1、【最新】数学中考压轴题大全(含答案、详细解析版)

更新时间:2023-04-29 03:33:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【最新】中考数学压轴题大全

(安徽)按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输

出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100

(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:

(Ⅰ)新数据都在60~100(含60和100)之间;

(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大

的对应的

新数据也较大。 (1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12

时,这种变换满足上

述两个要求; (2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)

【解】(1)当P=12时,y=x +()11002

x -,即y=1502x +。 ∴y 随着x 的增大而增大,即P=

12时,满足条件(Ⅱ)……3分 又当x=20时,y=

1100502

?+=100。而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;……6分 (2)本题是开放性问题,答案不唯一。若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。

如取h=20,y=()220a x k -+,……8分

∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分

令x=20,y=60,得k=60 ①

令x=100,y=100,得a ×802+k=100 ②

由①②解得116060

a k ?=???=?, ∴()212060160y x =-+。………14分 2、(常州)已知(1)A m -,

与(2B m +,是反比例函数k y x

=图象上的两个点. (1)求k 的值;

(2)若点(10)C -,,则在反比例函数k y x

=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,

求出点D 的坐标;若不存在,请说明理由.

解:(1

)由(1)2(m m -=+

,得m =-

k =. ······ 2分

(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =

,BE =

BC =30BCE = ∠.

由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =

∠.

当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,

故不符题意. ······························ 3分

当BC 为底时,过点A 作BC 的平行线,交双曲线于点D ,

过点A D ,分别作x 轴,y 轴的平行线,交于点F . 由于30DAF = ∠,设11(0)DF m m =>

,则1AF =,12AD m =,

由点(1

A --,

,得点11(1)D m -+-,.

因此11(1)()m --=

解之得1m =10m =舍去)

,因此点6D ? ??

5分

如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D .

由于AC BC =,因此30CAB = ∠,从而150ACD =

∠.作DH x ⊥轴,H 为垂足,

则60DCH = ∠,设22(0)CH m m =>,则2DH =,22CD m = 由点(10)C -,,得点22(1)D m -+,

因此22(1)m -+=.

解之得22m =(21m =-舍去),因此点(1

D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········· 7分

如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,

同理可得,点(2D -,四边形ABCD 是梯形. ·············· 9分

综上所述,函数y x

=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐图1

图2 y

标为:6D ?

??

或(1D

或(2D --,. ··············· 10分

3、(福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.

(1)求抛物线的对称轴;

(2)写出A B C ,,三点的坐标并求抛物线的解析式;

(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.

解:(1)抛物线的对称轴5522

a x a -=-=………2分 (2)(30)A -, (54)B , (04)C ,…………5分 把点A 坐标代入254y ax ax =-+中,解得16

a =-………6分 215466y x x ∴=-++…………………………………………7分

(3)存在符合条件的点P 共有3个.以下分三类情形探索. 设抛物线对称轴与x 轴交于N ,与CB 交于M . 过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =,

5.5AN =,52

BM =

① ······························································································································· 以AB 为腰且顶角为角

A 的PA

B △有1个:1P AB △.

222228480AB AQ BQ ∴=+=+= ················· 8分

在1Rt ANP △

中,1

PN ====

1522P ?∴- ?

?, ························· 9分 ②以AB 为腰且顶角为角B 的PAB △有1个:2P AB △.

在2Rt BMP △

中,22

MP =

===10分

252P ?∴ ??

······················· 11分

③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.

画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .

过点3P 作3P K 垂直y 轴,垂足为K ,显然3

Rt Rt PCK BAQ △∽△. 312

P K BQ CK AQ ∴

==.

3 2.5P K = 5CK ∴= 于是1OK = ··············· 13分 3(2.51)P ∴-, ·························· 14分 注:第(3)小题中,只写出点P 的坐标,无任何说明者不得分.

4、(福州)如图12,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;

(2)若双曲线(0)k y k x

=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x

=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.

解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .

∴ 点A 的坐标为( 4,2 ). ∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 .

(2) 解法一:如图12-1,

∵ 点C 在双曲线上,y = 8时,x = 1

∴ 点C 的坐标为 ( 1, 8 ) . 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON . S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 . S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 . 解法二:如图12-2,

过点 C 、A 分别做x 轴的垂线,垂足为E 、F ,

图12

x y 21x y 8=

∵ 点C 在双曲线8

y x =上,当y = 8时,x = 1 .

∴ 点C 的坐标为 ( 1, 8 ).

∵ 点C 、A 都在双曲线8

y x =上 ,

∴ S △COE = S △AOF = 4 。

∴ S △COE + S 梯形CEFA = S △COA + S △AOF .

