四自由度多用途气动机器人结构及控制设计说明书
更新时间:2024-05-27 23:18:01 阅读量: 综合文库 文档下载
- 四轴机器人的自由度推荐度:
- 相关推荐
目录
目录.........................................................1
文摘.........................................................3
Abstract.....................................................3
第一章 绪论
1.1 机械手概述.............................................4 1.2 机械手的组成和分类.....................................4
1.2.1 机械手的组成. 1.2.2 机械手的分类 1.3 国内外发展状况.. ...........................................................................................7 1.4 课题的提出及主要任务………………………………………………8
1.4.1 课题的提出
1.4.2 课题的主要任务
第二章 机械手的设计方案
2.1 机械手的座标型式与自由度……………………………………….10 2.2 机械手的手部结构方案设计……………………………………….11 2.3 机械手的手腕结构方案设计………………………………………..122.4 机械手的手臂结构方案设计……………………………………….12 2.5 机械手的驱动方案设计…………………………………………….12 2.6 机械手的控制方案设计……………………………………………..122.7 机械手的主要参数…………………………………………………..122.8 机械手的技术参数列表……………………………………………12
第三章 手部结构设计
3.1 夹持式手部结构…………………………………………………….14
3.1.1 手指的形状和分类 3.1.2 设计时考虑的几个问题 3.1.3 手部夹紧气缸的设计
第四章 手腕结构设计
4.1 手腕的自由度……………………………………………………….18 4.2 手腕的驱动力矩的计算……………………………………………..194.2.1 手腕转动时所需的驱动力矩 4.2.2 回转气缸的驱动力矩计算 4.2.3 回转气缸的驱动力矩计算校核
1
第五章 手臂伸缩,升降,回转气缸的设计与校核
5.1 手臂伸缩部分尺寸设计与校核……………………………………..24
5.1.1 尺寸设计 5.1.2 尺寸校核 5 .1 .3 导向装置 5 .1 .4 平衡装置 5.2 手臂升降部分尺寸设计与校核……………………………………26
5.2.1 尺寸设计 5.2.2 尺寸校核 5.3 手臂回转部分尺寸设计与校核……………………………………27
5.3.1 尺寸设计 5.3.2 尺寸校核
第六章 气动系统设计
6.1 气压传动系统工作原理图…………………………………………29 6.2 气压传动系统工作原理图的参数化绘制…………………………30 第七章 机械手的 PLC 控制设计
7.1 可编程序控制器的选择及工作过程……………………………….31
7.1.1 可编程序控制器的选择 7.1.2 可编程序控制器的工作过程 7.2 可编程序控制器的使用步骤……………………………………….31
7.3 机械手可编程序控制器控制方案…………………………………..32
第八章 结论…………………………………………………………………...36
致谢…………………………………………………………………………….37 参考文献
2
四自由度多用途气动机器人结构设计及控制实现
机械设计制造及其自动化 2002121130
指导教师: 俞国燕
谢刚
中文摘要:
本文简要介绍了工业机器人的概念,机械手的组成和分类,机械手的自由度和坐标形式, 气动技术的特点,PLC控制的特点及国内外的发展状况。
本文对机械手进行总体方案设计,确定了机械手的坐标形式和自由度,确定了机械手的 技术参数。同时,设计了机械手的夹持式手部结构,设计了机械手的手腕结构,计算出了手 腕转动时所需的驱动力矩和回转气缸的驱动力矩。设计了机械手的手臂结构。
设计出了机械手的气动系统,绘制了机械手气压系统工作原理图,对气压系统工作原理 图的参数化绘制进行了研究,大大提高了绘图效率和图纸质量。
利用可编程序控制器对机械手进行控制,选取了合适的PLC型号,根据机械手的工作流 程制定了可编程序控制器的控制方案,画出了机械手的工作时序图,并绘制了可编程序控制 器的控制程序。
关键词 工业机器人,机械手,气动,可编程序控制器(PLC)
ABSTRACT:
At first, the paper introduces the conception of the industrial robot and the eler. dary information of the development briefly . What’s more, the paper accounts for the background and the primary mission of the topic.
The paper introduces the function, composing and classification of the manipulator , tells out the free-degree and the form of coordinate . At the same time, the paper gives out the primary specification parameter of this manipulator,
The paper designs the structure of the hand and the equipment of the drive of the manipulator , This paper designs the structure of the w rist , computes the needed moment of the drive w hen the wrist w heels and the moment of the drive of the pump. The paper designs the structure of the arm.
The paper designs the system of air pressure drive and draws the w ork principle chart , the manipu lator uses PLC to control . The paper institutes tw o control schemes of PLC according t o the w ork flow of the manipulator . The paper draw s out the w ork time sequence chart and the trapezia chart . What’s more , the paper w orkout the control program of the PLC , KEY WORDS :
industrial robot, manipulator , pump , air pressure drive , PLC
3
1.1 工业机械手概述
第一章 绪 论
工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一 种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化 生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生 产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合 了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高 新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工 业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人 的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判 断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说 它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先 进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、 轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被 称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以 减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、 易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。 因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交 通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强, 仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制 成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”, 简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断 变换生产品种的中小批量生产中获得广泛的引用。
1.2 机械手的组成和分类
1.2.1机械手的组成 机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所
组成。各系统相
互之间的关系如方框图2-1所示。
4
机械手组成方框图:
Pane chart of composition of manipulator
(一)执行机构 包括手部、手腕、手臂和立柱等部件,有的还增设行走
机构。
1、手部
即与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸附式手在本 课题中我们采用夹持式手部结构。夹持式手部由手指(或手爪)和传力机构所构成。手指 是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。回转型手指结构简 单,制造容易,故应用较广泛。平移型应用较少,其原因是结构比较复杂,但平移型手 指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大 的工件。手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的 重量及尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有 双指式、多指式和双手双指式等。而传力机构则通过手指产生夹紧力来完成夹放物件的 任务。传力机构型式较多时常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿 条式、丝杠螺母弹簧式和重力式等。 2、手腕
是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势)
3、手臂
手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是带动手指去抓取物件,
并按预定要求将其搬运到指定的位置.工业机械手的手臂通常由驱动手臂运动的部件(如油 缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电 机等)相配合,以实现手臂的各种运动。 4、立柱
立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯 仰)运动均与立柱有密切的联系。机械手的立I因工作需要,有时也可作横向移动,即称 为可移式立柱。
5
5、行走机构
当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座上安滚轮式
行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。滚轮式布为有轨的 和无轨的两种。驱动滚轮运动则应另外增设机械传动装置。
6、机座
机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,
故起支撑和连接的作用。
(二)驱动系统 驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助装置组
成。常
用的驱动系统有液压传动、 气压传动、机械传动。控制系统是支配着工业机械手按规定的 要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块 定位)系统组成。控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动, 并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控
制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发 生故障时即发出报警信号。
(二)控制系统 控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的
控制系
统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。控制系统有电气控制和 射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息 (如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出 指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。 (四)位置检测装置 控制机械手执行机构的运动位置,并随时将执行机构的实际位置反馈给
控制系统,
并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度 达到设定位置.
