The trace formula for quantum graphs with general self adjoint boundary conditions
更新时间:2023-07-20 13:29:01 阅读量: 实用文档 文档下载
- the推荐度:
- 相关推荐
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
8
2
y
a
M
2
]
h
p
-h
ta
m
[
1
v
1
1
1
3
.
5
8
:0v
i
X
r
aThetraceformulaforquantumgraphswithgeneralselfadjointboundaryconditionsJensBolte1DepartmentofMathematicsRoyalHolloway,UniversityofLondonEgham,TW200EX,UnitedKingdomSebastianEndres2Institutf¨urTheoretischePhysikUniversit¨atUlm,Albert-Einstein-Allee11D-89069Ulm,GermanyAbstractWeconsidercompactmetricgraphswithanarbitraryselfadjointrealisationofthe
di erentialLaplacian.AfterdiscussingspectralpropertiesofLaplacians,weproveseveralversionsoftraceformulae,relatingLaplacespectratosumsoverperiodicorbitsonthegraph.Thisincludestraceformulaewith,respectively,absolutelyandconditionallyconvergentperiodicorbitsums;theconvergencedependingonproper-tiesofthetestfunctionsused.Wealsoproveatraceformulafortheheatkernelandprovidesmall-tasymptoticsforthetraceoftheheatkernel.
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
1Introduction
SometenyearsagoKottosandSmilansky[KS97,KS99b]introducedquantumgraphsasconvenientmodelsinthe eldofquantumchaos[Haa01,St¨o99],whereamajorgoalistounderstandtheconnectionbetweendynamicalpropertiesofaquantumsystemanditsassociatedclassicalcounterpart[BGS84].Previouslyintroducedmodelsthatpossessclassicalcounterpartswithchaoticdynamicsincludequantumbilliards,motionsonRie-mannianmanifoldswithnegativecurvaturesandquantummaps.Thesemodelshavebeenstudiedwithconsiderablesuccess,however,theyhaveoftenturnedouttobearunwantedcomplications.Quantumgraphsareconstructedalongthelinesofmanyofthesemod-elsinthattheyaremainlyconcernedwithspectralpropertiesofLaplacians.Inasensetheyaremaximallyreducedversionsofsuchmodelsinthattheunderlyingcon gurationspaceisonedimensional.Thenontrivialtopologyofthegraph,however,introducessu -cientcomplexitysuchthatthequantumsystembehavesliketypicalquantumsystemswithchaoticclassicalcounterparts,see[KS97,KS99b].Ontheotherhand,manydetailsoftheclassicaldynamicsareconsiderablysimplerandquantumspectraaregenerallyknowntosomemoredetail,sothatquantumgraphmodelsprovedtobeveryusefulinthe eldofquantumchaos[GS06].
Traceformulaeprovideadirectconnectionbetweenclassicalandquantumdynamicsinthattheyrelatequantumspectratoclassicalperiodicorbits.Ingeneral,thisconnec-tionarisesintheformofanasymptoticrelation,validforlargewavenumbers.Thereareonlyfewexceptionalcasesinwhichtraceformulaeareidentities.Amongtheseare,mostnotably,Laplacianson attoriandonRiemannianmanifoldswithconstantnegativesectionalcurvatures.Inbothcasesthecon gurationmanifoldsareRiemanniansymmetricspaces,allowingfortheapplicationofpowerfulmethodsofharmonicanalysisinprovingtherelevanttraceformulae,i.e.,thePoissonsummationformulaandtheSelbergtraceformula
[Sel56],respectively.Generically,however,thetoolsofharmonicanalysisarenotavail-able,andtraceformulaehavetobeprovenusingsemiclassicalormicrolocaltechniques,whichnaturallyinvolveasymptoticmethods.SemiclassicaltraceformulaewereintroducedbyGutzwiller[Gut71]forthespectraldensityofquantumHamiltonians.Subsequently,BalianandBloch[BB72]setupanalogoustraceformulaeforLaplaciansondomainsinRninashortwavelengthapproximation.The rstmathematicalproofs,forLaplaciansonRiemannianmanifolds,areduetoColindeVerdi`ere[CdV73]aswellasDuistermaatandGuillemin[DG75].Later,proofsforthesemiclassicalcasefollowed[Mei92,PU95].
