystem.EnergyandBuildings2005a;37:101e10.
[23]HolmanIP.Experimentalmethodsforengineers.6thed.NewYork:McGraw-Hill;1994.pp.48.
1004K.Bakirci,D.Colak/Energy44(2012)996e1004
[27]EnvironmentalProtectionAgency(EPA).Ashortprimerandenvironmental
guidanceforgeothermalheatpumps.430eKe97e007;1997.
[28]Viesmann.Heatpumps.ProfessionalPublications,www.viessmann.de;2009,
.tr/etc/medialib/internet-tr/prospekte.Par.67273.File.File.tmp/Mesleki_pompasi.pdf;2009.
[29]BakirciK,OzyurtO,ComakliK,ComakliO.Energyanalysisofasolar-ground
sourceheatpumpsystemwithverticalclosed-loopforheatingapplications.Energy2011;36(5):3224e32.
[24]BakirciK,OzyurtO,KaragozS,ErdoganS.Variable-basedegree-dayanalysis
forprovincesoftheEasternAnatoliainTurkey.EnergyExplorationandExploitation2008;26(2):111e32.
[25]OzyurtO,BakirciK,YilmazM,ErdoganS.Binweatherdatafortheprovinces
oftheEasternAnatoliainTurkey.RenewableEnergy2009;34(5):1319e32.[26]BakirciK,YukselB.Experimentalthermalperformanceofasolarsourceheat
pumpsystemforresidentialheatingincoldclimateregion.AppliedThermalEngineering2011;31(8e9):1508e18.
正在阅读:
Effect of a superheating and sub-cooling heat exchanger to the performance08-21
C语言选择题题库203-20
中国家用游戏电脑行业市场调查研究报告(目录) - 图文05-16
中秋晚会中的互动小游戏02-20
八年级下册人教版历史材料分析题 - 图文09-28
中考关联词,易混词语、成语辨析05-06
让运动成为习惯演讲稿05-09
形势与政策 论文 中国与台湾的关系06-14
网恋不靠谱02-18
建设工程竣工档案归档内容及排列顺序12-08
- 1openstack中Heat说明文档
- 2Global Warming and its Effect
- 3英语幽默小故事:Dog in Heat
- 4Performance Management ( A model and research agenda)
- 5Effect of Annealing Temperature of ZnO on the Energy
- 6Boiling_Condensation- Heat and mass transfer)-2
- 7Metabolic Profiling Reveals the Protective Effect of Diammon
- 8FPGA Defragmentation for Sustainable Performance in Reconfigurable Computers
- 9Critical Casimir Effect in superfluid wetting films
- 10BOOK-Post-Transcriptional Regulation of Mammalian Heat Shock
- 2012诗歌鉴赏讲座 师大附中张海波
- 2012-2013学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)
- 市政基础设施工程竣工验收资料
- 小方坯连铸机专用超越离合器(引锭杆存放用)
- 荀子的学术性质之我见
- 氩弧焊管轧纹生产线操作说明
- 小学科学六年级上册教案
- (商务)英语专业大全
- 外汇储备的快速增长对我国经济发展的影响
- 幼儿园中班优秀语言教案《小猴的出租车》
- 第七章 仪表与显示系统
- 身份证号码前6位行政区划与籍贯对应表
- 单位(子单位)工程验收通知书
- 浅谈地铁工程施工的项目成本管理
- 沉积学知识点整理
- 前期物业管理中物业服务企业的法律地位
- 2014微量养分营养试卷
- 地质专业校内实习报告范文(通用版)
- 内部审计视角下我国高校教育经费支出绩效审计研究
- 高次插值龙格现象并作图数值分析实验1
- superheating
- performance
- exchanger
- cooling
- Effect
- heat
- sub
- 精美英语短文
- 晋城市城区初中物理中考一模试卷
- 名片背后的故事
- 凯正杯郑凯莉演讲稿
- 移动电子游戏发展迅速 韩国设游戏开发者学校
- 开放教育学习指南题库(答案)
- 江苏自考《概率论与数理统计》第七章 参数估计
- 学年度上学期小学学校工作计划通用范本
- 校园网安全防护系统的设计与实现
- 运筹学试卷I试题
- 仓储管理第2章_仓库及仓库设施设备
- 2010年4月的英语国家概况自学考试试题和答案
- 便民服务中心志愿者服务内容
- 布里斯托尔修道院绿色公寓(Abbey Green Apartment)
- DK71+022.305~DK71+764.38段涵洞施工组织设计封面
- 分层 阅读
- 印刷厂-清废纸,打包,后道加工计件单价表
- 甘肃省定西市临洮县明德初中2013-2014学年初三学业考试地理试题
- 冠状动脉性心脏病的治疗原则
- 物资处理报告