Surface freezing and a two-step pathway of the isotropic-smectic phase transition in colloi

更新时间:2023-07-22 22:06:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

We study the kinetics of the isotropic-smectic phase transition in a colloidal rod/polymer mixture by visualizing individual smectic layers. First, we show that the bulk isotropic-smectic phase transition is preceded by a surface freezing transition in whi

Surfacefreezingandatwo-steppathwayoftheisotropic-smecticphase

transitionincolloidalrods

ZvonimirDogic

IFF/WeicheMaterie,ForschungszentrumJ¨ulich,J¨ulich,D-52425Germany

(Dated:February2,2008)

Westudythekineticsoftheisotropic-smecticphasetransitioninacolloidalrod/polymermixturebyvisualizingindividualsmecticlayers.First,weshowthatthebulkisotropic-smecticphasetran-sitionisprecededbyasurfacefreezingtransitioninwhichaquasitwo-dimensionalsmecticphasewetstheisotropic-nematicinterface.Next,weidentifyatwostepkineticpathwayfortheformationofabulksmecticphase.Inthe rststepametastableisotropic-nematicinterfaceisformed.Thisinterfaceiswettedbythesurfaceinducedsmecticphase.Inthesubsequentstep,smecticlayersnucleateatthissurfacephaseandgrowintotheisotropicbulkphase.

PACSnumbers:64.70.Md82.70.D

arXiv:cond-mat/0308556v1 [cond-mat.soft] 26 Aug 2003

Colloidswithhardcorerepulsiveinteractionsareoftenstudiedduetothesimplicityandgeneralityoftheirintermolecularpotential.Asaresultofthesestudies,theequilibriumphasediagramofhardrodsandspheresiswellunderstoodatthepresenttime[1,2,3,4].However,muchlessisknownaboutthekineticpathwaysofphasetransitionsinthesesystemsDirectvisualizationofcolloidsinasystemundergoingphasetransitionhaveprovidedapowerfultooltostudygeneralaspectsofphasetransitionkinetics8].Inthispaperwestudythekineticsoftheisotropic-smecticphasetransitionbydirectlyvisualizingindividualsmecticlayersinaphaseseparatingsample.Asamodelsystemofcol-loidalrodsweuseamonodispersesuspensionoffdvirusWeelucidateakineticpathwayofunex-pectedcomplexity.Theexistenceofsurfacefreezingandametastableisotropic-cholestericphasetransi-tionsisdiscoveredandtheirin uenceonthekineticpathwayisdiscussed.Becausethebehaviorofthefd/Dextranmixtureisdeterminedbystericinterac-tionsandsinceallmoleculesincludinglowmolecu-larweightthermotropicshaveastericcorethere-sultsreportedinthispaperarelikelytobequitegeneral.Inaddition,ourresultsmightbepertinenttounderstandingthedynamicsofamphiphilicmem-branes2Dsmecticsystemssurfacefreezingandwettingtransitionsandselfassem-blednano-structures[15].

Ithasbeenknownforalongtimethatsurfacefreezing/meltingcandramaticallyalterthenucle-ationrateandthekineticpathwayofaphasetran-sition.Ononehand,mostsubstancesexhibitsur-facemelting.Inthiscasealiquidsurfacewetsthecrystallinebulkphase.Itfollowsthatcrys-talsmeltfromthesurfaceinwardsandthereforeitisdi culttoprepareasuperheatedmetastablesolidOntheotherhand,surfacefreez-ingisobservedinveryfewsystems,mostnotablythermotropicliquidcrystals,alkanesandsurfactantmesophases[12,13,Uponsupercoolingthese

materials,theorderedphasenucleatesatthefrozeninterfaceandpropagatestowardsthebulkphase.Therefore,itisdi culttosupercoolliquidsthatex-hibitsurfacefreezing[19].

Anotherfactorthatcana ectthenucleationrateofatransitionsisthepresenceofmetastablephasesForexample,recentsimulationspredictthatthefreeenergybarrierforthefor-mationofproteincrystalsisgreatlyreducedwhenametastablegas-liquidphasetransitionislocatedinavicinityofastableliquid-solidphasebound-aryInthiscasethenucleationofproteincrys-talsproceedsintwosteps.Inthe rststepadensemetastabledropletassociatedwiththegas-liquidphasetransitionisformed,whileinthesubsequentsteptheproteincrystalnucleateswithinthisdroplet.Inthispaperweshowthatbothsurfacefreezingandmetastablephasesareimportantforunderstandingthekineticsoftheisotropic-smecticphasetransition.Bacteriophagefdisasemi- exibleviruswithcon-tourlengthof880nm,diameterof7nmandper-sistencelengthof2200nm.Itwaspreparedaspreviouslydescribedanddialyzedagainstbu erofknownionicstrength(190mMNacl,10mMTris,pH=8.10).Thephasediagramoftherod-polymermixturewasmeasuredaccordingtothepublishedprocedure[9].Allthesamplesarepreparedinametastable/unstableisotropicphasebyshearmelt-inganyexistingstructureandsamplesareplacedintorectangularcapillaries(VitroCom,MountainLakes,NJ).Nucleationandgrowthoftheorderphaseisobservedwithanopticalmicroscope(ZeissAxioPlan2)equippedwithDICoptics.AllimagesarerecordedwithacooledCCDcamera(AxioCamZeiss)

