Effect of Patterned Sapphire Substrate Shape on Light Output
更新时间:2023-04-22 06:17:01 阅读量: 实用文档 文档下载
- effect推荐度:
- 相关推荐
944IEEEPHOTONICSTECHNOLOGYLETTERS,VOL.23,NO.14,JULY15,2011
EffectofPatternedSapphireSubstrateShapeonLight
OutputPowerofGaN-BasedLEDs
Xiao-HuiHuang,Jian-PingLiu,Ya-YingFan,Jun-JieKong,HuiYang,andHuai-BingWang
Abstract—Anopticalsimulationincludingre ectionandrefrac-tionisusedtosimulatethelightilluminationintensityofgalliumnitride(GaN)-basedlight-emittingdiodes(LEDs)onvariedpat-ternedsapphiresubstrates(PSS)withdifferentslantedanglesand llfactors().Itisfoundthatamicropyramidarraywithaslantedanglefrom25to60isabletoeffectivelyimproveilluminationin-tensitywhichreachestosummitastheslantedangleisaround33.Andilluminationintensityenhancesmonotonouslyasincreases.Inadditiontothementionedwork,epitaxialgrowthofGaN-LEDsonPSSisinvestigatedforcomparison.TheoutputpowerofGaN-LEDsonPSSincreaseswithsimulatedlightilluminationintensityincreasing.Theexperimentalresultsprovethesimulation.IndexTerms—GaN,illuminationintensity,light-emittingdiode(LED),patternedsapphiresubstrate(PSS).
hadbeenstudiedandsuccessfullyappliedtothefabricationofhigh-ef ciencyLEDs[9],[10].AndtherewerealotofreportsfocusingonthecomparisonsoftheLEDsEQEbetweenunpat-ternedsapphiresubstrate(un-PSS)andPSS[11],[12].How-ever,illuminationintensityenhancementbyusingPSSisstilllackoftheoreticanalysisandexperimentalproofs.
Inthiswork,periodicpyramidalarrayPSSwithvariousslantedanglesand llfactors()wereusedassubstrates.IlluminationintensityofGaN-basedLEDsonthesePSSwassystematicallysimulated.Epi-GrowthofGaN-basedLEDsonthesePSSwascarriedoutbymetal-organicchemicalvapordeposition.Theoutputpowerwastestedtocomparewithsimulatedilluminationintensity.
II.EXPERIMENT
FourtypesofPSSswerepreparedwiththeirdiam-eter/spacing/heightbeing3.75/1.25/1.85,3.0/2.0/1.5,2.4/0.6/1.5and2.0/1.0/1.5mmm,namedsampleA,B,CandD,respectively.Theslantedangles()ofthesesidewallsarecal-culatedfromheightdiameter,whichare44.6,45,51.3and56.3forthefourkindsofsubstrates.And, llfactors(),de nedastheequationof(PSSarea/totalareas),are0.51,0.33,0.58and0.4,respectively.AplanarsapphirewasalsopreparedforcomparisonanditwastitledassampleE.
TheLEDstructurescompriseda25nmnucleationlayeronthePSS,a1.5mundoped-GaNlayer lm,a2.0mn-GaNlayer,an veperiodsInGaN/GaNmultiplequantumwell(MQW)withemissionwavelengthintheblueregion(460nm),a20nmAlGaNelectronblockinglayeranda150nmp-GaNlayer.Trimethylgallium(TMGa)andammoniagas(NH3)wereusedasprecursorsforGaandNsource,respectively.Thedevicemesawithachipsizeof350350mwasthende nedbyinductivelycoupledplasma.Theindiumtinoxide(ITO)layerwasdepositedtoformap-sidecontactlayerandacurrentspreadinglayer.TheCr/AulayerwasdepositedontotheITOlayertoformthep-sideandn-sideelectrodes.
Asimulationincludingre ectionandrefractionisusedtoevaluateilluminationintensityofGaN-basedLEDsonPSS.AndtheopticalandelectricalpropertiesofLEDsweretestedbyLEDchip/waferproberandtester(IPT-6000)withaninte-gratespherefromFitTechCo.,Ltd.
