焊接过程的计算机模拟

更新时间:2023-09-18 03:54:01 阅读量: 幼儿教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

焊接过程的计算机模拟

作者:山东大学武传松

摘要:本文介绍了焊接过程计算机模拟的最新进展和发展趋势; GMAW焊接熔池流场与热场的数值模拟;双面双弧焊接过程的计算机模拟;TIG焊接电弧的数值分析;电弧阳极边界层传输机理的数值分析;以及焊接热影响区组织和硬度的预测等。 0. 引言

焊接是一个涉及许多学科的复杂的物理—化学过程。由于焊接过程涉及的变量数目繁多,单凭积累工艺试验数据来深入了解和控制焊接过程,既不切实际又成本昂贵和费时费力。随着计算机技术的发展,通过一组描述焊接基本物理过程的数学方程来模拟焊接过程,采用数值方法求解以获得焊接过程的定量认识,即焊接过程的计算机模拟,成为一种强有力的手段。计算机模拟方法为焊接科学技术的发展创造了有力的条件[1]。

1993年,美国能源部组织美国、加拿大、日本、瑞典、英国的25位著名专家对21世纪焊接科学技术的发展动向做出预测,其中焊接基本现象的模拟与仿真被列为最重要的研究方向之一[2]。我国国家自然科学基金委员会制定的学科发展战略也将计算机模拟确定为机械热加工领域的发展方向之一[3]。计算机模拟是使包括焊接在内的热加工工艺研究从“定性”走向“定量”、从“经验”走向“科学”的重要标志。采用科学的模拟技术和少量的实验验证,以代替过去一切都要通过大量重复实验的方法,不仅可以节省大量的人力和物力,而且还可以通过数值模拟解决一些目前无法在实验室里进行直接研究的复杂问题。在制造业,计算机模拟与仿真可以增加材料利用率25%,节约生产成本30%,产品设计至实际投产的时间缩短40%[4]。

近年来,国内外在焊接过程计算机模拟方面开展了许多研究工作,取得不少成果。本文简要介绍该领域的发展动向和最新进展。

1. 焊接过程计算机模拟领域的国际动向

国际上有关焊接过程数值模拟的学术交流活动十分活跃,除了在各种综合性大型国际学术会议上交流许多论文之外,有关国际专题会议“Modelling of Casting, Welding and Advanced Solidification Processes”,“Numerical Analysis of Weldability”都已举办了多届。1996年11

月日本大阪大学接合科学研究所主办了一个“焊接与连接的理论预测”的国际学术讨论会。国内哈尔滨工业大学已承办三届“材料热加工物理模拟和数值模拟”国际会议,上海交通大学也于2000年3月组织了“第一届热加工数学模型和计算机模拟”国际会议。国际上近几年也创立了主要报道计算机模拟领域最新成果的学术刊物,如《Computational Materials Science》、《Modelling and Simulation in Materials Science and Engineering》等。尤其是国际焊接学会第IX专业委员会和奥地利格拉茨工业大学主办的国际专题讨论会

“Numerical Analysis of Weldability”,每两年举行一次,已成功举行5次,2001年10月1-4日举行第6届会议。从1991年第一届时十几人出席交流几篇论文,发展到1999年第5届100多人出席交流71篇论文,反映出越来越多的焊接科技人员涉足该领域,该会议每次都由英国材料学会出版论文集。概括来说,焊接过程的模拟与仿真主要围绕4个大的方面展开:

(1)焊接熔池中的流体动力学和热过程。

(2)热源与金属间的相互作用(焊接电弧物理、电弧作用于熔池表面的热能和压力分布、熔池表面的变形、液态金属的蒸发,还有氢、氮、氧在熔池及周围环境之间的配分等)。 (3)焊缝金属凝固和焊接接头的相变过程。

(4)焊接应力应变发展过程以及非均质焊接接头的力学行为(包括氢的扩散、裂纹的产生倾向等)。

2. GMAW焊接熔池形态的数值模拟研究

焊接熔池形态,是熔池中的受热受力情况、熔池的几何形状、熔池中的流体动力学状态等熔池行为的统称。焊接熔池形态不仅直接关系到焊缝形状尺寸、熔透程度、接头组织与性能、应力分布状态,而且对热裂纹和冷裂纹的形成和防止也有重要影响。开展焊接熔池形态的数值模拟研究,将为焊接工艺优化设计和焊接过程智能控制提供关键的基础数据和理论依据。