Atzeropolymerconcentrationfdisagoodmodelsystemofhardrodsandformsastableisotropic(I),cholesteric(Ch)andsmectic(S)phaseswithincreas-ingconcentrationinagreementwiththeoreticalpre-dictions21].EquilibriumI-Sphasetransitionisobservedinamixtureofrod-likefdvirusesandnon-

We study the kinetics of the isotropic-smectic phase transition in a colloidal rod/polymer mixture by visualizing individual smectic layers. First, we show that the bulk isotropic-smectic phase transition is preceded by a surface freezing transition in whi

FIG.1:Thecoexistenceconcentrationsofanimmisci-blefd-Dextranmixture.TheY-axesshowsconcentra-tionandosmoticpressureofDextraninthephasethatcoexistswithrod-richliquidcrystallinephase(droplets)whoseconcentrationisshownontheX-axis.Numbers1through4indicateregionswheredi erentphasebehav-iorsareobserved.Imagesof

thestructuresobservedintheseregionsareshowninFig.2.Stablesurfacesmec-ticphasewetstheisotropic-nematicinterfaceinregion2.Colloidalmembranesarestableinregion3.Inset:Thecompletephasediagramoffd/Dextranmixture.Tielinesalongwhichthephaseseparationproceedsareindi-catedbydashedlines.Regionsoftheisotropic-nematic(I-N)andisotropic-smectic(I-S)coexistenceareindi-cated.

adsorbingpolymerDextran.ThephasediagramofthismixtureisshownintheinsetofFig.1.Addingnon-adsorbingpolymertofdsuspensionproducesef-fectiveattractiveinteractionsbetweenfdrods[22].ThemainconsequenceofthisattractivepotentialonthephasebehaviorofarodlikesystemistowidentheI-Chcoexistenceconcentrationswiththepolymerpreferentiallypartitioningintotheisotropicphase[23].Sincetheinteractionsinthefd/polymermixturesaretemperatureindependent,allphasetransitionsareentropicallydriven.Inthe rstpartofthepaperwedescribetheequilibriumstructuresrelatedtothesurfacefreezingobservedinregion2ofthephasediagram.Inthesecondpartofthepa-perwedescribeoneofthekineticpathwaysofphaseseparationobservedinregion3.

Atrodconcentrationsbelow235mg/ml(region1

FIG.2:Imagesandschematicrepresentationsofdi er-entstructuresobservedinthefd/Dextranmixture.(a)Anisotropicnematicdropletinthepolymerrichback-ground.Con gurationofrodsinshownin gurec.(b)Nematicdropletwithsurfacesmecticphase.Imageisformedbyfocusingonthemidplaneofthetactoids.The3Dstructureisanobjectofrevolutionaboutthelongaxis.Aschematicrepresentationofanematicdropletwithsurfaceinducedsmecticphaseisshowninimaged.(e)Colloidalmembraneswhichhomogeneouslynucleatefromisotropicphase.Thebottomleftdiskliesintheplaneoftheimagewhiletheothertwolineperpendicu-lartotheplaneoftheimage(f)Twistedribbonwhichisidenticaltocolloidalmembraneexceptthatthatitiselongatedalongthetwistdirections(g)Bulkisotropic-smecticphasecoexistence.Scalebarsindicate3µm.

inFig.1aandb),nematicdroplets(tactoids)forminanisotropicbackground(Fig.2a).Polarizationmicroscopyindicatesthatthecon gurationofrodsinthenematictactoidisasshowninFig.2c.Whencon nedtoasmallvolumethecholestericorderisnotabletodevelop;thereforeweobserveonlyun-woundnematicphasewithinaindividualtactoid.Athigherrodconcentrations(region2inFig.1)weobservedropletsthathavethesameanisotropicshape.Microscopyindicatesthattheinteriorofthesedropletsisstillnematic.However,eachdroplet