1.2.2 机械手的分类 工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分
类标准,在此 暂按使用范围、驱动方式和控制系统等进行分类。 (一)按用途分 机械手可分为专用机械手和通用机械手
两种:
1、专用机械手
它是附属于主机的、具有固定程序而无独立控制系统的机械装置。专用机械手具有 动作少、工作对象单一、结构简单、使用可靠和造价低等特点,适用于大批量的自动化 生产的自动换刀机械手,如自动机床、自动线的上、下料机械手和‘叻口工中心” 2、通用机械手 它是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。格
性能范围 内,其动作程序是可变的,通过调整可在不同场合使用,驱动系统和控制系统是独立的。 通用机械手的工作范围大、定位精度高、通用性强,适用于不断变换生产品种的中小批 量自动化的生产。通用机械手按其控制定位的方式不同可分为简易型和伺服型两种:简 易型以“开一关”式控制定位,只能是点位控制:可以是点位的,也可以实现连续轨控
6
制, 伺服型具有伺服系统定位控制系统, 一般的伺服型通用机械手属于数控类 型。 (二)按驱动方式分
1、液压传动机械手 是以液压的压力来驱动执行机构运动的机械手。其主要特点是:抓重
可达几百公斤 以上、传动平稳、结构紧凑、动作灵敏。但对密封装置要求严格,不然油的泄漏对机械 手的工作性能有很大的影响,且不宜在高温、低温下工作。若机械手采用电液伺服驱动 系统,可实现连续轨迹控制,使机械手的通用性扩大,但是电液伺服阀的制造精度高, 油液过滤要求严格,成本高。
2、气压传动机械手 是以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:
介质李源极为 方便,输出力小,气动动作迅速,结构简单,成本低。但是,由于空气具有可压缩的特 性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在 同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环 境中进行工作。
3、机械传动机械手 即由机械传动机构(如凸轮、连杆、齿轮和齿条、间歇机构等)驱动的
机械手。它是
一种附属于工作主机的专用机械手,其动力是由工作机械传递的。它的主要特点是运动 准确可靠,用于工作主机的上、下料。动作频率大,但结构较大,动作程序不可变。 4、电力传动机械手 即有特殊结构的感应电动机、直线电机或功率步进电机直接驱动执行
机构运动的械
手,因为不需要中间的转换机构,故机械结构简单。其中直线电机机械手的运动速度快 和行程长,维护和使用方便。此类机械手目前还不多,但有发展前途。 (三)按控制方式分
1、点位控制 它的运动为空间点到点之间的移动,只能控制运动过程中几个点的位置,不
能控制
其运动轨迹。若欲控制的点数多,则必然增加电气控制系统的复杂性。目前使用的专用 和通用工业机械手均属于此类。
2、连续轨迹控制 它的运动轨迹为空间的任意连续曲线,其特点是设定点为无限的,整个
移动过程处 于控制之下,可以实现平稳和准确的运动,并且使用范围广,但电气控制系统复杂。这类工 业机械手一般采用小型计算机进行控制。
1.3 国内外发展状况 国外机器人领域发展近几年有如下几个趋势: (1)工业机器人性能
不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机
价格不断下降,平均单机价格从91年的10.3万美元降至97年的65万美元。
(2)机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系 统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化
7
装配机器人产品问市。
(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化; 器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、 易操作性和可维修性。
(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外, 装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、 力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置 技术在产品化系统中已有成熟应用。
(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机 器人操作者产生置身于远端作业环境中的感觉来操纵机器人。 (6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人 的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机 器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种 系统成功应用的最著名实例。 (7)机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已 成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。我国的工业机器人从 80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科 技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设 计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧 焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近 30条自动喷漆生产线(站)上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装 线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定 的距离,如:可靠性低于国外产品:机器人应用工程起步较晚,应用领域窄,生产线 系统技术与国外比有差距;在应用规模上,我国己安装的国产工业机器人约200台, 约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国 的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量 小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。 因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通 用化、模块化设计,积极推进产业化进程.我国的智能机器人和特种机器人在“863” 计划的支持下,也取得了不少成果。其中最为突出的是水下机器人,6000m水下无 缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、 爬壁机器人、管道机器人等机种:在机器人视觉、力觉、触觉、声觉等基础技术的 开发应用上开展了不少工作,有了一定的发展基础。但是在多传感器信息融合控制 技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发 应用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重 点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立 于世界先进行列之中。
1.4课题的提出及主要任务
1.4.1课题的提出 进入21世纪,随着我国人口老龄化的提前到来,近来在东南沿海还出现
在大量的
8
缺工现象,迫切要求我们提高劳动生产率,降低工人的劳动强度,提高我国工业自动化水平 势在必行,本设计的目的就是设计一个气动搬运机械手,应用于工业自动化生产线,把工业 产品从一条生产线搬运到另外一条生产线,实现自动化生产,减轻产业工人大量的重复性劳 动,同时又可以提高劳动生产率。。
现在的机械手大多采用液压传动,液压传动存在以下几个缺点: (1)液压传动在工作过程中常有较多的能量损失(摩擦损失、泄露损失等):液压传动易泄漏,
不仅污染工作场地,限制其应用范围,可能引起失火事故,而且影响执行部分的运动平 稳性及正确性。 (2)工作时受温度变化影响较大。油温变化时,液体粘度变化,引起运动特性变化。 (3)因液压脉动和液体中混入空气,易产生噪声。 (4)为了减少泄漏,液压元件的制造工艺水平要求较高,故价格较高;且使用维护需要较高技
术水平。鉴于以上这些缺陷,本机械手拟采用气压传动,
气动技术有以下优点: (1)介质提取和处理方便。气压传动工作压力较低,工作介质提取容易,而后排入大气,处
理方便,一般不需设置回收管道和容器:介质清洁,管道不易堵存在介质变质及补充的问 题.