∴ S △COA = S 梯形CEFA .

∵ S 梯形CEFA = 1

2×(2+8)×3 = 15 ,

∴ S △COA = 15 .

(3)∵ 反比例函数图象是关于原点O 的中心对称图形 , ∴ OP=OQ ,OA=OB .

∴ 四边形APBQ 是平行四边形 .

∴ S △POA = S 平行四边形APBQ = ×24 = 6 .

设点P 的横坐标为m (m > 0且4m ≠),

得P ( m , ) .

过点P 、A 分别做x 轴的垂线,垂足为E 、F ,

∵ 点P 、A 在双曲线上,∴S △POE = S △AOF = 4 .

若0<m <4,如图12-3,

∵ S △POE + S 梯形PEFA = S △POA + S △AOF ,

∴ S 梯形PEFA = S △POA = 6 . 4141m

8

∴ 18(2)(4)62m m

+?-=. 解得m = 2,m = - 8(舍去) .

∴ P (2,4).

若 m > 4,如图12-4,

∵ S △AOF + S 梯形AFEP = S △AOP + S △POE ,

∴ S 梯形PEFA = S △POA = 6 .

∴18(2)(4)62m m

+?-=, 解得m = 8,m = - 2 (舍去) .

∴ P (8,1).

∴ 点P 的坐标是P (2,4)或P (8,1).

5、(甘肃陇南)如图,抛物线212y x mx n =

++交x 轴于A 、B 两点,交y 轴于点C ,点P 是它的顶点,点A 的横坐标是-3,点B 的横坐标是1.

(1)求m 、n 的值;

(2)求直线PC 的解析式;

(3)请探究以点A 为圆心、直径为5的圆与直线 PC 的位置关系,并说明理由.(

参考数: 1.41≈

, 1.73≈

2.24≈) 解: (1)由已知条件可知: 抛物线212

y x mx n =++经过A (-3,0)、B (1,0)两点. ∴ 903,210.2

m n m n ?=-+????=++?? ……………………………………2分 解得 31,2m n ==-. ………………………3分

(2) ∵21322y x x =+-, ∴ P (-1,-2),C 3(0,)2

-. …………………4分 设直线PC 的解析式是y kx b =+,则2,3.2

k b b -=-+???=-?? 解得13,22k b ==-. ∴ 直线PC 的解析式是1322

y x =-. …………………………6分 说明:只要求对1322

k b ==-,,不写最后一步,不扣分. (3) 如图,过点A 作AE ⊥PC ,垂足为E .

设直线PC 与x 轴交于点D ,则点D 的坐标为(3,0). ………………………7分

在Rt△O CD 中,∵ O C =32

,3OD =,

∴ CD =. …………8分 ∵ O A =3,3OD =,∴AD =6. …………9分

∵ ∠C O D =∠AED =90o

,∠CD O 公用,

∴ △C O D ∽△AED . ……………10分 ∴ OC CD AE AD =, 即3226AE =.

∴ AE =. …………………11分

2.688 2.5>, ∴ 以点A 为圆心、直径为5的圆与直线PC 相离. …………12分

6、(贵阳)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为90 的扇形.

(1)求这个扇形的面积(结果保留π).(3分)

(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分)

(3)当O 的半径(0)R R >为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分)

解:(1)连接BC ,由勾股定理求得:

AB AC ==················ 1分 213602n R S π==π ················ 2分 (2)连接AO 并延长,与弧BC 和O 交于E F ,,

2EF AF AE =-=························

1分 弧BC

的长:1802

n R l π==π ······················ 2分

22

r π=π ∴

圆锥的底面直径为:22r =

····················· 3分

22

< ,∴不能在余料③中剪出一个圆作为底面与此扇形围成圆锥. ·· 4分 (3

)由勾股定理求得:AB AC =

弧BC

的长:1802

n R l R π==π ····················· 1分

22

r R π= ∴

圆锥的底面直径为:22r R =

···················· 2分

2(2EF AF AE R R =-==-

2< 且0R >

B

(2

2

R R

∴<··························3分

即无论半径R为何值,2

EF r

<·····················4分∴不能在余料③中剪出一个圆作为底面与此扇形围成圆锥.

7、(河南)如图,对称轴为直线x=

2

7

的抛物线经过点A(6,0)和B(0,4).

(1)求抛物线解析式及顶点坐标;

(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;

(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?

②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

8、(湖北黄岗)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B

的坐标是,点P从点C 开始以每秒1个单位长度的速度在线段CB上向点B移动,设(08

t t<≤秒后,直线PQ交OB于点D.