We study the kinetics of the isotropic-smectic phase transition in a colloidal rod/polymer mixture by visualizing individual smectic layers. First, we show that the bulk isotropic-smectic phase transition is preceded by a surface freezing transition in whi

FIG.3:Imageofamacroscopicallyphaseseparatedisotropic-nematicinterfaceswhichexhibitsurfacefreez-ing.Theconcentrationsofthecoexistingisotropicandnematicphasesarecfd=242mg/mlandcdex=51.5mg/ml.Densenematicphaseisbelowtheimageplanewhiletheisotropicphaseisabovetheimage.Thethick-nessofthesurfaceinducedsmecticphaseisfewhundrednm.Thesurfacestructureshow

hereisidenticaltothesurfaceoftactoidsshowninFig.2d.Apairofdisloca-tiondefectsisclearlyvisibleintheimage.Scalebarsindicate5µm.

hasacorrugatedI-Ninterfacewherethelengthofeachridgealongthedroplet’slongaxisisapproxi-matelyoneviruslong.Asthetactoidscoalesceandincreaseinsize,thesurfacecorrugationsarealwayscon nedtoanarrowlayerofwellde nedthicknesslocatedattheI-Ninterface.Thisimpliesthattheformationofcorrugationsisapurelysurfacee ect.Theseobservationsleadustoconclusionthatthereexistsasurface-inducedquasi2DsmecticphasethatwetstheI-Ninterface.Theridgesobservedattheinterfaceareindividuallayersofthesurface-inducedsmecticphase.Aschematicrepresentationofasec-tionofacorrugatedtactoidisshowninFig.2d.Thesurfacesmecticphaseisobservedaboveanfdcon-centrationof235mg/mlwhilethebulkI-Sphasetransition(region4)isobservedat255mg/ml.

Afterafewhours,thefd/Dextranmixturepre-paredinregion2completelyphaseseparateswithdensernematictactoidscoalescingandsettlingtothebottomofthesample.InthiscaseamacroscopicI-Ninterfaceisformed.Thismakesitpossibletofo-cusontheinterfaceanddirectlyobservethesurfaceinducedsmecticphase(Fig.3).Weconcludeourdescriptionofthesysteminregion2bynotingthattherearenotheoreticalpredictionsofthesurface-inducedsmecticphaseinrod/polymermixture.Weexpectthatsuchphaseisaresultofnon-monotonicdensitypro lesacrosstheI-Ninterface[24].Addi-tionally,inthefd/polymersystemrodsinthesurfacefrozenlayerlieintheplaneoftheinterface.Thisisincontrasttomolecularsystemswhichexhibitsur-facefreezingwhereanisotropicmoleculesareeithertiltedorperpendiculartotheinterface[12,13].Wenowturnourattentiontoregion3ofthephasediagram.Rightaftermixingthesample,inadditiontotheformationofnematicdropletswithasurfacesmectic,weobserveself-assemblyofrodsintodisk-likeorribbon-likestructures(Fig.2eandf).Thethicknessofthediskcorrespondstothelengthofa

FIG.4:Imagesofstructuresobservedinregion3ofthephasediagramafterthesamplehasbeenequilibratedforafewdays.Forimagesaandbcfd=254mg/mlandcdex=53.5mg/mlwhileforimagescanddcdex=56mg/mlandcfdisundetermined.(a)Nematicdropletwithasurfacefrozensmecticphase.Surfacesmecticphaseactsasanucleationsitefortheformationofcol-loidalmembranes.(b)Twistedsmecticribbonnucleatesatthesurfacesmecticphaseandgrowsintotheisotropicbulkphase(c)DICimageofalarge(35µmdiameter)isolatedcolloidalmembraneinwhichrodslieperpendic-ulartotheimageplane.Correspondinglythemembraneshowsnobirefringenceundercrossedpolarizers.(d)Po-larizationimageofacolloidalmembraneinwhichrodslieintheplaneoftheimage.Directionsofpolarizerandanalyzerareindicatedbywhitearrows.Scalebarsindicate5µm.

singlerod.Whenviewedfromaboveadiskshowsnobirefringencewhilefromthesideitshowsmaxi-mumbirefringencewhenorientedat45owithrespecttothepolarizerandanalyzer(Fig.4d).Therefore,polarizationmicroscopyshowsthatdisksarecom-posedofamonolayerofalignedrodsinthesmectic-Acon guration.Wecalltheseself-assembleddiskscolloidalmembranesbecauseoftheirsimilaritytoamphiphilicmembranes.Smallhomogeneouslynu-cleatedmembranes(Fig.2e)growbycoalescinglat-erallytoformlarge40µdiameterisolatedmem-branes(Fig.4c)[9].Thissuggeststhatanisolatedcolloidalmembraneandnotabulksmecticphaseistheequilibriumstructureinregion3.Polarizationmicroscopyindicatesthattwistedribbonsareiden-ticaltodisksexceptthattheyhaveatwistalongtheirlongaxisduetothechiralnatureoffd[25].Weexpectthatthefreeenergydi erencebetween