OneofthevirtuesofquantumgraphmodelsthatledKottosandSmilanskytointro-ducethemtothe eldofquantumchaosisthattheirtraceformulaeareidentities,verymuchinanalogytotheSelbergtraceformula.The rstquantumgraphtraceformula,however,isduetoRoth[Rot83],whoexpressedthetraceoftheheatkernelforaLaplacianwithKirchho boundaryconditionsintheverticesofthegraphasasumoverperiodicorbits.KottosandSmilansky[KS99b]thenintroducedatraceformulaforthespectraldensityoftheLaplacian,andlaterKostrykin,Pottho andSchrader[KPS07]extendedRoth’straceformulatomoregeneralboundaryconditions.InthesecasestheboundaryconditionscharacterisingthedomainoftheLaplacianwereofanon-Robintypeinthat
2
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
theydonotmixboundaryvaluesoffunctionsandtheirderivatives.ThisleadstoperiodicorbitsumsinthetraceformulaethatcloselyresemblethoseoccurringintheSelbergtraceformula.InthispaperourprincipalgoalnowistoconsidergeneralselfadjointrealisationsofLaplaciansoncompactmetricgraphsandtoproveassociatedtraceformulaewithfairlygeneraltestfunctions.Inparticular,wedonotrequiretheirFouriertransformstobecompactlysupported.AllowingforRobin-typeboundaryconditionsleadstotraceformu-laethatarestillidentities,yettheamplitudesmultiplyingtheoscillatingfactorsineachperiodicorbitcontributiondependonthewavenumberinanontrivialway.Inprinciple,theseamplitudefunctionsareknownandpossessasymptoticexpansionsforlargewavenumbers.Therefore,inasensethesetraceformulaeareintermediatebetweenSelbergandGutzwiller/Duistermaat-Guillemintraceformulae,whereinthelattercaseonlytheasymptoticexpansionsoftheamplitudefunctionsareknown,andthetestfunctionsmusthavecompactlysupportedFouriertransforms.
Thispaperisorganisedasfollows:Insection2webrie yreviewtheconstructionofquantumgraphs,includingparametrisationsofselfadjointrealisationsoftheLaplaciandevelopedbyKostrykinandSchrader[KS99a]aswellasKuchment[Kuc04].FollowingthisweinvestigatevariouspropertiesofquantumgraphedgeS-matricesasintroducedin[KS99b],focussingontheiranalyticproperties.Insection4wethendiscussgeneralpropertiesofLaplacespectraoncompactgraphs.Themainpartofthispapercanbefoundinsection5where,aftersomenecessarypreparations,we nallyproveseveralversionsofquantumgraphtraceformulae:Theorem5.8containsatraceformulawithaconditionallyconvergentsumoverperiodicorbitsandallowsforalargeclassoftestfunctions.InTheorem5.9,however,werestricttheclassoftestfunctionswiththee ectthattheperiodicorbitsumsconvergeabsolutely.AsuitablechoiceofatestfunctionthenallowstoestablishthetraceoftheheatkernelforarbitraryselfadjointrealisationsoftheLaplacian,seeTheorem5.10.We nallysummariseanddiscussourresultsinsection6.Someoftheresultspresentedherehavebeenannouncedin[BEar].
2Preliminaries
Webeginwithreviewingtherelevantconceptsunderlyingtheconstructionofquantumgraphs.
2.1Metricgraphs
Inthesequelweshallconsider nite,metricgraphsΓ=(V,E,l).HereVisa nitesetofvertices{v1,...,vV}andEisa nitesetofedges{e1,...,eE}.Whenanedgeeconnectstheverticesvandw,thesearecallededgeends.Twoedgesareadjacent,iftheyshareanedgeend;loopsandpairsofmultiplyconnectedverticesshallbeallowed.Thedegreedvofavertexvspeci esthenumberofedgeswithvasoneoftheiredgeends.Ametricstructurecanbeintroducedbyassigningintervals[0,li]toedgesei,alongwithcoordinatesxi∈[0,li].TheE-tuplel=(l1,...,lE)thencollectsalledgelengths.Throughthisproceduretheedge
3
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
endsaremappedtotheendpointsoftheintervalsinaspeci edmanner.Theedgeendcorrespondingtoxi=0isthencalledinitialpointand,correspondingly,theotherendpointistheterminalpointoftheedgeei.Hencenotonlytheconnectednessofthegraphisspeci ed,butalsoanorientationoftheedgesisintroduced.Weemphasisethatthespeci cchoiceoftheorientationthusmadedoesnotimpacttheresultsofthispaper,infactthechoiceoftheinitialandterminalpointsoftheedgesarearbitrary.TheintervalsareonlyusedtoconstructtheLaplaceoperatorasadi erentialoperator.
Itisusefultoarrangethe2Eedgeendsinaparticularway:welisttheinitialpointsintheorderastheyoccurinthelistofedges,followedbytheterminalpointsinthesameorder.Forthetraceformulawe,moreover,requirethefollowingnotions.
De nition2.1.AclosedpathinΓisa nitesequenceofedges(ei)n
i=1,suchthattheedges
eiandei+1for∈{1,...,n 1}andtheedgesenande1areadjacent.Aperiodicorbitisanequivalenceclassofclosedpathsmodulocyclicpermutationsoftheedges.
Thenumbernofedgesinaperiodicorbitpisitstopologicallength,whereasthesumlp=le1+···+lenofthemetriclengthsofitsedgesisthemetriclength,orsimplylength,
ofp.Aperiodicorbitisprimitive,ifitisnotamultiplerepetitionofanotherperiodicorbit.Furthermore,thesetofperiodicorbitsofthegraphiscalledP,andPnisitssubsetoforbitswithtopologicallengthn.
2.2Quantumgraphs
i QuantummechanicsonametricgraphcanbestudiedintermsoftheSchr¨odingerequation
fj(xj)gj(xj)dxj.
4
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
Asadi erentialexpressionthe(negative)Laplacianissimplygivenby
′′′′ F:=( f1,..., fE),
wheredashesdenotederivatives.Thisexpressionmaynowserveasawaytointroduceaclosed,symmetricoperator( ,D0)withdomain
D0=E j=12H0(0,lj).
