Singular or non-Fermi liquids
更新时间:2023-07-20 06:38:01 阅读量: 实用文档 文档下载
- singular推荐度:
- 相关推荐
Singular or non-Fermi liquids
PhysicsReports361(2002)
267–417
Singularornon-Fermiliquids
C.M.Varmaa;b;1,Z.Nussinovb,WimvanSaarloosb;
a
b
UniversiteitBellLaboratories,Leiden,Instituut-Lorentz,LucentTechnologies,PostbusMurray9506,2300Hill,RANJLeiden,07974,Netherlands
USA
ReceivedJune2001;editor:C:W:J:Beenakker
Contents
3.6.Aspinlessmodel1.Introduction
ndau’sOutline2723.8.Ainteractions
withÿniterange
Multichannelmodelformixed-valenceKondoproblem
impurities2.1.Fermiofthepaperliquid
paper2732.2.EssentialsLandauFermiofLandauFermiliquids2734.3.9.SFLThetwo-Kondo-impuritiesproblemonebehaviorforinteractingfermionsin2.3.Understandingwavefunctionrenormalizationliquidandthe
microscopicallyZwhy
2754.1.dimension
4.2.Theone-dimensionalelectrongas2.4.PrinciplesFermi-liquidtheoryworks2804.3.The4.4.Thermodynamics
Tomonaga–Luttingermodel2.5.derivationofofthemicroscopic
2864.5.One-particlespectralfunctions2904.6.Correlation3.2.6.LocalRoutesModerntoderivations
Landautheorybreakdownof2914.7.TheLuther–Emeryfunctions
model4.8.Spin–chargeSpin–chargeseparation
separationinmorethan
FermiFermiliquidsandlocalLandausingulartheory3.1.2953.2.Theliquids
Fermi-liquidKondoproblem
phenomenologyfor2964.9.oneRecoildimension?
catastropheandtheinoneorthogonality
dimensionand3.3.FerromagneticKondoproblem
the
2994.10.higher
3.4.anisotropicKondoproblemandthe
3004.11.CoupledExperimentalone-dimensionalchains3.5.OrthogonalityKondoX-rayedgesingularities
catastropheproblem3003015.Singulardimensionalgaugeÿelds
Fermi-liquidLuttingerobservationsbehaviorliquidofduebehavior
one-to
E-mailCorrespondingauthor.Tel.:+31-71-5275501;1
Presentaddress:andpermanentsaarloos@address:BellLaboratories,(W.vanfax:Saarloos).+31-71-5275511.LucentTechnologies,MurrayHill,NJ07974,USA.
0370-1573/02/$PII:S0370-1573(01)00060-6
-seefrontmatter
c2002ElsevierScienceB.V.Allrightsreserved.302305306310314315320321322324327328330332335335338
Singular or non-Fermi liquids
268C.M.Varmaetal./PhysicsReports361(2002)267–417
338341343343344353359360361361364
7.3.Generalrequirementsinamicroscopic
theory
7.4.Microscopictheory
8.Themetallicstateintwodimensions8.1.Thetwo-dimensionalelectrongas8.2Non-interactingdisorderedelectrons:
scalingtheoryoflocalization
8.3.Interactionsindisorderedelectrons8.4.Finkelsteintheory
pressibility,screeninglengthand
amechanismformetal–insulatortransition8.6.Experiments
8.7.Discussionoftheexperimentsinlight
ofthetheoryofinteractingdisorderedelectrons
8.8.PhasediagramandconcludingremarksAcknowledgementsReferences
372373379380381385389391392400404406406
5.1.SFLbehaviorduetocouplingtothe
electromagneticÿeld
5.2.Generalizedgaugetheories
6.Quantumcriticalpointsinfermionicsystems
6.1.Quantumcriticalpointsin
ferromagnets,antiferromagnets,andchargedensitywaves6.2.Quantumcriticalscaling
6.3.ExperimentalexamplesofSFLdue
toquantumcriticality:opentheoreticalproblems
6.4.Specialcomplicationsinheavy
fermionphysics
6.5.E ectsofimpuritiesonquantum
criticalpoints
7.Thehigh-Tcprobleminthecopper-oxide-basedcompounds
7.1.Somebasicfeaturesofthehigh-Tc
materials