We study the kinetics of the isotropic-smectic phase transition in a colloidal rod/polymer mixture by visualizing individual smectic layers. First, we show that the bulk isotropic-smectic phase transition is preceded by a surface freezing transition in whi

thesetwomorphologiesissmallandwillexaminetheirrelativestabilityelsewhere.

Realspaceimagesenablesustostudytheki-neticpathwayfortheformationofcolloidalmem-branes.Theycaneitherhomogeneouslynucleatefromthemetastableisotropicsuspensionorcanhet-erogeneouslynucleateatthesurface-inducedsmecticphase(Fig.4aandb).Acolloidalmembranenucle-atedattheinterfacegrowsintotheisotropicphaseeitherasatwistedribbonora atdisk.Overape-riodofafewdaystwistedribbonscanreachalengthsofseveralhundredsmicrons.Fluorescenceimagesindicatethattherearenorodsintheisotropicsolu-tion.Thereforecolloidalmembranes(ribbons)mustelongateduetorodsthatdi usefromametastablenematicphasethroughasurfacesmectictoamorestablecolloidalmembrane.Thefactthatthereisatransportofrodsacrosstheinterfaceshowsthatthecolloidalmembranesarestructureswithlowerfreeenergythanthenematicphaseorbulksmecticphase.Atlowerdegreesofsupercoolingwemostlyobserveheterogenoussurfaceinducednucleationin-steadofhomogeneousnucleationofcolloidalmem-branes.Thisshowsthatatwo-stepkineticpathwayhasalowernucleationbarrierfortheformationofcolloidalmembranes.Tosummarize,thephasesep-arationinregion3ofthephasediagramproceedsintwosteps.Inthe rststepontimescaleofsecondstominutesweobservetheformationofnematictac-toidswithsurfacesmecticphaseidenticaltothoseobservedinregion2.However,thesetactoidsaremetastable.Inthesecondslowsteponatimescaleofhourstomonthsweobservethenucleationofcol-loidalmembranesatthesurfacefrozensmecticphaseandtheirsubsequentgrowthintotheisotropicphase.Afewcommentsareinorderregardingthestruc-turesobservedinregion3.First,toourknowledgethisisthe rsttimethatnon-amhiphilicobjectswithverysimpleexcludedvolumeinteractionshavebeenselfassembledinto2Dmembrane-like(Fig.4c)and1Dpolymerlikestructures(Fig.2f)[26].Wespec-ulatethatthesestructuresarestabilizedbyprotru-sionlike uctuations[27].Second,itseemsplau-siblethatisolatedcolloidalmembranesobservedinregion3arehighlyswollenlamellarphasesprevi-ouslyobservedinmixturesofnematicfdandhardspheres[4].Theswellingofthelamellarphaseis

predictedtheoretically,buthasyettobeobservedinexperiments[28].Third,astheosmoticpres-sureisincreasedthereisatransitiontoregion4inwhichsmallcolloidalmembranesirreversiblystackupontopofeachothertoformelongated laments(Fig.2g).Thenatureofthetransitionfromiso-latedmembranestoasmecticphaseremainsun-explored.Fourth,uallythereversee ectisob-servedpathwayswhereastablenucleusiswettedbyametastablephase[5,29]

Inconclusion,therearetwoimportantresultsthatcanbededucedfromourexperiments.The rstsur-prisingresultisthatarod/polymermixtureexhibitssurfacefreezinginwhichaquasi2DsmecticphasewetstheI-Ninterface.Thise ectoccursatrodcon-centrationof235mg/mlwhilebulkI-Sphasetran-sitionoccursat255mg/ml.Toourknowledgethisisthe rsttimethatthesurfacefreezinghasbeendirectlyvisualizedinasystemwhosephasebehaviorisdominatedbyentropicrepulsiveinteractions.Thesecondresultofthisworkistodemonstratethere-lationshipbetweenthesurfacefreezingandthebulkisotropic-smecticphasetransition.Acomplextwostepkineticpathwayforthenucleationofthesmec-ticphaseoutoftheisotropicsolutionhasbeeniden-ti ed.Inthe rststepametastablenematicdropletwithasurfacefrozensmecticphasenucleatesintheisotropicsolution.Inthenextstepisolatedmono-layers(colloidalmembranes)ofsmecticphasenucle-ateatthesurfacesmecticphaseandsubsequentlygrowintotheisotropicphase.Duetothesimplicityandgeneralityoftheexcludedvolumeinteractionswhichdominatethephasebehavioroffd/Dextranmixture,theresultspresentedhereshouldberele-vanttoamuchwiderclassofsystemsthanthosestudiedhere.