HereeachtermintheorthogonalsumconsistsofanL2-Sobolevspaceoffunctionswhich,togetherwiththeirderivatives,vanishattheedgeends.Thede ciencyindicesofthisoperatorare(2E,2E),andthusitpossessesselfadjointextensionsthatcanbeclassi- edaccordingtovonNeumann’stheory(see,e.g.,[RS75]).AnalternativeapproachhasbeendevelopedindetailbyKostrykinandSchrader[KS99a],whichprovidesaconvenientparametrisationthatisparticularlyusefulforlaterpurposes.Inthiscontextoneintroducestheboundaryvalues
TFbv=f1(0),...,fE(0),f1(l1),...,fE(lE),(2.2) ′ T′′′′Fbv=f1(0),...,fE(0), f1(l1),..., fE(lE),
offunctionsandtheirderivatives,wherebythesignsensurethatinwardderivativesareconsideredatalledgeends.Noticethattheorderofthetermsfollowstheconventionofarrangingedgeendsintroducedpreviously.Boundaryconditionsonthefunctionsinthedomainofagivenselfadjointoperatorarespeci edthroughalinearrelationbetweenboundaryvalues;theyareoftheform
′AFbv+BFbv=0,(2.3)
see[KS99a].HereA,B∈M(2E,C)aretwomatricessuchthat
thematrix(A,B),consistingofthecolumnsofAandB,hasmaximalrank2E, AB isselfadjoint.
Theseconditionsthenimplytheselfadjointnessoftheoperator,andeveryselfadjointextensioncanbeachievedinthismanner.Occasionally,weshalldenoteaparticularsuchselfadjointrealisationoftheLaplacianas (A,B,l).Thisparametrisation,however,isobviouslynotuniquebecauseamultiplicationof(2.3)withC∈GL(2E,C)fromtheleftdoesnotchangetheboundaryconditions.Ontheotherhand,if (A,B,l)= (A′,B′,l),thereexistsC∈GL(2E,C)withA′=CAandB′=CB,see[KS99a].Thus,foranyC∈GL(2E,C)bothA,BandA′=CA,B′=CBprovideanequivalentcharacterisationofthesameoperator.
Thelinearrelations(2.3)caninprinciplerelateboundaryvaluesatanysetofedgeends.Wewish,however,theoperatortorespecttheconnectednessofthegraphandthereforewe
5
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
restrictourselvestolocalboundaryconditions.Thesearecharacterisedbytheconditionthat(2.3)onlyrelatesedgeendsthatformasinglevertex.Tothisendwenowgrouptheedgeendsin(2.2)accordingtotheverticestheybelongto.LocalboundaryconditionsthenleadtoablockstructureofthematricesAandB,
A=AvandB=Bv,(2.4)
v∈Vv∈V
whereonlythenonvanishingmatrixentriesareindicated.Hereµvmustbereal;whenµv=0theusualKirchho conditionsarerealised.
Thenon-uniquenessinthechoiceofthematricesAandBcanbeovercomebyparametris-ingtheselfadjointrealisationsoftheLaplacianintermsofprojectorsontosubspacesofthe2E-dimensionalspacesofboundaryvalues.TothisendKuchment[Kuc04]introducedtheprojectorPontothekernelofBaswellastheprojectorQ=1 Pontotheorthogonalcomplement(kerB)⊥=ranB inC2E.Hethende nedthe(selfadjoint)endomorphism
1 AQ(2.6)L:=B|ranB
ofranB ,andshowedthattheboundaryconditions(2.3)areequivalentto
PFbv=0and′LQFbv+QFbv=0.suchthateachblock,representedbyAvandBv,exactlyrelatestheboundaryvaluesoffunctionsandtheirderivativesatthevertexv.Inthiscontextselfadjointnessofthe Laplacianisachieved,ifforallv∈Vtherankof(Av,Bv)isdvandAvBvisselfadjoint.Tomentionafewexamples,avertexwithDirichletboundaryconditionscanbechar-acterisedbyAv=1dv,Bv=0,whereasforNeumannboundaryconditionsonewouldchooseAv=0,Bv=1dv.Moreover,thegeneralisedKirchho boundaryconditionsusedbyKottosandSmilansky[KS99b]canbeachievedbychoosing 1 1 .... .. , (2.5)Av= andBv= 1 1 1······1µv(2.7)
Moreover,thereexistsaC∈GL(2E,C)suchthat
A′=CA=P+L
implyingthatandB′=CB=Q,(2.8)
L=A′B′ .
Are nementofthisconstructioncanbefoundin[FKW07].From(2.7)oneconcludesthatincaseswhereL=0,theboundaryconditionsdonotmixboundaryvaluesofthefunctionsthemselveswiththoseoftheirderivatives.Wecallthesenon-Robinboundaryconditions,andallothercasesRobinboundaryconditions.
6
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
3TheS-matrix
InquantumgraphmodelsLaplaceeigenvaluescanbeconvenientlycharacterisedintermsofzerosof nitedimensionaldeterminants,andthusthesemodelsareamenabletopow-erfulanalyticalaswellasnumericalmethods.InquantumbilliardsarelatedmethodwaspioneeredbyDoronandSmilansky[DS92]asthescatteringapproachtoquantisation.Ingeneral,thismethodreliesonsemiclassicalapproximations.As rstdemonstratedbyKot-tosandSmilansky[KS99b],however,inquantumgraphsthescatteringapproachallowstodetermineLaplaceeigenvaluesexactlyfroma nitedimensionalsecularequation.