III.RESULTSANDDISCUSSION
TheuseofPSSforLEDsgrowthisbelievedtobeverypromisingasitimprovestheinternalquantumef ciency(IQE)byreducingthreadingdislocations(TDs)densityandenhancesLEEbyenhancinglightescapeprobability[13].Itisaverycrit-icalparameterofPSSshapethataffectsilluminationintensityconsiderably.InordertostudyilluminationintensityofPSSindetails,lightpathofthatemittingfromactivelayerispresented
I.INTRODUCTION
ITHemissioninthenearultraviolet(UV),blue,andgreenspectralrange[1],groupIII–nitride-basedsemi-conductorshavebeenusedrecentlyashigh-brightnessLEDsinlarge-areafull-coloroutdoordisplays,signallightsandhighper-formancebacklightingunitsinliquidcrystaldisplays.Thoughcommerciallyavailable,theexternalquantumef ciency(EQE)ofGaN-basedLEDsstillfallsshortofwhatisexpected.WiththedisparaterefractiveindicesofGaN()andair(),theinternallighthasdif cultyinescapingintotheairfromthesemiconductor.Thelightreachingthesurfacewithincidentanglelargerthanthecriticalangle(24.6)willnotemittotheairbutwillexperiencetotalinternalre ectionandcontinuestobere ectedwithintheLEDuntilitgetabsorbed[2],[3].Im-provinglightextractionef ciency(LEE)hasthusbecomethefocusofresearches.Thetechniquesofsurfaceroughening[4],nanoimprinting[5],havebeenusedtoimproveLEEbutnotef-fectively.Currently,GaNbased-LEDsgrownonpatternedsap-phiresubstrates(PSS)havebeenstudiedbymoreandmorere-searchers[6],[7].ThePSS,whichisamask-freeandthere-forecontamination-freemethod,reducesthethreadingdisloca-tiondensityinGaNepilayersaswellasenhancesLEEofLEDsduetoincreasedlightescapeprobability[8].ManytypesofPSS
ManuscriptreceivedJanuary19,2011;revisedMarch23,2011;acceptedApril09,2011.DateofpublicationApril15,2011;dateofcurrentversionJune22,2011.ThisworkwassupportedbytheNationalNatureScienceFoundationofChina(Grant61006084andGrant61076119),andbyTechnicalCorporationInnovationFoundationofSuzhouIndustrialPark(GrantSG0962).
X.-H.HuangiswithSuzhouInstituteofNano-TechandNano-Bionics,CAS,DepartmentofNanoDevice,Suzhou,215125,China,andalsowiththeGraduateUniversityofChineseAcademyofSciences,Beijing,100049,China.
J.-P.Liu,Y.-Y.Fan,J.-J.Kong,H.Yang,andH.-B.WangarewithSuzhouInstituteofNano-TechandNano-Bionics,CAS,DepartmentofNanoDevice,Suzhou,215125,China(e-mail:hbwang2006@).
Colorversionsofoneormoreofthe guresinthisletterareavailableonlineat.
DigitalObjectIdenti er10.1109/LPT.2011.2142397
W
1041-1135/$26.00©2011IEEE
HUANGetal.:EFFECTOFPATTERNEDSAPPHIRESUBSTRATESHAPEONLIGHTOUTPUTPOWEROFGaN-BASEDLEDs
945
Fig.1.SchemeoflightpathwithintheLEDs.
inFig.1.Forsimplicity,wedonotconsidertheeffectsoftheelectricpadaswellascurrentspreadinglayer.ThepatternedarrayofPSSisintroducedasre ectorofaGaN-basedLEDtoenhanceLEEbylightre ection.Re ectionandrefractiononPSSarrayaredeterminedbyFresnelequations.ItisbelievedthatscatteringlossesandmaterialabsorptionareequalforallPSS,andthereforeareneglectedinthesimulation.AndrefractiveindicesforGaN(nGaN,MQWandpGaN),sapphire,ITOandairare2.4,1.78,2.14and1inthiswork.
There ectioncoef cientcanbecalculatedfromtheequationasbelow,
(1)
Where
isincidenceangleand
isrefractionangle:
(2)
Thetotalilluminationintensitycomprisesfourparts(,,,)asshowninFig.1.isthepartwithinthecriticalangle()withoutanyre ectionasdepictedin(3):
(3)
Whereisinitialilluminationintensityoflightemittingfromactivelayerandisincidenceangle,respectively.TheincidenceangleoftherayisdenotedasescapeanglewhentherayescapesfrompGaNtoair.Sincecriticalangle()is24.6,iscalculatedtobefrom(3).isnotaffectedbyPSSshapeever.Beside,andarethepartthatre ectedfromtheslantedareaandisthepartthatre ectedfromplanararea,whicharedescribedin(4):
(4)
Therayisre ectedbypatternedarrayforonetimebeforeitescapestotheairwhenislargerthanslantedangle(),thepartofwhichisdenotedas.However,whenislessthan,therayis rstre ectedtoplanarareaortheslantedareaaroundforsecondre ectionbeforeitescapestotheair.Thepartwhichisre ectedfortowtimesisdenotedas.Multiplyingwithre ectioncoef cient,andcanbewrittenin
(5):
(5)
Fig.2.Simulatedilluminationintensityversusslantedanglewithis033,0.4,0.51,and0.58,respectively,andtheSEMimagesforsampleA,B,C,andD.
