污水处理工艺简述

更新时间:2024-07-07 08:00:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

污水处理工艺简述

1 污水处理的概念

为使污水达到排水某一水体或再次使用的水质要求,对其进行净化的过程称为污水处理。

2 污水处理的分类

按污水来源分类,污水处理一般分为生产污水处理和生活污水处理。生产污水包括工业污水、农业污水以及医疗污水等,而生活污水就是日常生活产生的污水。

按处理程度划分,可分为一级、二级和三级处理。 2.1 一级处理

主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 2.2 二级处理

主要去除污水中呈胶体和溶解状态的有机污染物质,去除率可达90%以上,使有机污染物达到排放标准。 2.3 三级处理

进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。

3 污水处理流程

整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初次沉淀池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二次沉淀池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二

次沉淀池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。

3.1 活性污泥法

活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。因此能从污水中去除溶解性的和胶体状态的生化有机物以及能被活性污泥吸附的悬浮固体和其他一些物质,同时也能去除一部分氮和磷元素。如今,活性污泥法及其衍生改良工艺是处理城市污水最广泛使用的方法。

3.1.1活性污泥法原理

第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。

第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。

经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。

3.1.2 曝气池分类

活性污泥法系统中,处理废水的核心构筑物为曝气池。曝气池的池型与构造可按以下进 行分类。

3.1.2.1按混合液流型

可分为推流式、完全混合式和循环混合式(即氧化沟)三种。 (1)推流式

推流式活性污泥曝气池有若干个狭长的流槽,废水从一端进入,另一端流出。此类曝气池又可分为平行水流(并联)式和转折水流(串联)式两种。随着水流的过程,废物降解,微生物增长。

(2)完全混合式

完全混合式是废水进入曝气池后,在搅拌下立即与池内活性污泥混合液混合,从而使进水得到良好的稀释,污泥与废水得到充分混合,可以最大限度地承受废水水质变化的冲击。

(3)循环混合式

氧化沟是一种循环混合式活性污泥法工艺,其曝气池呈封闭的沟渠形,污 水和活性污泥混合液在其中循环流动,因此被称为“氧化沟”,又称“环形曝气池”。

氧化沟结合推流和完全混合的特点,有力于克服短流和提高缓冲能力,通常在氧化沟曝气区上游安排入流,在入流点的再上游点安排出流。入流通过曝气区在循环中很好的被混合和分散,混合液再次围绕反应池继续循环。这样,氧化沟在短期内(如一个循环)呈推流状态,而在长期内(如多次循环)又呈混合状态。这两者的结合,既使入流至少经历一个循环而基本杜绝短流,又可以提供很大的稀释倍数而提高了缓冲能力。同时为了防止污泥沉积,必须保证沟内足够的流速(一般平均流速大于 0.3m/s),而污水在沟内的停留时间又较长,这就要求沟内有较大的循环流量(一般是污水进水流量的数倍乃至数十倍),进入沟内污水立即被大量的循环液所混合稀释,因此氧化沟系统具有很强的耐冲击负荷能力,对不易降解的有机物也有较好的处理能力。 3.1.2.2 从平面形状

可分为长方廊道形、圆形或方形、环形跑道形三种。 3.1.2.3 从采用的曝气方法

可分为鼓风曝气式、机械曝气式以及两者的混合曝气形式三种。 (1)鼓风曝气式

鼓风曝气式是采用空气(或纯氧)作氧源,以气泡形式鼓入废水中。它适合

于长方形曝

气池,布气设备装在曝气池的一侧或池底。气泡在形成、上升和破坏时向水中传氧并搅动水流。 (2)机械曝气式

机械曝气式是用专门的曝气机械,剧烈地搅动水面,使空气中的氧溶解于水中。通常,曝气机兼有搅拌和充氧作用,使系统接近完全混合型。如果在一个长方形池内安装多个曝气机,废水从一端进入,经几次机械曝气之后,从另一端流出,这种型式相当于若干个完全混合式曝气池串联工作,适用于废水量很大的处理系统。

(3)混合曝气形式

混合曝气形式是空气(或纯氧)进入混合液后,在搅拌机作用下,被剪切成微小气泡,从而加大气-液接触面积,提高充氧效率。

3.1.2.4 从曝气池与二次沉淀池的关系

可分为分建式和合建式两种。

自1912年开始自今,活性污泥法经过近100年的发展和改良,在理论和实践上都相当的成熟,同时也衍生出了很多种类的运行方式,如完全混合活性污泥法、延时曝气、纯氧曝气和浅层曝气等。

3.2 生物膜法

在污水处理构筑物内设置微生物生长聚集的载体(一般称填料),在充氧的条件下,微生物在填料表面聚附着形成生物膜,经过充氧的污水以一定的流速流过填料时,生物膜中的微生物吸收分解水中的有机物,使污水得到净化,同时微生物也得到增殖,生物膜随之增厚。当生物膜增长到一定厚度时,向生物膜内部扩散的氧受到限制,其表面仍是好氧状态,而内层则会呈缺氧甚至厌氧状态,并最终导致生物膜的脱落。随后,填料表面还会继续生长新的生物膜,周而复始,使污水得到净化。

微生物在填料表面聚附着形成生物膜后,由于生物膜的吸附作用,其表面存在一层薄薄的水层,水层中的有机物已经被生物膜氧化分解,故水层中的有机物浓度比进水要低得多,当废水从生物膜表面流过时,有机物就会从运动着的废水中转移到附着在生物膜表面的水层中去,并进一步被生物膜所吸附,同时,空气中的氧也经过废水而进入生物膜水层并向内部转移。

生物膜上的微生物在有溶解氧的条件下对有机物进行分解和机体本身进行新陈代谢,因此产生的二氧化碳等无机物又沿着相反的方向,即从生物膜经过附着水层转移到流动的废水中或空气中去。这样一来 ,出水的有机物含量减少,废水得到了净化。

本文来源:https://www.bwwdw.com/article/wij.html

Top