Thescatteringapproachbearsitsnamefromthefactthatitisbasedonscatteringprocessesoccurringwhenoneopensupagivenclosedquantumsystemappropriately.Inquantumgraphstheprocedureofopeningupconsistsofreplacingeachvertexanditsattachededgesbyanin nitestargraph.Thisisthesingle,givenvertexvwithdvin nitehalflinesattachedthatreplacetheedgesof nitelengths.Carryingoverthelocalboundaryconditionsattheverticesfromtheoriginalclosedquantumgraph,onethusobtainsVopenquantumsystems,whicheachpossessanon-shellscatteringmatrixσv(k).IntermsoftheparameterisationoftheboundaryconditionsdescribedinSection2.2onethen ndsthat
σv(k)= (Av+ikBv) 1(Av ikBv),fork∈R\{0}.(3.1)TheconditionsimposedonAvandBvinordertoachieveselfadjointboundaryconditionsensurethatAv±ikBvareinvertibleandthatthevertexS-matrixσv(k)isunitaryforallk∈R\{0},see[KS99a].
ThelocalscatteringmatrixassociatedwithavertexwithDirichletorNeumannbound-aryconditionsisσv= 1dvorσv=1dv,respectively.Incontrast,accordingto(2.5)
generalisedKirchho boundaryconditionsleadtoavertexS-matrixwithelementsoftheform[KS99b]
σv1dvk iµ
v
ei,ej(k)= δij+dv
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
Furthermore,usingtheparametrisation(2.7)ofboundaryconditionsandutilising(2.8)aswellasthefactthat(L+ik) 1commuteswithL ik,oneobtainstherepresentation
S(A,B;k)= P Q(L+ik) 1(L ik)Q,k∈R\{0},(3.4)
fortheedgeS-matrix,see[KS06a].
Fromtheexpressions(3.3)and(3.4)itappearsthattheS-matrixgenerallydependsonthewavenumberkinanon-trivialway.However,certainboundaryconditionsleadtok-independentS-matrices.ObviousexamplesareDirichletandNeumannboundaryconditions,aswellastheusualKirchho boundaryconditions,i.e.,(3.2)withµv=0.Ageneralcharacterisationofsuchboundaryconditionswasprovidedin[KPS07]intermsofthefollowingequivalentconditions:
S(A,B;k)isk-independent.
S(A,B;k)isselfadjointforsome,andhenceforall,k>0.
S(A,B;k)=1 2Pforsome,andhenceforall,k>0.
AB =0,i.e.,L=0.
Thelastpointshowsthatk-independentS-matricesariseexactlyinthecaseofnon-Robinboundaryconditions.
BelowwearegoingtoprovesomepropertiesofS-matricesthatarerelevantforthetraceformula.Inthiscontext,forRobinboundaryconditionsanimportantrolewillbeplayedbythespectrumσ(L)oftheselfadjointmatrixL(2.6).
WeshallmakeextensiveuseoftheS-matrixextendedtocomplexwavenumberskandthereforeneedthefollowing.
Lemma3.1.LetAandBspecifyselfadjointboundaryconditionsfortheLaplacianonthegraph.ThentheS-matrix(3.3)hasthefollowingproperties:
1.S(A,B;k)canbecontinuedintothecomplexk-planeasameromorphicfunction,andhassimplepolesatthepointsofthesetiσ(L)\{0}.
2.S(A,B;k)isunitaryforallk∈R.
3.S(A,B;k)isinvertibleforallk∈C\[±iσ(L)\{0}],anditsinverseisS(A,B; k).Proof.WehenceforthextendtheselfadjointendomorphismLofranB ,see(2.6),toanendomorphismofC2Ebysettingittozeroon(ranB )⊥=kerB.WethendiagonaliseLutilisinganappropriateunitaryW,anddenotethenon-zeroeigenvalues(countedwiththeirmultiplicities)by{λ1,...,λd}.Thisleavestheeigenvaluezerowithamultiplicityof2E d.Therearer:=dimranB d(orthonormal)eigenvectorsofLinranB ands:=dimkerB=2E dimranB eigenvectorsinkerB,respectively,correspondingtotheeigenvaluezero.
8
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
Employingthisdiagonalisationintherepresentation(3.4)oftheS-matrixthenleadstotheexpression
S(A,B;k)=W λ1 ik
SincetheunitaryWisindependent λkr 1s W.(3.5)d+i1 ofkthe rststatementofthe lemmaisobvious.
TheunitarityofS(A,B;k)forrealkalsofollowsimmediatelybyobservingthatthediagonalentriesin(3.5)areallofunitabsolutevalue.
Thethirdstatementfollowsinacompletelyanalogousfashionfromtherepresentation(3.5).
KnowingthattheS-matrixisanalyticink,onewouldliketocalculateitsderivative.Thisinfactisrequiredintheproofofthetraceformulabelow.ItisevenpossibletorelatethederivativeofS(k)totheS-matrixitself.