7.2.MarginalFermiliquidbehaviorofthe
normalstate
Abstract
Anintroductorysurveyofthetheoreticalideasandcalculationsandtheexperimentalresultswhichde-partfromLandauFermiliquidsispresented.ThecommonthemesandpossibleroutestothesingularitiesleadingtothebreakdownofLandauFermiliquidsarecategorizedfollowinganelementarydiscussionofthetheory.Solubleexamplesofsingularornon-Fermiliquidsincludemodelsofimpuritiesinmetalswithspecialsymmetriesandone-dimensionalinteractingfermions.AreviewoftheseisfollowedbyadiscussionofsingularFermiliquidsinawidevarietyofexperimentalsituationsandtheoreticalmodels.Theseincludethee ectsoflow-energycollective uctuations,gaugeÿeldsdueeithertosymmetriesintheHamiltonianorpossibledynamicallygeneratedsymmetries, uctuationsaroundquantumcriticalpoints,thenormalstateofhigh-temperaturesuperconductorsandthetwo-dimensionalmetallicstate.Forthelastthreesystems,theprincipalexperimentalresultsaresummarizedandtheoutstandingtheoretical
c2002ElsevierScienceB.V.Allrightsreserved.issuesarehighlighted.
PACS:7.10.Ay;71.10.Hf;71.10.Pm;71.27.+a
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417269
1.Introduction
1.1.Aimandscopeofthispaper
Inthelasttwodecadesavarietyofmetalshavebeendiscoveredwhichdisplaythermodynamicandtransportpropertiesatlowtemperatureswhicharefundamentallydi erentfromthoseoftheusualmetallicsystemswhicharewelldescribedbytheLandauFermi-liquidtheory.TheyhaveoftenbeenreferredtoasNon-Fermiliquids.Afundamentalcharacteristicofsuchsystemsisthatthelow-energypropertiesinawiderangeoftheirphasediagramaredominatedbysingularitiesasafunctionofenergyandtemperature.Sincetheseproblemsstillrelatetoaliquidstateoffermionsandsinceitisnotagoodpracticetonamethingsafterwhattheyarenot,weprefertocallthemsingularFermiliquids(SFL).
ThebasicnotionsofFermi-liquidtheoryhaveactuallybeenwithusatanintuitivelevelsincethetimeofSommerfeld:Heshowedthatthelinearlow-temperaturespeciÿcheatbehaviorofmetalsaswellastheirasymptoticlow-temperatureresisitivityandopticalconductivitycouldbeunderstoodbyassumingthattheelectronsinametalcouldbethoughtofasagasofnon-interactingfermions,i.e.,intermsofquantummechanicalparticleswhichdonothaveanydirectinteractionbutwhichdoobeyFermistatistics.Meanwhile,Paulicalculatedthattheparamagneticsusceptibilityofnon-interactingelectronsisindependentoftemperature,alsoinaccordwithexperimentsinmetals.Atthesametimeitwasunderstood,atleastsincetheworkofBlochandWigner,thattheinteractionenergiesoftheelectronsinthemetallicrangeofdensitiesarenotsmallcomparedtothekineticenergy.Therationalizationforthequalitativesuccessofthenon-interactingmodelwasprovidedinamasterlypairofpapersbyLandau[152,153]whoinitiallywasconcernedwiththepropertiesofliquid3He.Thisworkepitomizedanewwayofthinkingaboutthepropertiesofinteractingsystemswhichisacornerstoneofourunderstandingofcondensedmatterphysics.Thenotionofquasiparticlesandelementaryexcitationsandthemethodologyofaskingusefulquestionsaboutthelow-energyexcitationsofthesystembasedonconceptsofsymmetry,withoutworryingaboutthemyriadunnecessarydetails,isepitomizedinLandau’sphenomenologicaltheoryofFermiliquids.Themicroscopicderivationofthetheorywasalsosoondeveloped.