Where,andarere ectioncoef cientasthein-cidenceangleis,and,respectively.,andcanbededucedfromlightpathinFig.1as,and,respectively.ItiscalculatedthatincidenceangleshouldbelargerthanfortoescapefrompGaNtoair.Andtheescapeangleforis.Thesimulatedvalueofisontheorderofmagnitudeof,whichisneglectedinthiswork.Therefore,illuminationinten-sityismainlydeterminedbythesumof,and.
Thesimulatedrelativeilluminationintensityisplottedasafunctionofasis0.33,0.4,0.51and0.58inFig.2.Andscanningelectronmicroscope(SEM)imagesofsampleA,B,CandDareinsertedinFig.2,theofwhichis44.6,45,51.3and56.3respectively.Itisseenthatilluminationin-tensityincreaseastheslantedangleincreasefrom25untilto33.Thenilluminationintensitydecreasesasslantedanglein-creases.Andilluminationintensitycomestobeaninvariablewhichisequaltothatonplanarsapphirewhenslantedangleislargerthan60.LightextractionanalysiswithMonteCarloraytracingpresentedbeforealsoconcludedasimilarresult[14].ThesimulatedilluminationintensityforsampleA,B,CandDinourworkcanbefoundonthecorrespondingcurves.Illumi-nationintensityenhancementcanbeattributedtothere ectionofPSSarray,resultinginawiderrangeofcriticalangleforin-ternalre ection.TheescapeprobabilityinLEDsgrownonPSSissigni cantlyhigherthanthatobtainedfroma atsurface.Be-causeofthelimitsofcriticalangle,increasesastheslantedangledecreasesuntilto33,anddecreasesastheslantedangledecreasefrom33.Alsoincreasesastheslantedangledecreases.However,fewofcanescapetheinterfacewhenslantedangleislessthan33.Inanotherword,thereisawidestrangeofescapeangleastheslantedangleisaround33,whichresultsinthehighestilluminationintensity.Thisincreaseofil-luminationintensityarisesfromthereducedamountoftotalin-ternalre ectionofphotonsattheinterface.
ThemotivationofPSSLEDsistoutilizeslantedplanestoscatterthelightandreduceinternalre ection,andthereforetoimprovelightextraction.Webelieveslantedangleisthedomi-natefactor.However,lightextractioncanbeenhancedasin-creasesfortheLEDsgrownonPSSwiththesameasslantedangle.Fig.3showsthatilluminationintensityincreasesmonot-onouslyasincreases.There ectedfractionoflightemittingfromactivelayerincreaseswiththeincreasingofPSSarea.Itis
946Fig.3.Simulatedilluminationintensity
versuswith
is44.6,45,51.3,
and56.3,respectively.
Fig.4.PlotofoutputpowerofLEDsgrownonsampleA,B,C,D,andEatinjectioncurrentof20mAasthefunctionofsimulatedilluminationintensity.
concludedthatilluminationintensityofaLEDgrownonPSSisdeterminedbyandslantedangleofPSSsimultaneously.Inordertoprovethesimulationresultsexperimentally,LEDsonsampleA,B,C,DandEhavebeenproducedandrenamedasLED-A,-B,-C,-Dand-E.Theopticalandelectricalpropertiesofthesebarechipsweretestedwithasampleratioof50:1.Theforwardvoltagesforthe vechipsare3.05V,3.02V,3.10V,3.15Vand3.0V,respectively.Andtheleakagecurrents(V)for vesamplesareallbelow0.05A.Theoutputpowerof vesamplesisplottedasafunctionofsimulatedrelativeintensityasshowninFig.4.TheoutputpoweroftheLEDsgrownon vesamplesincreaseslinearlyassimulatedilluminationintensityincreases.Theoutputpowerimprovementpercentageof26%fortheLEDgrownonPSSwithslantedangle44.6incom-parisonwiththatgrownonPSSwithslantedangleof56.3isingoodcorrelationwithsimulationresultof29%.TheoutputpoweroftheLEDsprovesthesimulatedresultsexperimentally.Also,itisbelievedthatscatteringlossesandmaterialabsorptionareimportantparameterswhichdeterioratetheoutputpowerofaLEDevidently.Asweknow,EQEistheproductofLEEandIQE.TheoutputpowerisdeterminednotjustbyLEEbutalsoIQE.TheIQEalsohassomethingtodowithslantedangleandwhichwillbediscussedinnextwork.Since,thedislocationsactasthenonradiativecenterswhichdeterioratetheIQE,itisreasonableforthedifferencebetweensimulatedilluminationin-tensityandtheoutputpower.