(2)阻力损失和泄漏较小,在压缩空气的输送过程中,阻力损失较小(一般不卜浇塞仅为油
路的千分之一),空气便于集中供应和远距离输送。外泄漏不会像液压传动那样,造成 压力明显降低和严重污染。
(3)动作迅速,反应灵敏。气动系统一般只需要0.02s-0.3s即可建立起所需的压力和速度。 气动系统也能实现过载保护,便于自动控制。
(4)能源可储存。压缩空气可存贮在储气罐中,因此,发生突然断电等情况时,机器及其工 艺流程不致突然中断。 (5)工作环境适应性好。在易燃、易爆、多尘埃、强磁、强辐射、振动等恶劣环境中,气压 传动与控制系统比机械、电器及液压系统优越,而且不会因温度变化影响传动及控制性 能。
(6)成本低廉。由于气动系统工作压力较低,因此降低了气动元、辅件的材质和加工精度要 求,制造容易,成本较低。传统观点认为:由于气体具有可压缩性,因此,在气动伺服系 统中要实现高精度定位比较困难(尤其在高速情况下,似乎更难想象)。此外气源工作压 力较低,抓举力较小。虽然气动技术作为机器人中的驱动功能已有部分被工业界所接受, 而且对于不太复杂的机械手,用气动元件组成的控制系统己被接受,但由于气动机器人 这一体系己经取得的一系列重要进展过去介绍得不够,因此在工业自动化领域里,对气 动机械手、气动机器人的实用性和前景存在不少疑虑。 1.4.2课题的主要任务 本课题将要完成的主要任务如下: (1)机械手为通用机械手,因此相对于专用机械手来说,它的适用面相对较广. (2)选取机械手的座标型式和自由度
(3)设计出机械手的各执行机构,包括:手部、手腕、手臂等部件的设计。为了使通用性更强, 手部设计成可更换结构,不仅可以应用于夹持式手指来抓取棒料工件,在工业需要的时 候还可以用气流负压式吸盘来吸取板料工件。 (4)气压传动系统的设计
9
本课题将设计出机械手的气压传动系统,包括气动元器件的选取,气动回路的设计,并 绘出气动原理图。
(5)对气压传动系统原理图的参数化绘制进行研究,提高绘图效率,改善绘图质量。
(6)机械手的控制系统的设计 本机械手拟采用可编程序控制器(PLC)对机械手进行控制,本课题将要选取PLC型号,根 据机械手的工作流程编制出PLC程序,并画出梯形图。
第二章 机械手的设计方案
对气动机械手的基本要求是能快速、准确地拾-放和搬运物件,这就要求它们具有高精 度、快速反应、一定的承载能力、足够的工作空间和灵活的自由度及在任意位置都能自动定 位等特性。设计气动机械手的原则是:充分分析作业对象(工件)的作业技术要求,拟定最合 理的作业工序和工艺,并满足系统功能要求和环境条件;明确工件的结构形状和材料特性, 定位精度要求,抓取、搬运时的受力特性、尺寸和质量参数等,从而进一步确定对机械手结 构及运行控制的要求;尽量选用定型的标准组件,简化设计制造过程,兼顾通用性和专用性, 并能实现柔性转换和编程控制.本次设计的机械手是通用气动上下料机械手,是一种适合于 成批或中、小批生产的、可以改变动作程序的自动搬运或操作设备,动强度大和操作单调频 繁的生产场合。它可用于操作环境恶劣,劳
2.1机械手的座标型式与自由度
按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标式、圆柱座标 式、球座标式和关节式。由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此, 采用圆柱座标型式。相应的机械手具有三个自由度,为了弥补升降运动行程较小的缺点,增 加手臂摆动机构,从而增加一个手臂上下摆动的自由度
10
图2-1 机械手的运动示意图
Fia.2-1 Sketch Map of the Motion of Manipulator
2.2 机械手的手部结构方案设计
11
为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料 时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。
2.3 机械手的手腕结构方案设计
考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运 动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。
2.4 机械手的手臂结构方案设计
按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或 俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。 手臂的各种运动由气缸来实现。
2.5 机械手的驱动方案设计
由于气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机 械手采用气压传动方式。
2.6 机械手的控制方案设计
考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机 械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。
2.7 机械手的主要参数
1.机械手的最大抓重是其规格的主参数,由于是采用气动方式驱动,因此考虑抓取的物体 不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计抓取 的工件质量为5公斤
2.基本参数运动速度是机械手主要的基本参数。操作节拍对机械手速度提出了要求,设计 速度过低限制了它的使用范围。而影响机械手动作快慢的主要因素是手臂伸缩及回转的
速度。该机械手最大移动速度设计为1.0m / s 。最大回转速度设计为90/ s 。平均移动 速度为 0.8m / s 。平均回转速度为 60/ s 。机械手动作时有启动、停止过程的加、减速 度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用 平均速度表示速度的快慢更为符合速度特性。除了运动速度以外,手臂设计的基本参数 还有伸缩行程和工作半径。大部分机械手设计成相当于人工坐着或站着且略有走动操作 的空间。过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。在这种情况 下宜采用自动传送装置为好。根据统计和比较,该机械手手臂的伸缩行程定为600mm,最 大工作半径约为1400mm 。手臂升降行程定为120mm 。定位精度也是基本参数之一。 该机械手的定位精度为 ?1mm 。
?
?
2.8 机械手的技术参数列表
一、用途: 用于自动输送线的上下料。
12
二、设计技术参数: 1、抓重
5kg
2、自由度数
4个自由度
3、座标型式 圆
柱座标 4、最大工作半径
1400mm
5、手臂最大中心高
1250mm
6、手臂运动参数 伸缩行程1200mm 伸缩速度 400mm / s 升降行程120mm 升降速度 250mm / s
回转范围 0? ? 180??
?
?回转速度 90? / s
7、手腕运动参数
回转范围 0? ? 180??
?
