2015江苏省JAVA版本入门

更新时间:2023-05-14 20:21:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2015江苏省JAVA版本入门

1、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。

(1) (3分)给出适用于计数排序的数据表定义;

(2) (7分)使用Pascal或C语言编写实现计数排序的算法;

(3) (4分)对于有n个记录的表,关键码比较次数是多少?

(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?

2、设有一个数组中存放了一个无序的关键序列K1、K2、 、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。

51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

3、设从键盘输入一整数的序列:a1, a2, a3, ,an,试编写算法实现:用栈结构存储输入的整数,当ai≠-1时,将ai进栈;当ai=-1时,输出栈顶整数并出栈。算法应对异常情况(入栈满等)给出相应的信息。

设有一个背包可以放入的物品重量为S,现有n件物品,重量分别为W1,W2,...,Wn。问能否从这n件物品中选择若干件放入背包,使得放入的重量之和正好是S。设布尔函数Knap(S,n)表示背包问题的解,Wi(i=1,2,...,n)均为正整数,并已顺序存储地在数组W中。请在下列算法的下划线处填空,使其正确求解背包问题。

Knap(S,n)

若S=0

则Knap←true

否则若(S<0)或(S>0且n<1)

则Knap←false

否则若Knap(1) , _=true

则print(W[n]);Knap ←true

否则 Knap←Knap(2) _ , _

设有一个顺序栈S,元素s1, s2, s3, s4, s5, s6依次进栈,如果6个元素的出栈顺序为s2, s3, s4, s6, s5, s1,则顺序栈的容量至少应为多少?画出具体进栈、出栈过程。

假定采用带头结点的单链表保存单词,当两个单词有相同的后缀时,则可共享相同的后缀存储空间。例如:

设str1和str2是分别指向两个单词的头结点,请设计一个尽可能的高效算法,找出两个单词共同后缀的起始位置,分析算法时间复杂度。

将n(n>1)个整数存放到一维数组R中。设计一个尽可能高效(时间、空间)的算

法,将R中保存的序列循环左移p(0<p<n)个位置,即将R中的数据(x0, x1, x2, , xn-1),

2015江苏省JAVA版本入门

变换为(xp, xp+1, , xn-1 ,x0 , x1, , xp-1)。

4、我们可用“破圈法”求解带权连通无向图的一棵最小代价生成树。所谓“破圈法”就是“任取一圈,去掉圈上权最大的边”,反复执行这一步骤,直到没有圈为止。请给出用“破圈法”求解给定的带权连通无向图的一棵最小代价生成树的详细算法,并用程序实现你所给出的算法。注:圈就是回路。

5、请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表,表头指针为head。 二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链表指针。分析你的算法的时、空复杂度。

6、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。

void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数

node edge[];

scanf( "%d%d",&e,&n) ; //输入边数和顶点数。

for (i=1;i<=e;i++) //输入e条边:顶点,权值。

scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);

for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。

{edge[0]=edge[i]; j=i-1;

while (edge[j].w<edge[0].w) edge[j+1]=edge[j--];

edge[j+1]=edge[0]; }//for

k=1; eg=e;

while (eg>=n) //破圈,直到边数e=n-1.

{if (connect(k)) //删除第k条边若仍连通。

{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除 k++; //下条边

}//while

}//算法结束。

connect()是测试图是否连通的函数,可用图的遍历实现,

7、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]<x,下步应向i大的方向查找;三是A[i,j]=x,查找成功。否则,若下标已超出范围,则查找失败。

void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

2015江苏省JAVA版本入门

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x<A[i,j])。向下最多是m,向左最多是n。最佳情况是在右上角比较一次成功,最差是在左下角(A[b,c]),比较m+n次,故算法最差时间复杂度是O(m+n)。

本文来源:https://www.bwwdw.com/article/ws3e.html

Top