喷漆机器人小臂设计方案 -

更新时间:2023-11-29 21:06:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

绪论

喷漆机器人【spray painting robot】 可进行自动喷漆或喷涂其他涂料的工业机器人。中国研制出几种型号的喷漆机器人并投入使用,取得了较好的经济效果。喷漆机器人主要由机器人本体、计算机和相应的控制系统组成,液压驱动的喷漆机器人还包括液压油源,如油泵、油箱和电机等。多采用5或6自由度关节式结构,手臂有较大的运动空间,并可做复杂的轨迹运动,其腕部一般有2~3个自由度,可灵活运动。较先进的喷漆机器人腕部采用柔性手腕,既可向各个方向弯曲,又可转动,其动作类似人的手腕,能方便地通过较小的孔伸入工件内部,喷涂其内表面。喷漆机器人一般采用液压驱动,具有动作速度快、防爆性能好等特点,可通过手把手示教或点位示数来实现示教。喷漆机器人广泛用于汽车、仪表、电器、搪瓷等工艺生产部门。

机器人首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机器人。它的结构特点是机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。

日本是工业机器人发展最快、应用最多的国家。自1969年从美国引进两种典型机器人后,大力从事机器人的研究。目前工业机器人大部分还属于第一代,主要依靠人工进行控制;控制方式则为开环式,没有识别能力;改进的方向主要是降低成本和提高精度。

第二代机器人正在加紧研制。它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息进行反馈,使机器人具有感觉机能。

第三代机器人(机器人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系,并逐步发展成为柔性制造系统FMS(Flexible Manufacturing System) 和柔性制造单元FMC(Flexible Manufacturing Cell) 中的重要一环。

随着工业机器人研究制造和应用领域不断扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。国际工业机器人会议ISIR决定每年召开一次会议,讨论和研究机器人的发展及应用问题。

目前,工业机器人主要用于装卸、搬运、焊接、铸锻和热处理等方面,无论

数量、品种和性能方面还不能满足工业生产发展的需要。使用工业机器人代替人工操作的,主要是在危险作业(广义的)、多粉尘、高温、噪声、工作空间狭小等不适于人工作业的环境。

在国外机械制造业中,工业机器人应用较多,发展较快。目前主要应用于机床、模锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先制订的作业程序完成规定的操作,但还不具备传感反馈能力,不能应付外界的变化。如发生某些偏离时,就将引起零部件甚至机器人本身的损坏。

随着现代化科学技术的飞速发展和社会的进步,针对于上述各个领域的机器人系统的应用和研究对系统本身也提出越来越多的要求。制造业要求机器人系统具有更大的柔性和更强大的编程环境,适应不同的应用场合和多品种、小批量的生产过程。计算机集成制造(CIM)要求机器人系统能和车间中的其它自动化设备集成在一起。研究人员为了提高机器人系统的性能和智能水平,要求机器人系统具有开放结构和集成各种外部传感器的能力。然而,目前商品化的机器人系统多采用封闭结构的专用控制器,一般采用专用计算机作为上层主控计算机,使用专用机器人语言作为离线编程工具,采用专用微处理器,并将控制算法固化在EPROM中,这种专用系统很难(或不可能)集成外部硬件和软件。修改封闭系统的代价是非常昂贵的,如果不进行重新设计,多数情况下技术上是不可能的。解决这些问题的根本办法是研究和使用具有开放结构的机器人系统。 美国工业机器人技术的发展,大致经历了以下几个阶段:

(1)1963-1967年为试验定型阶段。1963-1966年, 万能自动化公司制造的工业机器人供用户做工艺试验。1967年,该公司生产的工业机器人定型为1900型。

(2)1968-1970年为实际应用阶段。这一时期,工业机器人在美国进入应用阶段,例如,美国通用汽车公司1968年订购了68台工业机器人;1969年该公司又自行研制出SAM新工业机器人,并用21组成电焊小汽车车身的焊接自动线;又如,美国克莱斯勒汽车公司32条冲压自动线上的448台冲床都用工业机器人传递工件。

(3)1970年至今一直处于推广应用和技术发展阶段。1970-1972年,工业机器人处于技术发展阶段。1970年4月美国在伊利斯工学院研究所召开了第一届全国工业机器人会议。

其他国家,如日本、苏联、西欧,大多是从1967,1968年开始以美国的“Versatran”和“Unimate”型机器人为蓝本开始进行研制的。就日本来说,1967年,日本丰田织机公司 引进美国的“Versatran”,川崎重工公司引进“Unimate”,并获得迅速发展。通过引进技术、仿制、改造创新。很快研制出国产化机器人,技术水平很快赶上美国并超过其他国家。经过大约10年的实用化时期以后,从1980年开始进入广泛的普及时代。