?回转速度 90? / s
8、手指夹持范围
棒料:?80mm ? ?150mm
9、定位方式
行程开关或可调机械挡块等10、定位精度
?1mm
11、驱动方式
气压传动
12、控制方式 点位程序控制
(采用PLC)
13
图2-6
机械手的工作范围
Fig.2-6 Work Range of Manipulator
‘
第三章 手部结构设计
为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料 时,使用夹持式手部:如果有实际需要,还可以换成气压吸盘式结构,
3.1夹持式手部结构
夹持式手部结构由手指(或手爪)和传力机构所组成。其传力结构形式比较多,如滑槽 杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等。
3.1.1手指的形状和分类 夹持式是最常见的一种,其中常用的有两指式、多指式和双手双
指式:按手指夹持工
件的部位又可分为内卡式(或内涨式)和外夹式两种:按模仿人手手指的动作,手指可分为 一支点回转型,二支点回转型和移动型(或称直进型),其中以二支点回转型为基本型式。 当二支点回转型手指的两个回转支点的距离缩小到无穷小时,就变成了一支点回转型手指; 同理,当二支点回转型手指的手指长度变成无穷长时,就成为移动型。回转型手指开闭角 较小,结构简单,制造容易,应用广泛。移动型应用较少,其结构比较复杂庞大,当移动 型手指夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。 3.1.2设计时考虑的几个问题 (一)具有足够的握力(即夹紧力)
在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯
14
性力和振动,以保证工件不致产生松动或脱落。
(二)手指间应具有一定的开闭角 两手指张开与闭合的两个极限位置所夹的角度称为手指的
开闭角。手指的开闭角应保证
工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工件考虑。对于移动型手 指只有开闭幅度的要求。
(三)保证工件准确定位 为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件
的形状,选择相应的
手指形状。例如圆柱形工件采用带“V”形面的手指,以便自动定心。 (四)具有足够的强度和刚度 手指除受到被夹持工件的反作用力外,还受到机械手在运动过
程中所产生的惯性力和振 动的影响,要求有足够的强度和刚度以防折断或弯曲变形,当应尽量使结构简单紧凑,自重 轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。 (五)考虑被抓取对象的要求 根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点 两指回转型, 由于工件多为圆柱形,故手指形状设计成V型,其结构如附图所示。 3.1.3手部夹紧气缸的设计
1、手部驱动力计算 本课题气动机械手的手部结
构如图3-2所示,
15
图3-2 齿轮齿条式手部 Fig.3-2 Gear Wheel Hand
其工件重量G=5公斤,
V形手指的角度 2? ? 120? , b ? 120mm ? R ? 24mm ,摩擦系数为
f
? 0.10
(1)根据手部结构的传动示意图,其驱动力为:
p ?
2b NR
(2)根据手指夹持工件的方位 ,可得握力计算公式:
N ? 0.5tg(? ? ? )
? 0.5 ? 5 ? tg(60? ? 5? 42' ) ? 25(N )
所以
2b p ? N? 245(N )
R
(3)实际驱动力:
p 实际 ? p ?
K1 K 2
??
?
I,因为传力机构为齿轮齿条传动,故取? ? 0.94 ,并取 K1 ? 1.5 。若被抓取工件的最大加
速度取 K 2 ? 1 ?? ? 4 a ? 3g 时,则:
a
g
1.5 ? 4 所以 p实际 ? 245 ? ? 1563( N )
0.94
所以夹持工件时所需夹紧气缸的驱动力为1563N 。
2、气缸的直径 本气缸属于单向作用气缸。根据力平衡原理,单向作用气缸活塞杆上的输出
推力必须克
服弹簧的反作用力和活塞杆工作时的总阻力,其公式为:
?D 2 P F1 ??? Ft ? Fz
4
式中: F1 - 活塞杆上的推力,N
Ft - 弹簧反作用力,N
Fz - 气缸工作时的总阻力,N P - 气缸工作压力,Pa
16
弹簧反作用按下式计算:
F? G )
t f (1 ? s G Gd1 4
f ??
D3 1 n
4
Gf =
Gd 1
8D 3
1 n
式中:
G
f - 弹簧刚度,N/m 1- 弹簧预压缩量,m s - 活塞行程,m
d- 弹簧钢丝直径,m
1 D1 - 弹簧平均直径,.
n - 弹簧有效圈数.
G - 弹簧材料剪切模量,一般取 G ? 79.4 ?109 Pa在设计中,必须考虑负载率? 的影响,则:
F?D 2 p??1 ??4
? Ft
由以上分析得单向作用气缸的直径:
D ??
4(F1 ? Ft)?
?p??
代入有关数据,可得
4
Gd 9
G 1
79.4 ?10
? (3.5 ??3 4f ?? 10 )8D 3 ??
?
1 n
8 ? (30 ?103 )3
?15 ? 3677.46( N / m)
Ft ? G f (1 ? s)
? 3677.46 ? 60 ?10?3 ? 220.6(N )
所以: D ??4(F1 ? Ft) 4 ? (490 ? 220 .6)
??? ? 0.5 ?10 6
?pn? 65.23(mm)
17
查有关手册圆整,得 D ? 65mm
由 d / D ? 0.2 ? 0.3 ,可得活塞杆直径: d ? (0.2 ? 0.3)D ? 13 ? 19.5mm
圆整后,取活塞杆直径 d ? 18mm 校核,按公式 F1 /(? / 4d 2 ) ? [? ] 有: d ? (4F1 / ? [? ]) 0.5
其中,[? ] ? 120MPa, F1 ? 750 N
则: d ? (4 ? 490 / ? ?120 ) 0.5
? 2.28 ? 18
满足实际设计要求。
3,缸筒壁厚的设计 缸筒直接承受压缩空气压力,必须有一定厚度。一般气缸缸筒壁厚与内
径之比小于或等
于1/10,其壁厚可按薄壁筒公式计算:
? ? DPp / 2[? ]
式中:6- 缸筒壁厚,mm
D - 气缸内径,mm
Pp - 实验压力,取 Pp ? 1.5P , Pa
材料为:ZL3,[? ]=3MPa
代入己知数据,则壁厚为:
? ? DPp / 2[? ]
? 65 ? 6 ?105 /(2 ? 3 ?106 ) ? 6.5(mm)
D1 ? 65 ? 7.5 ? 2 ? 80(mm) 取 ? ? 7.5mm ,则缸筒外径为:
第四章 手腕结构设计
考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运 动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气 缸。
4.1 手腕的自由度
手腕是连接手部和手臂的部件,它的作用是调整或改变工件的方位,因而它具有独立 的自由度,以使机械手适应复杂的动作要求。手腕自由度的选用与机械手的通用性、加工 工艺要求、工件放置方位和定位精度等许多因素有关。由于本机械手抓取的工件是水平放 置,同时考虑到通用性,因此给手腕设一绕x轴转动回转运动才可满足工作的要求目前实
18
现手腕回转运动的机构,应用最多的为回转油(气)缸,因此我们选用回转气缸。它的结构 紧凑,但回转角度小于 360? ,并且要求严格的密封。
4. 2手腕的驱动力矩的计算
4.2.1手腕转动时所需的驱动力矩 手腕的回转、上下和左右摆动均为回转运动,驱动手腕回转时的驱动力矩必须克服手腕起
动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动片与缸径、定片、端盖 等处密封装置的摩擦阻力矩以及由于转动件的中心与转动轴线不重合所产生的偏重力矩.图 4-1所示为手腕受力的示意图。
1.工件2.手部3.手腕 图4-1手碗回转时受力状态
Fig.4-1 Bear Force Condition of Wrist When Rotating
手腕转动时所需的驱动力矩可按下式计算:
M 驱 ? M 惯 ? M 偏 ? M 摩 ? M 封
N ? cm ); 式中: M 驱 - 驱动手腕转动的驱动力矩(
M 惯 - 惯性力矩( N ? cm );
M 偏 - 参与转动的零部件的重量(包括工件、手部、手腕回转缸的动片)对转动轴线
19
所产生的偏重力矩( N ? cm )., ;
M 封 - 手腕回转缸的动片与定片、缸径、端盖等处密封装置的摩擦阻力
矩( N ? cm );
下面以图4-1所示的手腕受力情况,分析各阻力矩的计算:
手腕转动时的角速1、手腕加速运动时所产生的惯性力矩M悦 若手腕起动过程按等加速运动,
度为 ? ,起动过程所用的时间为 ?t , 则:
M ?惯 ?(J ? J 1)? t?