OurperspectiveonFermiliquidshaschangedsigniÿcantlyinthelasttwodecadesorso.Thisisduebothtochangesinourtheoreticalperspective,andduetotheexperimentaldevel-opments:ontheexperimentalside,newmaterialshavebeenfoundwhichexhibitFermi-liquidbehaviorinthetemperaturedependenceoftheirlow-temperaturepropertieswiththecoe cientsoftenafactoroforder103di erentfromthenon-interactingelectronvalues.Theseobser-vationsdramaticallyillustratethepowerandrangeofvalidityoftheFermi-liquidideas.Ontheotherhand,newmaterialshavebeendiscoveredwhosepropertiesarequalitativelydif-ferentfromthepredictionsofFermi-liquidtheory(FLT).Themostprominentlydiscussedofthesematerialsarethenormalphaseofhigh-temperaturesuperconductingmaterialsforarangeofcompositionsneartheirhighestTc.Almosteveryideadiscussedinthisreviewhasbeenusedtounderstandthehigh-Tcproblem,butthereisnoconsensusyetonthesolution.
IthasofcoursebeenknownforalongtimethatFLTbreaksdowninthe uctuationregimeofclassicalphasetransitions.Thisbreakdownoccursinamoresubstantialregionofthephase
Singular or non-Fermi liquids
270C.M.Varmaetal./PhysicsReports361(2002)
267–417
Fig.1.Schematicphasediagramnearaquantumcriticalpoint.Theparameteralongthex-axiscanbequitegeneral,likethepressureoraratioofcouplingconstants.Wheneverthecriticaltemperaturevanishes,aQCP,indicatedwithadotintheÿgure,isencountered.Inthevicinityofsuchapointquantummechanical,zero-point uctuationsbecomeveryimportant.However,whenTcisÿnite,criticalslowingdownimpliesthattherelevantfrequencyscalegoesas!~|Tc T| z,dwarÿngquantume ects;thestandardclassicalcriticalmethodologythenapplies.AnexampleofaphasediagramofthistypeforMnSiisshowninFig.34below.
diagramaroundthequantumcriticalpoint(QCP)wherethetransitiontemperaturetendstozeroasafunctionofsomeparameter,seeFig.1.Thisphenomenonhasbeenextensivelyinvestigatedforawidevarietyofmagnetictransitionsinmetalswherethetransitiontemperaturecanbetunedthroughtheapplicationofpressureorbyvaryingtheelectronicdensitythroughalloying.Heavyfermions,withtheirclosecompetitionbetweenstatesofmagneticorderwithlocalizedmomentsanditinerantstatesduetoKondoe ects,appearparticularlypronetosuchQCPs.EquallyinterestingarequestionshavingtodowiththechangeinpropertiesduetoimpuritiesinsystemswhicharenearaQCPinthepurelimit.
Thedensity–densitycorrelationsofitinerantdisorderedelectronsatlongwavelengthsandlowenergiesmusthaveadi usiveform.Intwodimensionsthisleadstologarithmicsingularitiesinthee ectiveinteractionswhentheinteractionsaretreatedperturbatively.Theproblemofÿndingthegroundstateandlow-lyingexcitationsinthissituationisunsolved.Ontheexperimentalside,thediscoveryofthemetal–insulatortransitionintwodimensionsandtheunusualpropertiesobservedinthemetallicstatemakethisanimportantproblemtoresolve.
Theone-dimensionalelectrongasrevealslogarithmicsingularitiesinthee ectiveinteractionseveninasecond-orderperturbationcalculation.Avarietyofmathematicaltechniqueshavebeenusedtosolveawholeclassofinteractingone-dimensionalproblemsandonenowknowstheessentialsofthecorrelationfunctionseveninthemostgeneralcase.Animportantissueiswhetherandhowthisknowledgecanbeusedinhigherdimensions.