我国虽然开始研制工业机器人比较慢,但是由于种种原因,工业机器人技术的发展还是很迅速的。目前我国已开始有计划地从国外引进工业机器人技术,通过引进、仿制、改造、创新,工业机器人将会获得快速的发展。

因此,从长远看,产品的生产成本还会大大降低。而机器人价格的降低使一些中企业投资购买机器人变得轻而易举。因此,工业机器人的应用在各行各业得到飞速发展。

1 喷漆机器人小臂工作原理

手臂伸缩驱动装置上在终端焊有法兰的管子组成的气缸。在气缸内装着空心活塞杆,在其前端固定夹持器。法兰上固接俩个壳体。

在壳体中压入黄铜衬套,它是活塞杆的导向套。在活塞杆上刚性连接着卡箍,在其上固定着带有使活塞杆限位的两个挡块的杆。沿杆移动挡块可以调节手臂的行程。挡块的位置由螺钉固紧。

气缸的活塞杆腔经常处于压力之下。为使手臂深处,压缩空气进入该气缸的相反腔内,由于活塞的有效面积之差,活塞杆连同杆和挡块开始向左移动,实现手臂的深处,直至位置传感器带压缩弹簧的指杆碰到挡块为止。

传感器发出伸缩机构动作信号,传到控制系统中。为将手臂缩回,使活塞杆腔中的压力降低,而活塞在活塞杆腔中空气压力作用下开始向后运动。

为增加手臂缩回的速度,在网路中的空气传输管道中装有快速排气阀。 在壳体中装有双联液压缓冲器,它保证手臂向前或向后运动接近定位点是的制动。

与活塞杆一起运动的手臂作用在挡块上市,它们压在滑阀的伸出活塞杆上,将其压入壳体中。当滑阀运动时,油通过壳体中由锥形尾部和孔所形成的环形孔从腔中流出。在滑阀移动时,环形孔截面减小,平稳的增加手臂运动阻力。以产生手臂的制动。制动效果可有节流阀调节。

2 机器人的执行机构

2.1 腕部

腕部是连接手部和臂部的部件,并可用来调节焊枪的方位,以扩大焊枪的工 作范围,并使手部变的更灵巧,适应性更强。手腕有独立的自由度。有回转运动 上下摆动、左右摆动。一般腕部设有回转运动再增加一个上下摆动即可满足工作 出所需的零件。因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。本次设计的焊接机器人的腕部是利用液压缸实现手部的旋转运动。设计的焊接机器人的腕部的运动为一个自由度的回转运动,运动参数是实现手部回转的角度控制在-90~90

腕部的驱动方式采用直接驱动的方式,由于腕部装在手臂的末端,所以必须设计的十分紧凑可以把驱动源装在手腕上。机器人手腕的回转运动是由回转液压缸实现的。将夹紧活塞缸的外壳与摆动油缸的动片连接在一起;当回转液压缸中不同的油腔中进油时即可实现手腕不同方向的回转。

2.2 臂部

手臂部件是机械手的重要握持部件。它的作用是支撑腕部和手部(包括工作 或夹具),并带动他们做空间运动。臂部运动的目的:把手部送到直线运动范围内任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。因此,一般来说臂部具有一个自由度就能满足基本要求,即臂部的伸缩运动。

臂部的运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部的静、动载荷。因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。本次设计实现臂部的前后伸缩运动。臂部的运动参数:伸缩行程:1850mm;伸缩速度:1200mm/s~1400mm/s。机器人臂部的伸缩使其手臂的工作长度发生变化,在直角坐标式结构中,手臂的最大工作长度决定其末端所能达到的最远距离。伸缩式臂部机构的驱动可采用液压缸直接驱动。

本次课程设计主要采用气缸为主要动力机构。

3 设计主要技术参数

3.1 小臂

伸缩行程 600mm

伸缩速度: 1200mm/s~1400mm/s 回转范围: -90 ~ +90 3.2 腕部

回转范围: -90 ~ +90

4 腕部的设计和计算

4.1 基本要求与结构

(1)具有一个自由度的回转驱动的腕部结构它具有结构紧凑、灵活等优点而 被广腕部回转,总力矩从,需要克服以下几种阻力:克服启动惯性所用。回转角 由动片和静片之问允许冋转的角度来决定(一般小于270。〉。 (2)力齿条活塞驱动的腕部结构在要求回转角大于270。的情况下,可釆用齿 条活塞驱动的腕部结构。这种结构外形尺寸较大。