( N.cm)
式中: J - 参与手腕转动的部件对转动轴线的转动惯量 ( N .cm.s 2
) ;
J 1 - 工件对手腕转动轴线的转动惯量
( N .cm.s 2 ) `。 若工件中心与转动轴线不重合,其转动惯量 J 1 为:
J 1 ? J ? G1 c g e 2
1
式中: J 2
c - 工件对过重心轴线的转动惯量 ( N .cm.s ) :G
1 - 工件的重量(N);
e
1 - 工件的重心到转动轴线的偏心距(cm),
? - 手腕转动时的角速度(弧度/s);
?t - 起动过程所需的时间(s);
?? — 起动过程所转过的角度(弧度)。
2、手腕转动件和工件的偏重对转动轴线所产生的偏重力矩M偏
M 偏 ? G1e1 +
G3 e3 ( N ? cm )
式中: G3 - 手腕转动件的重量(N);
e手腕转动件的重心到转动轴线的偏心距(cm)
3 - 当工件的重心与手腕转动轴线重合时,则G1e1 ? 0 .
3、手腕转动轴在轴颈处的摩擦阻力矩
M 封
M f
封 ??2
(RA d 2 ? RB d1 ) ( N ? cm )
20
式中: d1 , d 2 - 转动轴的轴颈直径(cm);
f - 摩擦系数,对于滚动轴承 f ? 0.01,对于滑动轴承 f ? 0.1 ;
(A
RA , RB - 处的支承反力(N),可按手腕转动轴的受力分析求解,
根据 ? MF)? 0 ,得:
RB l ? G3l3 ? G2 l2 ? G1l
RB ??
G1l1 ? G2 l2 ? G3l3
l
同理,根据 ? M B (F) ? 0 ,得:
R A ?
G1 (l ? l1 ) ? G2 (l ? l2 ) ? G3 (l ? l3 )
l
式中: G2 - 的重量(N)
l, l1 , l2 , l3 ,— 如图4-1所示的长度尺寸(cm).
4、转缸的动片与缸径、定片、端盖等处密封装置的摩擦阻力矩M封,与选用的密衬装置的类 型有关,应根据具体情况加以分析。
4.2.2回转气缸的驱动力矩计算 在机械手的手腕回转运动中所采用的回转缸是单叶片回转
气缸,它的原理如图4-2所
示,定片1与缸体2固连,动片3与回转轴5固连。动片封圈4把气腔分隔成两个.当压缩气体 从孔a进入时,推动输出轴作逆时4回转,则低压腔的气从b孔排出。反之,输出轴作顺时针 方向回转。单叶气缸的压力P驱动力矩M的关系为:
2
2
2M pb(R ? r )
M ?? , 或 p ??
b( R 2 ? r 2 ) 2
21
4.2.3 手腕回转缸的尺寸及其校核
1.尺寸设计
D1 =96mm,半径 气缸长度设计为 b ? 100mm ,气缸内径为 R ? 48mm ,轴径
D2 ? 26 mm D2 =26mm,半径 ?t =0.1s, R ? 13mm,气缸运行角速度? = 90 / s ,加速度时间 ??
22
压强 P ? 0.4MPa, 则力矩
M ??
pb(R 2 ? r 2 ) 2
??0.4 ?10 6 ? 0.1(0.048 2 ? 0.026 2 ) 2
? 32.6( N .m)
2.尺寸校核
1.测定参与手腕转动的部件的质量 m 1
? 10 kg ,分析部件的质量分布情况,
质量密度等效分布在一个半径 r ? 50mm 的圆盘上,那么转动惯量:
m2
J ?
1r2
??10 ? 0.05 2 2
? 0.0125( k g.m 2 )
工件的质量为5 kg ,质量分布于长 l ? 100mm 的棒料上,那么转动惯量
J ml 2
c ??
12 ??5 ? 0.12 12
? 0.0042(k g.m 2 )
。
假如工件中心与转动轴线不重合,对于长 l ? 100mm 的棒料来说,最大偏心距e? 50mm ,其转动惯量为:
1 J ? J c ? m1e2
1
? 0.0042 ? 5 ? 0.052 ? 0.0167(k g.m 2 )
M ??