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417271
ThesolutionoftheKondoproblemandtherealizationthatitslow-temperaturepropertiesmaybediscussedinthelanguageofFLThasledinturntotheformulationandsolutionofimpuritymodelswithsingularlow-energyproperties.SuchmodelshaveaQCPforaparticu-larrelationbetweenthecouplingconstants;insomeexamplestheyexhibitaquantumcriticalline.ThethermodynamicandtransportpropertiesaroundsuchcriticalpointsorlinesarethoseoflocalsingularFermiliquids.Althoughthedirectexperimentalrelevanceofsuchmodels(asofone-dimensionalmodels)toexperimentsisoftenquestionable,thesemodels,beingsol-uble,canbequiteinstructiveinhelpingtounderstandtheconditionsnecessaryforthebreak-downofFLTandassociatedquasiparticleconcepts.Theknowledgefromzero-dimensionalandone-dimensionalproblemsmustneverthelessbeextrapolatedwithcare.
AproblemwhichwedonotdiscussbutwhichbelongsinthestudyofSFLsisthequantumHalle ectproblem.Themassivedegeneracyoftwo-dimensionalelectronsinamagneticÿeldleadstospectacularnewpropertiesandinvolvesnewfractionalquantumnumbers.TheessentialsofthisproblemweresolvedfollowingLaughlin’sinspiredvariationalcalculation.Theprincipalreasonfortheomissionisÿrstlythatexcellentpapersreviewingthedevelopmentsareavailable[213,72,111]andsecondlythatthemethodologyusedinthisproblemisingeneraldistinctfromthosefordiscussingtheotherSFLswhichhaveacertainunity.WewillhoweverhaveoccasionstorefertoaspectsofthequantumHalle ectproblemoften.EspeciallyinterestingfromourpointofviewistheweaklysingularFermiliquidbehaviorpredictedinthe =quantumHalle ect[118].
Withlessjustiÿcation,wedonotdiscusstheproblemofsuperconductortoinsulatorand=ortometaltransitionsintwo-dimensionaldisorderedsystemsinthelimitofzerotemperaturewithandwithoutanappliedmagneticÿeld.Interestingnewdevelopmentsinthisproblemwithreferencestosubstantialearlierworkmaybefoundin[176,177,247].TheproblemoftransitionsinJosephsonarrays[247]isavariantofsuchproblems.
OneoftheprincipalaspectsthatwewanttobringtotheforegroundinthisreviewisthefactthatSFLsallhaveincommonsomefundamentalfeatureswhichcanbestatedusefullyinseveraldi erentways.(i)TheyhavedegenerategroundstatestowithinanenergyoforderkBT.Thisdegeneracyisnotduetostaticexternalpotentialsorconstraintsasin,forexamplethespin-glassproblem,butdegeneracieswhicharedynamicallygenerated.(ii)Suchdegeneraciesinevitablyleadtoabreakdownofperturbativecalculationsbecausetheygenerateinfra-redsingularitiesinthecorrelationfunctions.(iii)Ifabareparticleorholeisaddedtothesystem,itisattendedbyadivergentnumberoflow-energyparticle–holepairs,sothattheone-to-onecorrespondencebetweentheone-particleexcitationoftheinteractingproblemandthoseofthenon-interactingproblem,whichisthebasisforFLT,breaksdown.(iv)SinceSFLsareconcernedwithdynamicallygenerateddegeneracieswithinenergiesoforderofthemeasuringtemperature,theobservedpropertiesaredeterminedbyquantum-mechanicaltoclassicalcrossoversandinparticularbydissipationinsuchacrossover.
Onthetheoreticalside,onemaynowviewFermi-liquidtheoryasaforerunneroftherenor-malizationgroupideas.Therenormalizationgrouphasledtoasophisticatedunderstandingofsingularitiesinthecollectivebehaviorofmany-particlesystems.ItislikelythatthesemethodshaveanimportantroletoplayinunderstandingthebreakdownofFLT.