Lemma3.2.UnderthesameassumptionsasinLemma3.1oneobtainsfork∈C\
[±iσ(L)\{0}],
d
2k S(A,B;k) S(A,B,k) 1 S(A,B;k).(3.6)
WeremarkthatforrealktheunitarityoftheS-matrixcanbeinvokedtoobtainfrom(3.6)thatitisindependentofk,i itisselfadjoint.
Proof.Letus rstassumethatk∈R\{0}andabbreviateS(A,B;k)asS(k).Wealsode-notederivativesw.r.t.kbyadashandusetherelationd
2 S(k) 1 andC(k)B= 1
2k S(k)+1S(k) 1
= 1
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
whichprovesthestatementfork∈R\{0}.
FromLemma3.1weinferthatS(k)isanalyticinaneighbourhoodofk=0andthattheright-handsideof(3.9)hasaremovablesingularityatk=0;hence(3.9)extendstoallrealk.Since,moreover,S(k)isunitaryonRandanalyticonC\[±iσ(L)],and1
kn(iL)n.(3.10)
2.For|k|<λmin,
S(A,B;k)= 1+2P 2 ∞kn
n=1
iL n,(3.11)wherePandL emergefromPandL,respectively,byreplacingA,Bwith B,A.
Proof.Forthe rstexpansionwerefertotherepresentation(3.5)oftheS-matrixandemploytheexpansion
λα ikkλα=1+2
kλα ∞n=1 iλα
kn(iL)nonranB and
1ForonkertheBsecond.SinceexpansionL=0onwekerremarkB,thethatrelationfrom(3.10)(3.3)onefollows.canreadilydeducetherelationS(A,B;k)= S( B,A;1
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
Lemma3.3alsoprovideslimitingexpressionsfortheedgeS-matrixas|k|→∞and|k|→0,respectively, ,S∞=1 2PandS0= 1+2P
whichweshallusesubsequently.
LaterweshallintegrateexpressionscontainingtheS-matrixalongcontoursintheuppercomplexhalfplaneand,therefore,weneedtoestimatethenormoftheS-matrixalongthecontours.Tothisendweintroduce
λ+ min{λ∈σ(L);λ>0},if λα>0
min:=∞,else,
andobtainthefollowing.
Lemma3.4.Letk∈Rand0<κ<λ+min,then
S(k+iκ) , S(k iκ) 1 ≤max 1,λ+min+κ(3.12)
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
wherek∈C.InadditiontotheedgeS-matrixthisquantityisthenusedtointroduce
U(k):=S(A,B;k)T(l;k).(4.2)
ThetopologicalandthemetricdataenteringU(k)arehenceclearlyseparated.
ForrealktheendomorphismsS(k),T(k)andU(k)ofC2Eareobviouslyunitary.WethereforedenotetheeigenvaluesofU(k)byeiθ1(k),...,eiθ2E(k).FollowingLemma3.1weconcludethatU(k)canbeextendedintothecomplexk-planeasameromorphicfunctionwithpolesatiσ(L)\{0}.Thedeterminantfunction
F(k):=det 1 U(k) ,(4.3)
onwhichthescatteringapproachisbased(see[KS99b]),henceisalsomeromorphic.Itspolesareiniσ(L)\{0},butdonotnecessarilyexhausttheentireset.
Proposition4.1(Kostrykin,Schrader[KS06b]).Thedeterminantfunction(4.3)ismero-morphiconthecomplexplanewithpolesinthesetiσ(L)\{0}.Furthermore,letknC\[iσ(L)∪{0}]withImkn≥0,thenk2nisaneigenvalueof ,i knisazeroof∈thefunction(4.3),i.e.,F(kn)=0.Moreover,thespectralmultiplicitygnoftheLaplaceeigenvaluek2n>0coincideswiththemultiplicityoftheeigenvalueoneofU(kn).
Proposition4.1establishesacloseconnectionbetweenzerosofthedeterminantfunction(4.3)andLaplaceeigenvalues.NoticethatalthoughLaplaceeigenvaluesoccurassquares,k2,thefunction(4.3)isnotinvariantunderachangeofsigninitsargument.Thereexists,however,afunctionalequationunderthesubstitutionk→ k.
Lemma4.2.ForallC\[±iσ(L)\{0}]thefollowingidentityholds:
F(k)=( 1)Me2ikL dλα ik
α=1
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
rstcaseKostrykinandSchradershowedthatthenumberofnegativeLaplaceeigenvaluesis nite;infact,itsnumberisboundedbythenumberofpositiveeigenvaluesofL[KS06b].
Thatimplies,inparticular,thatLaplacianswithnon-Robinboundaryconditions,whereL=0,possessanon-negativespectrum.Moreover,theyfoundthefollowinglowerbound,
≥ s2.
Heres≥0istheuniquesolutionof
stanh slmin(4.5)
λ+ik
Eventually,oneobtains
F(k)=1 e2ikl
0eeikl0λ ikikl .2=λ.
Thisconditionisequivalentto(4.6),demonstratingthatthebound(4.5)issharpforthis‘quantumgraph’.