(1)求∠A OB的度数及线段OA的长;

(2)求经过A,B,C三点的抛物线的解析式;

(3

)当3,

a OD

==t的值及此时直线PQ的解析式;

(4)当a为何值时,以O,P,Q,D为顶点的三角形与OAB

?相似?当a为何值时,以O,P,Q,D为顶点的三角形与OAB

?不相似?请给出你的结论,并加以证明.

9、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.

(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;

(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;

(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF 重合,则∠BPE=90°.∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.

∴Rt△POE∽Rt△BPA.…………………………………………………………2分

∴PO BA

OE AP

=.即

3

4

x

y x

=

-

.∴y=2

114

(4)

333

x x x x

-=-+(0<x<4).

且当x =2时,y 有最大值13

.…………………………………………………4分 (2)由已知,△PAB 、△POE 均为等腰三角形,可得P (1,0),E (0,1),B (4,3).……6分

设过此三点的抛物线为y =ax 2+bx +c ,则1,0,164 3.c a b c a b c =??++=??++=?∴1,23,21.a b c ?=???=-??=???

y =213122

x x -+.…………………………………………………………8分 (3)由(2)知∠EPB =90°,即点Q 与点B 重合时满足条件.……………………9分

直线PB 为y =x -1,与y 轴交于点(0,-1).

将PB 向上平移2个单位则过点E (0,1),

∴该直线为y =x +1.……………………………………………………………10分 由21,131,22y x y x x =+???=-+??

得5,6.x y =??=?∴Q(5,6). 故该抛物线上存在两点Q (4,3)、(5,6)满足条件.……………………………12分

(2009年重庆市)26.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .

(1)求过点E 、D 、C 的抛物线的解析式;

(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为

6

5

,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.

26.解:(1)由已知,得(30)C ,,(22)D ,,

90ADE CDB BCD ∠=-∠=∠ °,

1

tan 2tan 212

AE AD ADE BCD ∴=∠=?∠=?= .

∴(01)

E ,. ··························································································································· (1分) 设过点E D C 、、的抛物线的解析式为2

(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.

将1c =和点D C 、的坐标分别代入,得

42129310.

a b a b ++=??

++=?,

················································································································· (2分) 解这个方程组,得56

136a b ?=-????=??

故抛物线的解析式为2513

166

y x x =-

++. ·

·································································· (3分) (2)2EF GO =成立. ····································································································· (4分)

点M 在该抛物线上,且它的横坐标为6

5

∴点M 的纵坐标为12

5

. ··································································································· (5分) 设DM 的解析式为1(0)y kx b k =+≠,

26题图

x

x

将点D M 、的坐标分别代入,得

1122612.5

5k b k b +=???+=??, 解得1123k b ?=-???=?,. ∴DM 的解析式为132

y x =-+. ·················································································· (6分) ∴(03)F ,

,2EF =. ········································································································ (7分) 过点D 作DK OC ⊥于点K ,

则DA DK =.

90ADK FDG ∠=∠= °,

FDA GDK ∴∠=∠.

又90FAD GKD ∠=∠= °,

DAF DKG ∴△≌△.

1KG AF ∴==.

1GO ∴=. ·

························································································································· (8分) 2EF GO ∴=.

(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.

∴222(1)2PG t =-+,222(3)2PC t =-+,2GC =.

①若PG PC =,则2222

(1)2(3)2t t -+=-+,

解得2t =.∴(22)P ,,此时点Q 与点P 重合.

∴(22)Q ,

. ·························································································································· (9分) ②若PG GC =,则22(1)22t 2-+=,

解得 1t =,(12)P ∴,,此时GP x ⊥轴. GP 与该抛物线在第一象限内的交点Q 的横坐标为1,

∴点Q 的纵坐标为73

. ∴713Q ?? ???

,. ····················································································································· (10分) ③若PC GC =,则222(3)22t -+=,

解得3t =,(32)P ∴,,此时2PC GC ==,PCG △是等腰直角三角形. 过点Q 作QH x ⊥轴于点H ,

(P )

则QH GH =,设QH h =,

(1)Q h h ∴+,.

2513(1)(1)166

h h h ∴-++++=. 解得12725

h h ==-,(舍去). 12755Q ??∴ ???

,. ················································· (12分) 综上所述,存在三个满足条件的点Q ,

即(22)Q ,或713Q ?? ???,或12755Q ??

???

,. (2009年重庆綦江县)26.(11

分)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .

(1)求该抛物线的解析式;

(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?