TheaimofthispaperistoprovideapedagogicalintroductiontoSFLs,focusedontheessentialconceptualideasandonissueswhicharesettledandwhichcanbeexpectedto
Singular or non-Fermi liquids
272C.M.Varmaetal./PhysicsReports361(2002)267–417
survivefuturedevelopments.Therefore,wewillnotattempttogiveanexhaustivereviewoftheliteratureonthisproblemorofalltheexperimentalsystemswhichshowhintsofSFLbehavior.Theexperimentalexampleswediscusshavebeenselectedtoillustratebothwhatisessentiallyunderstoodandwhatisnotunderstoodeveninprinciple.Onthetheoreticalside,wewillshyawayfrompresentingindepththesophisticatedmethodsnecessaryforadetailedevaluationofcorrelationfunctionsnearQCP—forthiswerefertothebookbySachdev[225]—orforanexactsolutionoflocalimpuritymodels(see,e.g.[124,227,259]).Likewise,foradiscussionoftheapplicationofquantumcriticalscalingideastoJosephsonarraysorquantumHalle ects,werefertotheniceintroductionbySondhietal.[247].1.2.Outlineofthepaper
Theoutlineofthispaperisasfollows.WestartbysummarizinginSection2someofthekeyfeaturesofLandau’sFLT—indoingso,wewillnotattempttoretracealloftheingredientswhichcanbefoundinmanyoftheclassictextbooks[208,37];insteadourdiscussionwillbefocusedonthoseelementsofthetheoryandtherelationwithitsmicroscopicderivationthatallowustounderstandthepossibleroutesbywhichtheFLTcanbreakdown.ThisisfollowedinSection3bytheFermi-liquidformulationoftheKondoproblemandoftheSFLvariantsoftheKondoproblemandoftwointeractingKondoimpurities.TheintentionhereistoreinforcetheconceptsofFLTinadi erentcontextaswellastoprovideexamplesofSFLbehaviorwhicho erimportantinsightsbecausetheyarebothsimpleandsolvable.Wethendiscusstheproblemofonespatialdimension(d=1),presentingtheprincipalfeaturesofthesolutionsobtained.Wediscusswhyd=1isspecial,andtheproblemsencounteredinextendingthemethodsandthephysicstod¿1.WethenmovefromthecomfortsofsolvablemodelstotherealityofthediscussionofpossiblemechanismsforSFLbehaviorinhigherdimensions.FirstweanalyzeinSection5theparadigmaticcaseoflong-rangeinteractions.Coulombinteractionswillnotdointhisregard,sincetheyarealwaysscreenedinametal,buttransverseelectromagneticÿeldsdogiverisetolong-rangeinteractions.ThefactthatasaresultnometalisaFermiliquidforsu cientlylowtemperatureswasalreadyrealizedlongago[127]—fromapracticalpointofview,thismechanismisnotveryrelevant,sincethetemperatureswherethesee ectsbecomeimportantareoforder10 16K;nevertheless,conceptuallythisisimportantsinceitisasimpleexampleofagaugetheorygivingrisetoSFLbehavior.Gaugetheoriesonlatticeshavebeenintroducedtodiscussproblemsoffermionsmovingwiththeconstraintofonlyzeroorsingleoccupationpersite.WethendiscussinSection6thepropertiesnearaquantumcriticalpoint,takingÿrstanexampleinwhichtheferromagnetictransitiontemperaturegoestozeroasafunctionofsomeexternallychosensuitableparameter.Wereferinthissectiontoseveralexperimentsinheavyfermioncompoundswhichareonlypartiallyunderstoodornotunderstoodeveninprinciple.WethenturntoadiscussionofthemarginalFermiliquidphenomenologyfortheSFLstateofcopper-oxidehigh-Tcmaterialsanddiscusstherequirementsonamicroscopictheorythatthephenemenologyimposes.Asketchofamicroscopicderivationofthephenemenologyisalsogiven.WeclosethepaperinSection8withadiscussionofthemetallicstateind=2andthestateofthetheorytreatingthedi usivesingularitiesind=2anditsrelationtothemetal–insulatortransition.