13
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
4.2Theeigenvaluezero
Ingeneral,zeroisaLaplaceeigenvalueaswellasazeroofthedeterminant(4.3),andinsofarProposition4.1alsoappliestok0=0.Thespectralmultiplicityg0,however,typicallyisdi erentfromthedegreeofk0=0asazeroofF(k).ForKirchho boundaryconditionsithasbeenshownin[KN05]thatthedegreeofthezeroisE V+2,whereasthezeroLaplaceeigenvalueisnon-degenerate,i.e.,g0=1.Kurasov[Kur08]subsequentlylinkedthisdi erenceinthemultiplicitiestothetopologyofthegraphbynoticingthatasuitabletraceformulacontainsthequantity
1 1
2(V E),
andhencetheEulercharacteristicofthegraph.Thisobservationwasgeneralisedtoyieldanindextheoremforanyquantumgraphwithnon-RobinboundaryconditionsbyFulling,
(V E)KuchmentandWilson[FKW07].Onecanviewthet-independentterm12inthetraceformulafortheheatkernel(dueto[Rot83]forKirchho boundaryconditions
and[KPS07]forgeneralnon-Robinconditions)asapredecessorofthisresult.Seealso
[BEar]foramoredetaileddiscussion.
WeherewishtogiveafurthercharacterisationofthespectralmultiplicityofthezeroeigenvalueinthecaseofageneralselfadjointrealisationoftheLaplacian.Tothisendwe rstintroduce,fork∈R\{0},thematrix
i
C(l;k):= 2i 2i l1+l1k2..2i.lE+lEk
l1
+l1k...
k
+lEk
inwhichallmatrixentriesnotindicatedarezero.Thisnowenablesustoformulatethefollowing.
Proposition4.4.ForanygivenselfadjointrealisationoftheLaplacianspeci edthroughA,B,zeroisaLaplaceeigenvalue,i oneisaneigenvalueofS(A,B;k)C(l;k)forone,andhenceany,k∈R\{0}.Moreover,themultiplicityofthiseigenvalueonecoincideswiththespectralmultiplicityg0ofthezeroLaplaceeigenvalue.
Proof.EigenfunctionsoftheLaplaciancorrespondingtotheeigenvaluezeromustbeoftheformF=(f1,...,fE)Twith
fj(x)=αj+βjx,
14x∈[0,lj].(4.8) k +lE k , lE k(4.7)+lE
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
Hence,theboundaryvalues(2.2)taketheform TFbv=α1,...,αE,α1+β1l1,...,αE+β1lE, T′Fbv=β1,...,βE, β1,..., βE.
Wenowemploytheboundaryconditions(2.3)byusingtheexpressions(3.8)forapossiblechoiceofAandB.Theresultcanberearrangedtoyield
αα=C (l;k),(4.9)S(k)C+(l;k)ββ
where,foranyk∈R\{0},wehaveintroduced
1E±i
1+D1(l)kE l1 ..withD1(l)= .
.C±(l;k):=lE
Wealsousetheabbreviations
ThematricesC±(l,k)areinvertibleforallk∈R\{0},with
ii
C±(l;k) 1 = ± ±2i±±2ikα1 . α:= .. αE β1 . andβ:= .. .βE
1
l1k lE lEk...
1
lEk 1 l1k... 1 l1k
Wenowsubstitute
in(4.9)andobtain αv(k):=C (l;k)β k l1 .k (4.10)
S(k)C+(l;k)C (l;k) 1v(k)=v(k).
ItisstraightforwardtocheckthatC+(l;k)C (l;k) 1=C(l;k),compare(4.7).Thelin-earlyindependenteigenvectorsofSCcorrespondingtotheeigenvalueonethenyield,via(4.10)and(4.8),coe cientsαjandβjforasmanylinearlyindependentLaplaceeigen-functionsinL2(Γ).
15
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
whichisinnoobviouswayrelatedtothemultiplicityoftheeigenvalueoneofS(k)C(l;k)thatappearsinProposition4.4.Inthecaseofnon-Robinboundaryconditions,wheretheedgeS-matrixisindependentofk,however,Fulling,KuchmentandWilson[FKW07]wereabletorelatethedi erentmultiplicitiesintheformofanindextheorem.Theyshowed,inparticular,thatthen1trS.g0 4
Asmentionedabove,thistermwillreappearinthetraceformula.WeremarkthattheorderNofk0=0asazeroofthefunction(4.3)isthemultiplicityoftheeigenvalueoneof 01E,U(0)=S01E0
5Thetraceformula
AtraceformulaexpressescountingfunctionsofLaplaceeigenvaluesintermsofsums
2overperiodicorbits.Ideally,onewouldliketocountLaplaceeigenvalueskn,withtheir
multiplicitiesgn,inintervalsIintheform
TrχI( )=gn.(5.1)
2∈Ikn
Thesharpcut-o providedbythecharacteristicfunctionχIoftheintervalI,however,cannotbedealtwith.Onethereforereplaces(5.1)withasmoothcut-o and,moreover,performsthiscountintermsoftheassociatedwavenumberskn,i.e.,oneseeksto ndarepresentationfor gnh(kn)(5.2)
n
intermsofsumsoverperiodicorbits.Oneambitionthenisto ndasu cientlylargeclassoftestfunctionsh.