(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ

*26.解:(1) 抛物线2(1)0)y a x a =-+≠经过点(A -09a a ∴=+=······································································································· 1分 ∴二次函数的解析式为:2333y x x =-

++ ························································· 3分 (2)D 为抛物线的顶点(1D ∴过D 作DN OB ⊥于N ,则DN =

3660AN AD DAO =∴==∴∠=,° ··························································· 4分

OM AD ∥

①当AD OP =时,四边形DAOP 是平行四边形

66(s)OP t ∴=∴= ······················································· 5分 ②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH = (如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求

AH

55(s)OP DH t ∴=== ·

········································································································· 6分 ③当PD OA =时,四边形DAOP 是等腰梯形

26244(s)OP AD AH t ∴=-=-=∴=

综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. ·· 7分

(3)由(2)及已知,60COB OC OB OCB ∠==°,,△是等边三角形

则6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,,

过P 作PE OQ ⊥于E ,则2

PE = ··················································································· 8分 116(62)22BCPQ S t ∴=???- =2322t ?-+???··············································································································· 9分 当32t =时,BCPQ S ············································································ 10分 ∴此时33393324

44OQ OP OE QE PE ==∴=-==,=, 2PQ ∴===······························································ 11分

(2009年河北省)26.(本小题满分12分)

如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).

(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与

t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成

为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.

26.解:(1)1,8

5

(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC

,4BC =, 得

45QF t =.∴4

5

QF t =. ∴14(3)2

5

S t t =-?, 即2265

5

S t t =-+.

(3)能.

①当DE ∥QB 时,如图4.

∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.

由△APQ ∽△ABC ,得AQ AP

AC AB

=

, 即335t t -=

. 解得9

8

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.

此时∠APQ =90°. 由△AQP ∽△ABC ,得

AQ AP

AB AC

=

, 即353t t -=. 解得158

t =.

(4)52t =

或45

14

t =. 【注:①点P 由C 向A 运动,DE 经过点C .

方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234

[(5)][4(5)]55

t t =-+--.

由2

2

PC QC =,得2

2234

[(5)][4(5)]55

t t t =-+--,解得52t =.

方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得

B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==

.∴5

2

t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.

图4

图3

F

P

图5

22234(6)[(5)][4(5)]55t t t -=-+--,4514

t =】

(2009年河南省)23.(11分)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2

+bx 过A 、C 两点.

(1)直接写出点A 的坐标,并求出抛物线的解析式;

(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD

向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?

②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?

请直接写出相应的t 值.

解.(1)点A 的坐标为(4,8) …………………1分

将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx 8=16a +4b 得

0=64a +8b

解 得a =-12

,b =4 ∴抛物线的解析式为:y =-12

x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48

∴PE =12AP =12

t .PB=8-t . ∴点E的坐标为(4+12

t ,8-t ). ∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18

t 2+8. …………………5分 ∴EG=-18

t 2+8-(8-t ) =-18t 2+t .

∵-18

<0,∴当t =4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分

t 1=

163, t 2=4013,t 3

. …………………11分 (2009年山西省)26.(本题14分)如图,已知直线128:33

l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.

(1)求ABC △的面积;

(2)求矩形DEFG 的边DE 与EF 的长;

(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设

移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关

t 的函数关系式,并写出相应的t 的取值范围.

26.(1)解:由28033

x +=,得4x A =-∴.点坐标为()40-,. 由2160x -+=,得8x B =∴.点坐标为()80,

. ∴()8412AB =--=. ·························································································· (2分) 由2833216y x y x ?=+???=-+?

,.解得56x y =??=?,.∴C 点的坐标为()56,. ······································· (3分) ∴111263622

ABC C S AB y =

=??=△·. ································································ (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=?+=,. ∴D 点坐标为()88,. ······························································································ (5分)

又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..

(第26题)

∴E 点坐标为()48,. ····························································································· (6分)

∴8448OE EF =-==,. ················································································· (7分)

(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,

为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.

BG RG BM CM =,即36

t RG

=,

∴2RG t =. Rt Rt AFH AMC △∽△,

∴()()112

36288223

ABC BRG AFH S S S S t t t t =--=-??--?-△△△.

即241644

333

S t t =-++.

········································································· (10分) (2009年山西省太原市)29.(本小题满分12分)

问题解决

如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E

(不与点C ,

D 重合)

,压平后得到折痕MN .当12CE CD =时,求

AM

BN

的值.

类比归纳

在图(1)中,若

13CE CD =,则AM BN 的值等于 ;若14

CE CD =,则AM BN 的值等于 ;若1

CE CD n =(n 为整数),则AM

BN

的值等于 .(用含n 的式子表示)

联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n

=>=,,则AM

BN 的值等于 .(用含m n ,的式子表示)

(图3)

(图1)

(图2)

方法指导:

为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2

图(1)

A B

C

D E

F

M

N

本文来源:https://www.bwwdw.com/article/wc3q.html

Top