熔化极气体保护电弧焊(GMAW)在各种熔焊方法中已经居于主导地位,在自动化焊接和机器人焊接中应用最为广泛。但是,国内外所建立的关于熔池形态的数值分析模型,大多数都是针对钨极氩弧焊(GTAW)的,其原因就在于GMAW焊接工艺过程比较复杂。由于熔滴过渡,熔滴对熔池造成冲击,熔池表面产生比较大的变形;熔滴进入熔池时要带入一部分附加的热量;比较大的熔池表面变形会使电弧热流的分布模式发生改变。因此,上述这些难点成为对GMAW焊接熔池准确模拟的关键。

作者所主持的课题组建立了GMAW焊接熔池形态及其热过程的数值分析模型[5-12],首次在熔池表面变形方程中引入熔滴冲击力项,在热能方程中引入熔滴热含量项,定量描述了

熔滴冲击力和热焓量与焊接工艺参数之间的定量关系以及对熔池流场和热场的影响[5,7,8]。提出了GMAW熔池表面变形较大情况下电弧热流的后向偏移双峰分布模式,克服了国内外通用的高斯函数型分布热源的局限性[6,11]。给出了不同工艺条件下熔池形态及其热过程的大量基础数据。结果如图1-4所示,图5是GMAW焊缝横截面形状尺寸计算与测试结果的比较。

图1 电弧热流在熔池表面上的分布图2 射流过渡时焊接熔池内的流场

图3 滴状过渡时焊接熔池内的流场

图4 表面张力温度系数的符号对熔池流场的影响

图5 焊缝横截面形状尺寸计算值和测试值的比较

3.双面双弧焊接过程的数值模拟

美国肯塔基大学张裕明博士发明了一种能显著增加熔深但又成本低廉的双面双弧焊接工艺(DSAW),可以实现中等厚度板不开坡口直接对接焊接[13,14]。DSAW焊接方法有效地提高了电弧地穿透能力,增大了熔深;减小了热影响区的尺寸;降低了试件厚度方向的温度梯度,从而有利于减小热变形。山东大学与张裕明合作,建立了DSAW焊接过程的数值计算模型,对这种工艺的机理进行了定量的计算机模拟,为其工艺优化设计和推广应用奠定了

基础。

DSAW焊接过程如图6所示。工件上面是等离子弧(PAW)焊枪,下面是钨极电弧(GTA)焊枪。这两把焊枪直接连在一套变极性等离子焊接电源的两个输出端上,构成单电源双面双弧焊接系统。焊接过程中,GTA和PAW电弧均以相同速度沿焊接方向运动。

对18-8不锈钢试件的DSAW焊接热过程进行了数值分析。试件尺寸为150×80×9.5(mm)。焊接工艺参数为:PAW喷嘴直径为1.57mm,PAW和GTA电极直径均为4.8mm,PAW电极、GTA电极端部到工件表面的距离分别为6mm和10mm,焊接电压约为45V,焊接电流67A,焊接速度为1.3mm/s。为了进行比较,也同时计算了常规等离子弧焊接的温度场(焊接工艺参数为:电极直径4.8mm,电极端部到工件表面的距离为6mm,焊接热输入与DSAW焊接相同)。

图7比较了相同热输入条件下DSAW焊接和PAW焊接工件的横向温度分布。可以看出,对于DSAW焊接,在小孔形成之后,焊件上的高温区域集中在电弧中心线附近,这是由于焊接电流直接沿厚度方向上流过焊件,焊接电弧被导入小孔,电流分布比较集中,使电弧受压缩的程度增加,从而补偿了等离子流穿透工件时的能量消耗,大大提高了等离子弧的穿透能力。图7(b)为常规PAW焊接时的计算结果,在此条件下没有熔透,熔深只有4.5mm,温度分布与DSAW焊接的情况有显著差异。图8比较了DSAW焊缝横截面几何形状的计算与实测结果,实验和计算参数同图7,可见两者吻合情况良好。

本文来源:https://www.bwwdw.com/article/wabh.html

Top