惯 ? ( J ? J1 )
?t
? (0.0125 ? 0.0167 ) 90
0.1
? 26.3( N .m)
23
2、手腕转动件和工件的偏重对转动轴线所产生的偏重力矩为M偏,考虑手腕转动件重心
与转动轴线重合, e3 ? 50 mm ,则 e1 ? 0 ,夹持工件一端时工件重心偏离转动轴线
M 偏 ? G1e1 + G3 e3
? 10 ? 10 ? 0 ? 5 ? 10 ? 0.05
? 2.5( N .m)
3、手腕转动轴在轴颈处的摩擦阻力矩为 M 摩 ,对于滚动轴承 f ? 0.01 ,对于滑动轴承
RB 为轴颈 f =0.1,d1 ,d 2 为手腕转动轴的轴颈直径,d1 ? 30mm , d 2 ? 20mm , RA ,
处的支承反力,粗略估计 RA ? 300 N , RB ? 150 N ,
f
M 摩 ??(RA d 2 ? RB d1 )
2 0.01 ? (300 ? 0.02 ? 150 ? 0.03) 2
? 0.05( N.m)
4.回转缸的动片与缸径、定片、端盖等处密封装置的摩擦阻力矩M封,与选用的密衬装置 的类型有关,应根据具体情况加以分析。在此处估计 M 封 为 M 摩 的3倍,
M 封 ? 3? M 摩
? 3? 0.05 ? 0.15( N.m)
? M 驱 ? M 惯 ? M 偏 ? M 摩 ? M 封
? 26.3 ? 2.5 ? 0.05 ? 0.15
? 29( N.m)
M 驱〈M
?设计尺寸符合使用要求,安全。
第五章 手臂伸缩,升降,回转气缸的尺寸设计与校核
5.1手臂伸缩气缸的尺寸设计与校核
5.1.1 手臂伸缩气缸的尺寸设计 手臂伸缩气缸采用烟台气动元件厂生产的标准气缸,参
看此公司生产的各种型号的 结构特点,尺寸参数,结合本设计的实际要求,气缸用CTA型气缸,尺寸系列初选内径
24
为? 100/63,关于此气缸的资料详情请参看烟台气动元件厂公司主页:
www.bota.cn/products.asp.
5.1.2 尺寸校核
1.在校核尺寸时,只需校核气缸内径 D1 =63mm,半径R=31.5mm的气缸的尺寸满足使用要 求即可,设计使用压强 P ? 0.4MPa, 则驱动力:
F ? P ? ?R 2
? 0.4 ?106 ? 3.14 ? 0.03152 ? 1246(N )
1, 测定手腕质量为50kg,设计加速度 a ? 10(m / s) ,则惯性力
F1 ? ma
? 50 ? 10
? 500 ( N )
2.考虑活塞等的摩擦力,设定摩擦系数 k ? 0.2 ,
Fm ? k.F1
? 0.2 ? 500
? 100 ( N )
F0 ? F1 ? Fm ? 总受力
? 500 ? 100
? 600 ( N )
F0 ? F
所以标准CTA气缸的尺寸符合实际使用驱动力要求要求。
5.1.3.导向装置 气压驱动的机械手臂在进行伸缩运动时,为了防止手臂绕轴线转动,以
保证手指的正 确方向,并使活塞杆不受较大的弯曲力矩作用,以增加手臂的刚性,在设计手臂结构时, 应该采用导向装置。具体的安装形式应该根据本设计的具体结构和抓取物体重量等因素来 确定,同时在结构设计和布局上应该尽量减少运动部件的重量和减少对回转中心的惯量。 导向杆目前常采用的装置有单导向杆,双导向杆,四导向杆等,在本设计中才用单导向杆 来增加手臂的刚性和导向性。 5.1.4 平衡装置
25
在本设计中,为了使手臂的两端能够尽量接近重力矩平衡状态,减少手抓一侧重力矩对性 能的影响,故在手臂伸缩气缸一侧加装平衡装置,装置内加放砝码,砝码块的质量根据抓取 物体的重量和气缸的运行参数视具体情况加以调节,务求使两端尽量接近平衡。
5.2 手臂升降气缸的尺寸设计与校核
5.2.1 尺寸设计
气缸运行长度设计为 l =118mm,气缸内径为 D1 =110mm,半径R=55mm,气缸运行速 度,加速度时间 ?t =0.1s,压强p=0.4MPa,则驱动力
Gp.?R2``
0 ?
? 0.4 ?106 ? 3.14 ? 0.0552
? 3799( N )
5.2.2 尺寸校核
1.测定手腕质量为80kg,则重力
G ? mg
? 80 ? 10 ? 800 ( N )
2, 设计加速度 a ? 5(m / s) ,则惯性力
G1 ? ma
? 80 ? 5
? 400 ( N )
3. 考虑活塞等的摩擦力,设定一摩擦系数 k ? 0.1 ,
Gk.G
m ? 1
? 0.1? 400
? 40 ( N )
? 总受力
Gq ? G ? G1 ? Gm
? 800 ? 400 ? 40 ? 1240 ( N )
Gq ? G0
所以设计尺寸符合实际使用要求。
26
5.3 手臂回转气缸的尺寸设计与校核
5.3.1 尺寸设计
气缸长度设计为 b ? 120mm ,气缸内径为 D1 ? 210 mm ,半径R=105mm,轴径
?t ? 0.5s, D2 ? 40 mm 半径 R ? 20mm ,气缸运行角速度? = ??/ s ,加速度时间 90
压强 P ? 0.4MPa,
pb(R 2 ? r 2 ) 则力矩: M ??2
0.4 ?10 6 ? 0.12(0.105 2 ? 0.020 2 ) ??
2
? 255 ( N .m)
5.3.2 尺寸校核
? 120 kg ,分析部件的质量分布情况, m11.测定参与手臂转动的部件的质量
质量密度等效分布在一个半径 r ? 200mm 的圆盘上,那么转动惯量:
m1r 2
J ?