IV.CONCLUSION
Insummary,asimulationincludingre ectionandrefractionisusedtoevaluatethelightextractionofGaN-basedLEDson
IEEEPHOTONICSTECHNOLOGYLETTERS,VOL.23,NO.14,JULY15,
2011
PSSwithdifferentslantedanglesand.Micropyramidarraywithaslantedanglefrom25to60isshowntoeffectivelyimproveilluminationintensity,whichreachessummitastheslantedangleisaround33.AlsoLEDsweregrownonvar-iousPSSwithdifferentslantedanglesand.ThetestedoutputpoweroftheseLEDsprovesthesimulationexperimentally.AnditisconcludedthatilluminationoutputpowerofaLEDisde-terminedbyslantedangleandincombination.
REFERENCES
[1]S.Nakamura,N.Senoh,N.Iwasa,andS.I.Nagahama,“High-bright-nessInGaNblue,greenandyellowlight-emitting-diodeswithquantum-wellstructures,”Jpn.J.Appl.Phys.2,Lett.,vol.34,no.7A,pp.L797–L799,1995.
[2]J.K.Sheu,C.J.Pan,G.C.Chi,C.H.Kuo,L.W.Wu,C.H.Chen,S.J.
Chang,andY.K.Su,“White-lightemissionfromInGaN-GaNmulti-quantum-welllight-emittingdiodeswithSiandZncodopedactivewelllayer,”IEEEPhoton.Technol.Lett.,vol.14,no.4,pp.450–452,Apr.2002.
[3]C.Huh,H.S.Kim,S.W.Kim,J.M.Lee,D.J.Kim,I.H.Lee,andS.J.
Park,“InGaN/GaNmultiplequantumwelllight-emittingdiodeswithhighlytransparentPtthin lmcontactonp-GaN,”J.Appl.Phys.,vol.87,no.9,pp.4664–4666,2000.
[4]W.C.PengandY.S.Wu,“EnhancedperformanceofanInGaN-GaN
light-emittingdiodebyrougheningtheundoped-GaNsurfaceandap-plyingamirrorcoatingtothesapphiresubstrate,”Appl.Phys.Lett.,vol.88,no.18,p.18117,2006.
[5]H.Huang,C.H.Lin,C.C.Yu,C.H.Chiu,i,H.C.Kuo,K.M.
Leung,T.C.Lu,S.C.Wang,andB.D.Lee,“Enhancedlightoutputfromanitride-basedpowerchipofgreenlight-emittingdiodeswithnano-roughsurfaceusingnanoimprintlithography,”Nanotechnology,vol.19,no.18,p.185301,2008.
[6]T.Y.Tang,W.Y.Shiao,C.H.Lin,K.C.Shen,J.J.Huang,S.Y.Ting,
T.C.Liu,C.C.Yang,C.L.Yao,J.H.Yeh,T.C.Hsu,W.C.Chen,H.C.Hsu,andL.C.Chen,“CoalescenceovergrowthofGaNnanocolumnsonsapphirewithpatternedmetalorganicvaporphaseepitaxy,”J.Appl.Phys.,vol.105,no.2,p.023501,2009.
[7]K.T.Lee,Y.C.Lee,andJ.Y.Chang,“Lightextractionenhancement
ofgalliumnitrideepilayerswithstripepatterntransferredfrompat-ternedsapphiresubstrate,”J.Electrochem.Soc.,vol.155,no.9,pp.H638–H641,2008.
[8]H.Y.Gao,F.W.Yan,Y.Zhang,J.M.Li,Y.P.Zeng,andG.H.Wang,
“ImprovementoftheperformanceofGaN-basedLEDsgrownonsap-phiresubstratespatternedbywetandICPetching,”SolidStateElec-tron.,vol.52,no.6,pp.962–967,2008.