IwishtothankSethFraden,GerhardGompper,ArjunYodh,TomLubensky,DanielChen,PeterLangandPavlikLettingaforusefuldiscussions.IamparticularyindebtedtoJanDhontforhishos-pitalityatFZ-JuelichandtheAlexandervonHum-boldtfoundationfor nancialsupport.PartofthisworkwasdoneatBrandeisUniversitywherethisresearchwassupportedbytheNSF-DMRgranttoSethFraden.

[1]D.Frenkel,H.Lekkerkerker,andA.Stroobants,Na-ture332,822(1988).

[2]G.J.VroegeandH.N.W.Lekkerkerker,Repts.on

Prog.Phys.8,1241(1992).

[3]P.N.PuseyandW.vanMegen,Nature320,340

(1986).

[4]M.Adams,Z.Dogic,S.L.Keller,andS.Fraden,

Nature393,349(1998).[5]P.R.tenWoldeandD.Frenkel,Science277,1975

(1997).

[6]J.Zhu,M.Li,R.Rogers,W.Meyer,R.H.Ottewill,

W.B.Russel,andP.M.Chaikin,Nature387,883(1997).

[7]U.Gasser,E.R.Weeks,A.Scho eld,P.N.Pusey,

andD.A.Weitz,Science292,258(2001).

[8]V.J.AndersonandH.N.W.Lekkerkerker,Nature

We study the kinetics of the isotropic-smectic phase transition in a colloidal rod/polymer mixture by visualizing individual smectic layers. First, we show that the bulk isotropic-smectic phase transition is preceded by a surface freezing transition in whi

416,811(2002).

[9]Z.DogicandS.Fraden,Phil.Trans.R.Soc.Lond.A.359,997(2001).

[10]R.Lipowsky,inGenericinteractionsof exiblemembranes.,editedbyR.LipowskyandE.Sack-mann(Elsevier,1995),pp.521–602.

[11]C.Harrison,D.H.Adamson,Z.Cheng,J.M.Se-bastian,S.Sethuraman,D.A.Huse,R.A.Register,andP.M.Chaikin,Science290,1558(2000).

[12]X.Z.Wu,E.B.Sirota,S.K.Sinha,B.M.Ocko,andM.Deutsch,Phys.Rev.Lett.70,958(1993).[13]B.M.Ocko,A.Braslau,P.S.Pershan,J.Als-Nielsen,andM.Deutch,Phys.Rev.Lett.57,94(1986).

[14]D.BoonandD.Ross,Rep.Prog.Phys.64,1085(2001).

[15]S.W.Lee,C.B.Mao,C.E.Flynn,andA.M.Belcher,Science296,892(2002).

[16]J.F.vanderVeen,Surf.Sci.433-435,1(1999).[17]R.W.Cahn,Nature323,668(1986).

[18]ng,J.Phys.Chem.B103,5100(1999).

[19]

E.Sloutskin,E.B.Sirota,H.Kraack,B.M.Ocko,

5

andM.Deutsch,Phys.Rev.E64,031708(2001).[20]E.B.SirotaandA.B.Herhold,Science283,529(1999).

[21]Z.DogicandS.Fraden,Phys.Rev.Lett.78,2417(1997).

[22]S.AsakuraandF.Oosawa,J.Chem.Phys.22(1954).

[23]P.G.Bolhuis,A.Stroobants,D.Frenkel,andH.N.W.Lekkerkerker,J.ChemPhys107,1551(1997).

[24]K.ShundyakandR.vanRoij,Phys.Rev.Lett.88,205501(2002).

[25]Z.DogicandS.Fraden,Langmuir16,7820(2000).[26]achenko,Phys.Rev.Lett.89,148303(2002).

[27]J.Israelechvili,IntermolecularandSurafceForces(AcademicPress,London,1991),2nded.

[28]T.Koda,M.Numajiri,andS.Ikeda,J.Phys.Soc.Jpn.65,3551(1996).

[29]

P.R.tenWolde,M.J.Ruiz-Montero,andD.Frenkel,Phys.Rev.Lett.75,27142717(1995).

本文来源:https://www.bwwdw.com/article/wozm.html

Top