2 120 ? 0.10 2 ??2
k g.m 2 ) ? 0.6 (
?M 惯 ? J . ??t
90
? 0.6 ? 0.5 ? 108 ( N .m)
考虑轴承,油封之间的摩擦力,设定一摩擦系数 k ? 0.2 ,
M 摩 ? k.M 惯
? 0.2 ? 108
? 5.(4 N .m)
总驱动力矩
M 驱 ? M 惯 ? M 摩
27
? 108 ? 5.4 ? 113.(4 N.m)
M 驱〈M
? 设计尺寸满足使用要求。
28
29
第七章 机械手的PLC控制设计
考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机 械手进行控制.当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。
30
7. 1可编程序控制器的选择及工作过程
7.1.1 可编程序控制器的选择 目前,国际上生产可编程序控制器的厂家很多,如日本三
菱公司的F系列PC,德国西
门子公司的SIMATIC N5系列PC、日本OMRON(立石)公司的C型、P型PC等。考虑到本机械手 的输入输出点不多,工作流程较简单,同时考虑到制造成本,因此在本次设计中选择了 OMRON公司的C28P型可编程序控制器。
7.1.2 可编程序控制器的工作过程 可编程序控制器是通过执行用户程序来完成各种不同
控制任务的。为此采用了循环 扫描的工作方式。具体的工作过程可分为4个阶段。 第一阶段是初始化处理。
可编程序控制器的输入端子不是直接与主机相连,CPU对输入输出状态的询问是针对 输入输出状态暂存器而言的。输入输出状态暂存器也称为I/0状态表.该表是一个专门存 放输入输出状态信息的存储区。其中存放输入状态信息的存储器叫输入状态暂存器;存放 输出状态信息的存储器叫输出状态暂存器。开机时,CPU首先使I/0状态表清零,然后进 行自诊断。当确认其硬件工作正常后,进入下一阶段。 第二阶段是处理输入信号阶段。 在处理输入信号阶段,CPU对输入状态进行扫描,将获
得的各个输入端子的状态信息 送到I/0状态表中存放。在同一扫描周期内,各个输入点的状态在I/0状态表中一直保持 不变,不会受到各个输入端子信号变化的影响,因此不能造成运算结果混乱,保证了本 周期内用户程序的正确执行。
第三阶段是程序处理阶段。 当输入状态信息全部进入I/0状态表后,CPU工作进入到第三
个阶段。在这个阶段中,
可编程序控制器对用户程序进行依次扫描,并根据各I/0状态和有关指令进行运算和处 理,最后将结果写入I/0状态表的输出状态暂存器中。
第四阶段是输出处理阶段。 段CPU对用户程序已扫描处理完毕,并将运算结果写入到
I/0状态表状态暂存器中。
此时将输入信号从输出状态暂存器中取出,送到输出锁存电路,驱动输出继电器线圈, 控制被控设备进行各种相应的动作。然后,CPU又返回执行下一个循环的扫描周期。
7.2 可编程序控制器的使用步骤
在可编程序控制器与被控对象(机器、设备或生产过程)构成一个自动控制系统时,通 常以七个步骤进行:
(1)系统设计 即确定被控对象的动作及动
作顺序。
(2)I/0分配 即确定哪些信号是送到可编程序控制器的,并分配给相应的输入端号;哪些
信号是由
可编程序控制器送到被控对象的,并分配相应的输出端号.此外,对用到的可编程序控制 器内部的计数器、定时器等也要进行分配。可编程序控制器是通过编号来识别信号的。 (3)画梯形图
它与继电器控制逻辑的梯形图概念相同,表达了系统中全部动作的相互关系。如果 使用图形编程器(LCD或CRT),则画出梯形图相当于编制出了程序,可将梯形图直接送入
31
可编程序控制器。对简易编程器,则往往要经过下一步的助记符程序转换过程。 (4)助记符机器程序 相当于微机的助记符程序,是面向机器的(即不同厂家的可编程序控
制器,助记符指
令形式不同),用简易编程器时,应将梯形图转化成助记符程序,才能将其输入到可编程 序控制器中。
(5)编制程序 即检查程序中每条语法错误,若有则修改。这项工作在编程器
上进行。
(6)调试程序 即检查程序是否能正确完成逻辑要求,不合要求,可以在编程器上修改。程序
设计(包
括画梯形图、助记符程序、编辑、甚至调试)也可在别的工具上进行。如IBM-PC机,只要 这个机器配有相应的软件。 (7)保存程序
调试通过的程序,可以固化在EPROM中或保存在磁盘上备用。
7.3 机械手可编程序控制器控制方案
7.3.1 系统简介 控制对象为圆柱座标气动机械手。它的手臂具有三个自由度,即水平方
向的伸、缩; 竖直方向的上、下;绕竖直轴的顺时针方向旋转及逆时针方向旋转。另外,其末端执行装 置— 机械手,还可完成抓、放功能。以上各动作均采用气动方式驱动,即用五个二位五 通电磁阀(每个阀有两个线圈,对应两个相反动作)分别控制五个气缸,使机械手完成伸、 缩、上、下、旋转及机械手抓放动作。其中旋转运动用一组齿轮齿条,使气缸的直线运 动转化为旋转运动。这样,可用PLC的8个输出端与电磁阀的8个线圈相连,通过编程,使 电磁阀各线圈按一定序列激励,从而使机械手按预先安排的动作序列工作.如果欲改变机 械手的动作,不需改变接线,只需将程序中动作代码及顺序稍加修改即可。另外,除抓 放外,其余六个动作末端均放置一限位开关,以检测动作是否到位,如果某动作没有到 位,则出错指示灯亮。
7.3.2 工业机械手的工作流程 此机械手用于自动输送
线的上下料。 当按下机械手启动按钮之后,机械手有如下动作:
先右转至右限位开关动作(1DT通电) ? 下降至下限位开关(5DT通电) ? 手腕逆
时针
? 转动90 (7DT通电) ? 手臂伸长至限位开关(3DT通电) ? 检查有无物品,若有物品,
手爪 抓紧(9DT通电) ? 手臂收缩至限位开关(4DT通电) ? 上升至上限位开关(6DT通电) ? 左
转至左限位开关动作(2DT通电) ? 手腕顺时针转动900 (8DT通电) ? 手臂伸长至最长
? 手臂收缩最短(4DT通电)。至(3DT通电) ? 手爪松开(IODT通电) ? 延时 此,一个工作 循环完毕。
7.3.3 机械手工作时序图如附图所示 4, 1/0分配
根据系统输入输出点的数目,选用OMRON C28P型PC,它有16个输入点, 标号为0000-0015; 12个输出点,标号为0500-0511.
32
5、梯形图设计(如附图所示)
根据机械手的逻辑时序图及1/0分配,画出控制梯形图,如附图所示。由梯形图可以看出: (1)手臂左转的条件:左转不到位(0003为OFF),收缩到位(0006为ON),上升到位(0007为ON), 手腕逆转到位(0009为ON),手爪抓紧(0002为ON),无右转命令(0501为OFF). (2)手臂右转的条件:右转不到位(0004为OFF),上升到位(0007为ON),收缩到位(0006为ON), 手腕顺转到位(0010为ON),手爪放松(0002为OFF),无左转命令(0500为OFF). (3)手臂伸长的条件:伸长不到位(0005为OFF),无收缩命令(0503为OFF),并且满足下列条件 之一:1)右转到位(0004为ON),下降到位(0008为ON),手腕逆转到位(0009为ON),手爪放松 (0002为OFF); 2)左转到位(0003为ON),上升到位(0007为ON),手腕顺转到位(0010为ON), 手爪抓紧(0002为ON). (4)手臂收缩的条件:收缩不到位(0006为OFF),无伸长命令(0502为OFF),并且满足下列条件 之一:1)右转到位(0004为ON),下降到位(0008为ON),手腕逆转到位(0009为ON),手爪抓紧 (0002为ON); 2)左转到位(0003为ON),上升到位(0007为ON),手爪抓紧(0002为ON),手腕顺 转到位(0010为ON). (5)手臂上升的条件:上升不到位(0007为OFF),无下降命令(0505为OFF),收缩到位(0006为 ON),手腕逆转到位(0009为ON),手爪抓紧(0002为ON),右转到位(0004为ON).