(3)具有两个自由度的回转驱动的腕部结构它使腕部具有水平和垂直转动 的两个自由度。

(4)机-液结合的腕部结构。 4.2 驱动结构的选择

腕部结构选择具有 一个自由度的回转驱动腕部结构,釆用液压驱动。 4.3腕部设计及计算

4.3.1 手腕静载荷分析

手腕自重35kg,机器人满载,即手部夹取100kg重物,手腕质心可认为位于腕部连接轴的轴线上,且手腕质量分布均匀,重物距腕部轴线400mm,取g=9.8m/s2。

1、水平位置载荷分析

如装备图中所示,手腕处于水平位置,将手腕简化为杆,左端受到重物的拉力F1,右端受到腕部连接轴对其的反力F2,与手腕同轴的链轮上的扭矩M,及手腕的自重G。其受力如图1所示。

F2

M

A

B

F1

G

图1

图中各载荷:

F1=1000N,G=240N,F2,M,待求解;AB=600mm。

由于小臂处于静止状态,故各分力合力为零,由此可列出方程组:

F2?F1?G?0 M?F1?AB?0

解方程组可得: F2=1240N,M=600N·m。

5 小臂的设计与计算

5.1 小臂设计的基本要求

臂部设计首先要实现所要求的运动,为此,需要满足下列各项基本要求: 一、臂部应承载能力大、刚度好、自重轻

对于机械手臂部或机身的承载能力,通常取决于其刚度。以臂部为例,一般 结构上较多采用悬锊梁形式(水平或垂直悬仲〕。显然仲缩锷杆的悬仲长度愈大, 则刚度愈差。而且其刚度随着臂杆的伸缩不断变化。对机械手的运动性能、位置 精度和负荷能力影响很大。为提高刚度,除尽可能缩短臂杆的悬伸长度外,尚应 注意以下几方面:

(1)根据受力情况,合理选择截面形状和轮廓尺寸; (2)合理布置作用力的位置和方向 (3)注意简化结构 (4)提高配合精度

二、臂部运动速度要高,惯性要小

机械手手部的运动速度是机械手的主要参数之一,它反映机械手的生产水平。对于高速度运动的机械手,其最大移动速度设计在最大回转角速度设计在内,大部分平均移动速度为,平均回转角速度在。在速度和回转角速度一定的愔况下,减小自身重量是减小惯性的最有效,最直接的办法,因此机械手臂部要尽可能的轻。

三、手臂动作应该灵活

为减少手臂运动之间的摩擦阻力,尽可能用滚动摩擦代替滑动摩擦。对

于悬臂式的机械手,其传动件、导向件和定位件布置合理,使手臂运动尽可能平衡,以减少对升降支撑轴线的偏心力矩,特别要防止发生机构卡死(自锁现象)。为此,必须计算使之满足不自锁的条件错误 四、位置精度要求高

一般来说,直角和圆柱坐标式机械手位置精度要求较高;关节式机械手的位置精度最难控制,故精度差;在手臂上加设定位装置和检测结构,能较好地控制位置精度,检测装置最好装在最后的运动环节以减少或消除传动、啮合件间的间隙。

总结:除此之外,要求机械手的通用性要好,能适合多种作业的要求;工艺

性好,便于加工和安装;用于热加工的机械手,还要考虑隔热、冷却;用于作业区粉尘大的机械手还要设置防尘装置等。

以上要求是相互制约的,应该综合考虑这些问题,只有这样,才能设计出完美的、性能良好的机械手。

5.2 小臂运动机构的选择

5.2.1通过以上,综合考虑,本次设计选择液压缸缓冲机构,使用液压

驱动。

和气压缸伸缩机构,使气压驱动 5.3 手臂直线运动的驱动力计算

首先进行粗略的计算,或者类比同类结构,根据运动参数初步确定有关机构的主要尺寸,在进行校核计算,修正设计。如此反复,最终绘出结构图。

做水平运动伸缩直线运动的气压驱动力,应根据气压缸运动时所克服的摩擦力合惯性力几个方面的阻力确定。

活塞杆驱动力计算公式:

F=(A1P1-A2P2)

5.3.1 小臂摩擦力的计算

?Ma?0

G总L?aFb 得

?Y?0

G总?Fb?Fa

得 F摩?Fa摩?Fb摩??Fa??Fb

?2L?a? ?F摩??G总? ??a?式中G为参与运动的零部件所受的总重力(N)

L为手臂与运动零部件的总重量的重心到导向支撑的前端的距离(m) a为导向支撑的长度(m)

?为摩擦系数,对于静摩擦切无润滑时:

本文来源:https://www.bwwdw.com/article/wiit.html

Top