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417273
ndau’sFermiliquid
2.1.EssentialsofLandauFermiliquids
ThebasicideaunderlyingLandau’sFermi-liquidtheory[152,153,208,37]isthatofanalyt-icity,i.e.,thatstateswiththesamesymmetrycanbeadiabaticallyconnected.Simplyput,thismeansthatwhetherornotwecanactuallycarryoutthecalculationweknowthattheeigen-statesofthefullHamiltonianofthesamesymmetrycanbeobtainedperturbativelyfromthoseofasimplerHamiltonian.Atthesametimestatesofdi erentsymmetrycannotbeobtainedby“continuation”fromthesamestate.Thissuggeststhatgivenatoughproblemwhichisim-possibletosolve,wemayguessarightsimpleproblem.Thelowenergyandlongwavelengthexcitations,aswellasthecorrelationandtheresponsefunctionsoftheimpossibleproblembearaone-to-onecorrespondencewiththesimplerproblemintheiranalyticproperties.Thisleavesÿxingonlynumericalvalues.Thesearetobedeterminedbyparameters,theminimumnumberofwhichisÿxedbythesymmetries.Experimentsoftenprovideanintuitionastowhattherightsimpleproblemmaybe:fortheinteractingelectrons,inthemetallicrangeofdensities,itistheproblemofkineticenergyofparticleswithFermistatistics.(Ifonehadstartedwiththeoppositelimit,justthepotentialenergyalone,thestartinggroundstateistheWignercrystal—abadplacetostartthinkingaboutametal!)Ifwestartwithnon-interactingfermions,andthenturnontheinteractions,thequalitativebehaviorofthesystemdoesnotchangeaslongasthesystemdoesnotgothrough(oriscloseto)aphasetransition.Owingtotheanalyticity,wecanevenconsiderstronglyinteractingsystems—thelow-energyexcitationsinthesehavestronglyrenormalizedvaluesoftheirparameterscomparedtothenon-interactingproblem,buttheirqualitativebehavioristhesameasthatofthesimplerproblem.
TheheavyfermionproblemprovidesanextremeexampleofthedomainofvalidityoftheLandauapproach.ThisisillustratedinFig.2,whichshowsthespeciÿcheatoftheheavyfermioncompoundCeAl3.AsintheSommerfeldmodel,thespeciÿcheatislinearinthetemperatureatlowT,butifwewriteCv≈ Tatlowtemperatures,thevalueof isaboutathousandtimesaslargeasonewouldestimatefromthedensityofstatesofatypicalmetal,usingthefreeelectronmass.ForaFermigas,thedensityofstatesN(0)attheFermienergyisproportionaltoane ectivemassm :
m kF
N(0)=;
(1)
withkFtheFermiwavenumber.Thenthefactthatthedensityofstatesatthechemicalpotentialisathousandtimeslargerthanfornormalmetalscanbeexpressedbythestatementthatthee ectivemassm ofthequasiparticlesisathousandtimeslargerthanthefreeelectronmassm.Likewise,asFig.3shows,theresistivityofCeAl3atlowtemperaturesincreasesasT2.ThisalsoisacharacteristicsignofaFermiliquid,inwhichthequasiparticlelifetime attheFermisurface,determinedbyelectron–electroninteractions,behavesas ~1=T2.2However,justas
Inheavyfermions,atleastintheobservedrangeoftemperatures,thetransportlifetimedeterminingthetemper-aturedependenceofresistivityisproportionaltothesingle-particlelifetime.
2
Singular or non-Fermi liquids
274C.M.Varmaetal./PhysicsReports361(2002)
267–417
Fig.2.SpeciÿcheatofCeAl3atlowtemperaturesfromAndresetal.[28].Theslopeofthelinearspeciÿcheatisabout3000timesthatofthelinearspeciÿcheatof,say,Cu.However,thehigh-temperaturecut-o ofthislineartermissmallerthanthatofCubyasimilaramount.Theriseofthespeciÿcheatinamagneticÿeldatlowtemperaturesisthenuclearcontribution,irrelevanttoour
discussion.
Fig.3.ElectricalresistivityofCeAl3below100mK,plottedagainstT2.FromAndresetal.[28].
theprefactor ofthespeciÿcheatisafactorthousandtimeslargerthanusual,theprefactoroftheT2termintheresistivityisafactor106larger—while scaleslinearlywiththee ectivemassratiom =m,theprefactoroftheT2termintheresistivityincreasesforthisclassofFermiliquidsas(m =m)2.