5.1Arougheigenvaluecount
AnestimateforthenumberofLaplaceeigenvaluesinintervalscanbeobtainedbyconsid-eringtheeigenphasesθ(k)ofU(k),see(4.2),de nedthrough
U(k)v(k)=eiθ(k)v(k)with v(k) =1.(5.3)
WerecallthatU(k)=S(A,B;k)T(l;k)isanalyticinC\[iσ(L)\{0}].Accordingtoanalyticperturbationtheory(see,e.g.,[Kat95])itseigenvalues,forwhichwekeepthenotationeiθ(k),arecontinuousonthissetanddi erentiableapartfrompossiblyisolatedpoints.Since,however,U(k)isreal-analyticandnormalforallk∈R,wecanapplyasharpenedversionofanalyticperturbationtheory(see[LT85])toconcludethatthe
16
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
eigenvaluesarerealanalyticforallk∈Randthatthereexistsachoiceofeigenvectorswiththesameproperty.
Thefollowingstatementisageneralisationofaresultfoundin[KS99b,BW08]thatis
validfork-independentS-matrices.
Lemma5.1.Letθ(k)beaneigenphaseofU(k),k∈R,withassociatednormalisedeigen-vectorv(k)=(v1(k),...,v2E(k))T.Then
d
L2+k2v(k) .
C2E
Proof.TakingLemma3.2intoaccountwe rstobservethat
d
2k
+iS(k) S(k) S (k)T(k)D(l)v(k) v(k)+S(k)T(k)v′(k),
where
D(l):= D1(l)0
0D1(l)
Wethenformascalarproductwithv(k),employingthe .relation
1
L2+k2
thatfollowsfrom(3.4).Thisyields
v(k),d
L2+k2v(k)+i U (k)v(k),D(l)v(k)
+ U (k)v(k),v′(k)
= 2ieiθ(k) v(k),L
dk[eiθ(k)v(k)] =iθ′(k)eiθ(k)+eiθ(k) v(k),v′(k) .
Comparing(5.6)and(5.7)provesthestatement(5.4).
17(5.4)(5.5)(5.7)
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
inglmax/mintodenotethelargestandthesmallestedgelength,respectively,andintroducing min{|λ|;λ∈σ(L)∩R },if λα<0 ,λmin:=∞,else
inanalogyto(3.12),
we
immediately
getthefollowing.
Corollary5.2.Thederivativeθ′(k)ofaneigenphaseθ(k)isboundedfromaboveandbelowaccordingto2.(5.8)lmin λ min
Inparticular,iflmin>2/λ+minthederivativesofalleigenphasesarealwayspositive.Proof.Obviously,
lmin≤2E i=1li|vi(k)|2≤lmax,
sincetheeigenvectorissupposedtobenormalised.Moreover,afteradiagonalisationofL,whenWLW isdiagonalwiththeeigenvaluesλαonthediagonal,oneobtains
Lv(k),,2λ2+kα
wherew(k)=Wv(k).This rstyields
1
L2+kv(k)2 ≤1
iθi(k)1 e= iθ′(k)eiθi(k)=0,theclaimfollowsfromCorollary5.2andPropo-dksition4.1.
18
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
WeremarkthatsincethescatteringapproachtotheproofofthetraceformulaisbasedoncountingzerosofthefunctionF(k)onthereallinewiththeirmultiplicities,therequirementlmin>2/λ+minisessential.OtherwiseonemightcountLaplaceeigenvalueswithincorrectmultiplicities.WheneverLhasnopositivepart,however,theconditionisempty.Thisis,e.g.,thecasefornon-Robinboundaryconditions.
AsafurtherapplicationofLemma5.1wenowperformaroughcountofLaplaceeigenvalues,whichisreminiscentofWeyl’slawforthecountofLaplaceeigenvaluesonmanifolds.
Lemma5.4.Assumethatlmin>2/λ+min,thenthereexistconstantsC+≥C >0suchthat
2thenumberN(K)ofLaplaceeigenvalueskn>0(includingmultiplicities)with0<kn≤Kful ls
C K≤N(K)≤C+K.(5.9)
Proof.AccordingtoProposition4.1thepositiveLaplaceeigenvaluesderivefromzerosofthedeterminantfunctionF(k).These,inturn,correspondtotheexistenceofα∈{1,...,2E},j∈Zandkα,j>0,suchthat
θα(kα,j)=2πj.(5.10)
Sincetheeigenphasesaredi erentiable,anapplicationofthemeanvaluetheoremallowstoconcludethat′θα(kα,j+1)=θα(kα,j)+(kα,j+1 kα,j)θα(k0),
wherekα,j≤k0≤kα,j+1.WithCorollary5.2andeq.(5.10)thisyields
2π
λ min≤kα,j+1 kα,j≤2πλ+min.
Hence,thenumberNα(K)ofsolutionsto(5.10)with0≤kα,j≤Kcanbeestimatedas KK≤Nα(K)≤+1.(5.11) λ+λminmin
AccordingtoLemma5.3,thebounds(5.9)followfromsumming(5.11)overallα.
Oncethetraceformulaisavailable,theresult(5.9)canbere ned,seeCorollary5.11below.Thislemma,however,providesuswithasu cientaprioriestimaterequiredintheproofofthetraceformula.It,moreover,immediatelyimpliesthefollowingwellknownresult.