}(6)手臂下降的条件:下降不到位(0008为OFF),无上升命令(0504为OFF),右转到位(0004 为ON),收缩到位(0006为ON),手腕顺转到位(0010
33
为ON),手爪放松(0002为OFF). (7)手腕逆转的条件:逆转不到位(0009为OFF),无顺转命令(0507为OFF),右转到位(0004为 ON),收缩到位(0006为ON),下降到位(0008为ON),手爪放松(0002为OFF). (8)手腕顺转的条件:顺转不到位(0010为OFF),无逆转命令(0506为OFF),左转到位(0003为 ON),收缩到位(0006为ON),上升到位(0007为ON),手爪抓紧(0002为ON). (9)手爪抓紧的条件:手爪未抓到物品(0002为OFF),无放松命令(0509为OFF),并且满足下列 条件之一:1)右转到位(0004为ON),伸长到位(0005为ON),下降到位(0008为ON),手腕逆转 到位(0009为ON),检测到有物品(0011为ON), 2)左转到位(0003为ON),伸长到位(0005为ON), 上升到位(0007为ON),手腕顺转到位(0010为ON) (9)手爪放松的条件:手爪抓紧(0002为ON),无抓紧命令(0508为OFF),并且满足下列条件一:1) 左转到位(0003为ON),伸长到位(0005为ON),上升到位(0007为ON),手腕顺转到位(0010为ON).
2)左转到位(0003为ON),上升到位(0007为ON),手腕顺转到位(0010为ON),收缩到位(0006 为ON).另外,当按下停止按钮时,手臂停止动作,即手臂停止在不定的位置。
6、机械手控制程序
34
35
第八章 结论
1、本次设计的是气动通用机械手,相对于专用机械手,通用机械手的自由 度可变,控制程序可调,因此适用面更广。
2、采用气压传动,动作迅速,反应灵敏,能实现过载保护,便于自动控制。 工作环境适应性好,不会因环境变化影响传动及控制性能。阻力损失和泄漏较小, 不会污染环境。同时成本低廉。
3、通过对气压传动系统工作原理图的参数化绘制,大大提高了绘图速度, 节省了大量时间和避免了不必要的重复劳动,同时做到了图纸的统一规范。 4、机械手采用PLC控制,具有可靠性高、改变程序灵活等优点,无论是进
36
行时间控制还是行程控制或混合控制,都可通过设定PLC程序来实现。可以根据 机械手的动作顺序修改程序,使机械手的通用性更强。
致
谢
本文是在我尊敬的导师俞国燕教授悉心指导下完成的。导师严谨的治学态度和精益求精 的工作作风使我受益匪浅。在此,我首先向导师表示诚挚的感谢,并致以崇高的敬意!在课 题的研究和开发阶段,得到了工程学院老师的大力支持和帮助,在此一并向他们表示衷心的 感谢。在日常生活和学习中,工程学院的各位老师,俞国燕教授,以及全体同学给与我大力 支持和帮助,在此我向他们以及多年来为我的成长付出辛勤劳动的老师和同学们表示衷心的 感谢。感谢父母 、家人,感谢所有关心我的朋友和老师,感谢广东海洋大学的学习环境。
谢 刚
2006年5月30日
参考文献: [1】张建民.工业机器人.北京:北京理工大学出版
社,1988 [2】蔡自兴.机器人学的发展趋势和发展战略.机器人技术,2001, 4
[3】金茂青,曲忠萍,张桂华.国外工业机器人发展势态分析.机器人技术与应用 , 2001, 2 [4】王雄耀.近代气动机器人(气动机械手)的发展及应用.液压气动与密封,1999, 5 [5】严学高,孟正大.机器人原理.南京:东南大学出版社,1992 [6】机械设计师手册.北京:机械工业出版社,1986 [7】黄锡恺,郑文伟.机械原理.北京:人民教育出版社,1981 [8】成大先.机械设计图册.北京:化学工业出版社 [9】郑洪生.气压传动及控制.北京:机械工业出版社,1987 [10】吴振顺.气压传动与控制.哈尔滨:哈尔滨工业大学出版社,1995 [11】徐永生.气压传动.北京:机械工业出版社,1990, 5
37
正在阅读:
建国前南大党组织11-30
四年级自制-超实用--错题集-错题本格式模板 - 图文04-04
青岛版五年级上册科学总复习题含答案10-31
施工组织设计02-03
城市园林绿化施工企业项目成本管理研究07-19
刮板输送机司机安全培训考试卷(答案)04-17
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 自由度
- 气动
- 机器人
- 说明书
- 用途
- 结构
- 控制
- 设计
- 南京航空航天大学自主招生个人陈述自荐信优秀范文
- 2010高考数学一轮复习讲义—14.直线与圆的位置
- 《经济学原理》练习题、答案
- 最新中级经济法重点题6325
- 矿井抽采达标工艺方案设计
- 北交大管理信息系统第二次作业
- 三年级下册必背古诗词、美文(小册子样式)
- 山东省烟台市2016届高三高考适应性训练(二模)理综试题 - 图文
- 上海市2014年第二批复审高新技术企业名单剖析 - 图文
- 基于STC89C51单片机的智能电热水器的设计--毕业设计
- 论文-泡菜中亚硝酸盐含量的检测
- 作文如何增强思辨性
- 2016年内控知识网络考试试题库(20161110答案标黑版)
- 2012年河南省“专升本”高等数学试卷及答案
- 江苏省南通市高三二轮复习之实验专题
- 化工原理练习题-流体流动
- 校园文化艺术节主持词
- 定稿2015年大祥区模拟考试卷及答案(二)
- 借贷记账法练习题1
- 实验室排风扇项目可行性研究报告 - 图文