[9]H.C.Lin,H.H.Liu,G.Y.Lee,J.I.Chyi,C.M.Lu,C.W.Chao,
T.C.Wang,C.J.Chang,andS.W.S.Chi,“EffectsoflensshapeonGaNgrownonmicrolenspatternedsapphiresubstratesbymetallor-ganicchemicalvapordeposition,”J.Electrochem.Soc.,vol.157,no.3,pp.H304–H307,2010.
[10]H.C.Lin,R.S.Lin,J.I.Chyi,andC.M.Lee,“Lightoutputen-hancementofInGaNlight-emittingdiodesgrownonmasklesslyetchedsapphiresubstrates,”IEEEPhoton.Technol.Lett.,vol.20,no.19,pp.1621–1623,Oct.1,2008.
[11]J.C.Song,S.H.Lee,I.H.Lee,K.W.Seol,S.Kannappan,andC.
R.Lee,“CharacteristicscomparisonbetweenGaNepilayersgrownonpatternedandunpatternedsapphiresubstrate(0001),”J.Cryst.Growth,vol.308,no.2,pp.321–324,2007.
[12]H.Lin,S.Liu,X.S.Zhang,B.L.Liu,andX.C.Ren,“Enhancedex-ternalquantumef ciencyoflightemittingdiodesbyfabricatingtwo-dimensionalphotoniccrystalsapphiresubstratewithholographictech-nique,”ActaPhys.Sin.(China),vol.58,no.2,pp.959–963,2009.[13]M.Yamada,T.Mitani,Y.Narukawa,S.Shioji,I.Niki,S.Sonobe,
K.Deguchi,M.Sano,andT.Mukai,“InGaN-basednear-ultravioletandblue-light-emittingdiodeswithhighexternalquantumef ciencyusingapatternedsapphiresubstrateandameshelectrode,”Jpn.J.Appl.Phys.2,Lett.,vol.41,no.12B,pp.L1431–L1433,2002.
[14]T.X.Lee,K.F.Gao,W.T.Chien,andC.C.Sun,“Lightextraction
analysisofGaN-basedlight-emittingdiodeswithsurfacetextureand/orpatternedsubstrate,”Opt.Express,vol.15,no.11,pp.6670–6676,2007.
正在阅读:
Effect of Patterned Sapphire Substrate Shape on Light Output04-22
英语专业学生的听力学习对策03-08
企业领导战略分析,星巴克12-03
建筑工程制图与CAD-简答题10-13
电子商务网站的盈利战略研究03-13
十年高考试题分类解析-物理-专题10-带电粒子在电场中的运动04-20
对办公室主任年度考核评语10-04
2015-2016高职英语试卷A答案06-13
可以改变的结果作文450字06-30
- 1Global Warming and its Effect
- 2Light Guideing导光柱设计指南
- 3Effect of Annealing Temperature of ZnO on the Energy
- 4Genarts Sapphire v9.0.3安装破解教程
- 5Shape analysis through predicate abstraction and model checking
- 6Comment on prescription problem in light-cone gauge
- 7Metabolic Profiling Reveals the Protective Effect of Diammon
- 8Critical Casimir Effect in superfluid wetting films
- 9Poster 1039-Investigation the effect of different methods of
- 10Its big and light 教案及反思
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Patterned
- Substrate
- Sapphire
- Effect
- Output
- Shape
- Light
- 球墨铸铁管退火炉节能措施浅析
- 山东省青岛市文化及文物事业基本情况3年数据分析报告2022版
- 从业人员健康管理和培训管理制度
- 第七章 传出神经系统药物练习题
- MA000001(胶片)GSM原理-GSM移动通信原理-20061229-B-2.0
- 2010年安徽高考地理试卷分析
- 援藏干部先进事迹材料
- 苏教版语文七年级上册文言文与古诗文复习习题(免费下载
- 爬虫户外对UVB的需求
- 一年级100以内加减法练习题(3600道)
- 四川大学网络教育学院2022年秋季招生简章
- 2010沈阳市高中三年级教学质量检测理综
- 长城的英文导游词介绍
- 15《一路花香》ppt课件a
- 基于单片机的波形发生器
- 《中学教育知识与能力》选择题
- PS电子公章制作教程
- 新人教版四年级语文上册期末试卷含参考答案
- 液化天然气技术复习资料
- 浅谈学生良好心理素质的培养