Corollary5.5.ThediscreteLaplacespectrumconsistsofin nitelymanyeigenvaluesthatonlyaccumulateatin nity.
Asexplainedabove,thetraceformulacountseigenvalueswithasmoothcut-o .Wehenceconsideraparticulartypeofcut-o functions.
19
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
De nition5.6.Foreachr≥0thespaceHrconsistsofallfunctionsh:C→Csatisfyingthefollowingconditions:
hiseven,i.e.,h(k)=h( k).
Foreachh∈Hrthereexistsδ>0suchthathisanalyticinthestripMr+δ:={k∈C;|Imk|<r+δ}.
1 Foreachh∈Hrthereexistsε>0suchthath(k)=O
F′
2πi Cε,K
∞l
2πi +trΛ(k)U(k)h(k)dk,
∞
20(5.14)
We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbi
where2LΛ(k)= i
+∞ F′
2πi(k+iε)h(k+iε)
∞F dk.(5.16)
Beginningwiththeleft-handside,wehavetoshowthatin(5.13)thelimitK→∞canbetaken,followedbyε→0.Tothisendwenoticethattheright-handsideof(5.13)isexplicitlyindependentofε,intherangedescribedabovethatequation.Furthermore,from(5.12)wealreadyknowthatthesumoverknconvergesabsolutelyinthelimitK→∞.Inordertoperformtheselimitsontheleft-handsideof(5.13),andthusproducing(5.16),wehavetoestimatethecontributiontotheintegralcomingfromtheverticalpartsofthecontour.
Lemma3.3impliesthatfork∈Cwith|k|>λmaxtheapproximationF(k)=FO(|k| 1)holds,where∞(k)+
F∞(k):=det
d 1 S∞T(k) =1+ bdneiβnk,(5.17)n=1withn∈C,βn>0andb∈N.Thelastexpressionis rstde nedfork∈R,butcanbereadilyextendedtocomplexk.SinceS′(k)=O(|k| 2),seeLemma3.2andeq.(5.5),wealso ndF′(k)=F∞′(k)+O(|k| 2).Forsu cientlylarge|k|onecanthereforeapproximateF′(k)/F(k)byF∞′(k)/F∞(k).Inordertoestimatethelatterweemploy(5.17)toobtain F∞′(k) ≤bdmaxβmaxe βminImk,(5.18)withdmax:=max{|dn
k.Furthermore,|}andweβmax/min:=max/min{βn
dentofRepickk(0)
thefactthatF∞∈(kR),suchk∈Rthat},isF.a(Notequasi-periodick(0))=that0asthiswellboundasF
function.∞is(kindepen-(0))=0,
andtakeadvantageofOnecanhenceconstructa(strictlyincreasing)series{k(j);j∈N0}with
|F∞(k(j)) F∞(k(0))|<|F∞(k(0))|
4(5.20)
when|κ|issu cientlysmall.Therefore,whenεissmallenough,thefunction|F∞(k(j)+iκ)|, suchε≤thatκ≤ε,isuniformlyboundedfrombelowawayfromzero.ThusthereexistsCε>0
k(j)+iε
F
∞′(k)
k(j) iε
正在阅读:
The trace formula for quantum graphs with general self adjoint boundary conditions07-20
县直机关基层党委委员名册表(年报一)11-12
裁判员代表宣誓词02-07
色即是空,空即是色(完整)04-23
电荷和静电场(一) 西北大学大物作业05-01
道路排水管道技术标05-23
浙教版一年级数学下册暑假天天练3005-14
管理沟通·平时作业11-29
嵌入式课程设计报告07-05
MATLAB实验报告(5-9)03-11
- 1On Stationary, Self-Similar Distributions of a Collisionless, Self-Gravitating, Gas
- 2GENERAL BUSINESS TERMS
- 3General Memory Organization
- 4boundary scan技术资料
- 5General Design and Construction Considerations For Earth and
- 6Fluctuations in the Bose Gas with Attractive Boundary Condit
- 7The Cardy-Verlinde formula and entropy of Topological Reissn
- 8quantum-espresso安装
- 9Incompressible Quantum Hall Fluid
- 10Increasing self-esteem
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- conditions
- boundary
- formula
- quantum
- general
- adjoint
- graphs
- trace
- with
- self
- 生猪标准化规模养殖场建设项目实施方案
- 2015陕西公务员考试时政热点:2015年7月份国内时政重点汇总(一)
- 一起工业锅炉氧腐蚀案例分析及防腐措施
- 数据结构实验 查找
- 函授《组织行为学》A卷
- 氧化还原滴定法1
- Double action Strike form歌词
- 第三章 物态变化第四节-升华凝华学案
- 小学四年级语文4字词语成语填空题
- 人类将毁于不会毁于科技辩论词
- 新东方BEC中高级词汇(2012最新版)
- 张文志汽车定速巡航系统
- 城市河道水位远程监测系统设计 外文翻译
- 让眼神充满魅力(二)
- Android应用开发_学习笔记
- 高血压是一种以体循环动脉压增高为主要特点的临床综合征
- 4.4 理想溶液和非理想溶液
- 第十三章 国家预算和预算管理体制(财政学,魏学辉)
- 牵手世园,伴美家园
- 人工种植铁皮石斛技术和病虫害防治