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417275
Itshouldberemarkedthattherightsimpleproblemisnotalwayseasytoguess.Therightsimpleproblemforliquid4Heisnotthenon-interactingBosegasbuttheweaklyinteractingBosegas(i.e.,theBogoliubovproblem[45,154]).TherightsimpleproblemfortheKondoproblem(alow-temperaturelocalFermiliquid)wasguessed[197]onlyafterthenumericalrenormalizationgroupsolutionwasobtainedbyWilson[289].Therightsimpleproblemfortwo-dimensionalinteractingdisorderedelectronsinthe“metallic”rangeofdensities(Section8inthispaper)isatpresentunknown.
ForSFLs,theproblemisdi erent:usuallyoneisinaregimeofparameterswherenosimpleproblemisastartingpoint—insomecasesthe uctuationsbetweensolutionstodi erentsimpleproblemsdeterminesthephysicalproperties,ndauFermiliquidandthewavefunctionrenormalizationZ
Landautheoryistheforerunnerofourmodernwayofthinkingaboutlow-energye ectiveHamiltoniansincomplicatedproblemsandoftherenormalizationgroup.TheformalstatementsofLandautheoryintheiroriginalformareoftensomewhatcrypticandmysterious—thisre ectsbothLandau’sstyleandhisingenuity.Weshalltakeamorepedestrianapproach.
Letusconsidertheessentialdi erencebetweennon-interactingfermionsandaninteractingFermiliquidfromasimplemicroscopicperspective.Forfreefermions,themomentumstates|k arealsoeigenstatesoftheHamiltonianwitheigenvalue
k=
2k2
:(2)
Moreover,thethermaldistributionofparticlesn0k ,isgivenbytheFermi–Diracfunctionwhere denotesthespinlabel.AtT=0,thedistributionjumpsfrom1(allstatesoccupiedwithintheFermisphere)tozero(nostatesoccupiedwithintheFermisphere)at|k|=kFandenergyequaltothechemicalpotential .ThisisillustratedinFig.4.
Agoodwayofprobingasystemistoinvestigatethespectralfunction;thespectralfunctionA(k;!)givesthedistributionofenergies!inthesystemwhenaparticlewithmomentumkisaddedorremovedfromit(rememberthatremovingaparticleexcitationbelowtheFermienergymeansthatweaddaholeexcitation).AssketchedinFig.5(a),forthenon-interactingsystem,A0(k;!)issimplya -functionpeakattheenergy k,becauseallmomentumstatesarealsoenergyeigenstates
A0(k;!)= (! ( k ))
for!¿ ;
(3)(4)
111= Im= ImG0(k;!):
kHere, issmallandpositive;itre ectsthatparticlesorholesareintroducedadiabatically,and
itistakentozeroattheendofthecalculationforthepurenon-interactingproblem.Theÿrststepofthesecondlineisjustasimplemathematicalrewritingofthedeltafunction.InthesecondlinetheGreen’sfunctionG0fornon-interactingelectronsisintroduced.Moregenerally
Singular or non-Fermi liquids
276C.M.Varmaetal./PhysicsReports361(2002)
267–417
Fig.4.Bare-particledistributionatT=0foragivenspindirectioninatranslationallyinvariantFermisystemwithinteractions(fullline)andwithoutinteractions(dashedline).Notethatthepositionofthediscontinuity,i.e.,theFermiwavenumberkF,isnotrenormalizedby
interactions.
Fig.5.(a).Thenon-interactingspectralfunctionA(k;!)atÿxedkasafunctionof!;(b)thespectralfunctionofsingle-electronexcitationsinaFermiliquidatÿxedkasafunctionof!.If(1= )A(k;!)isnormalizedto1,signifyingonebareparticle,theweightundertheLorentzian,i.e.,thequasiparticlepart,isZ.Asexplainedinthetext,atthesametimeZisthediscontinuityinFig.4.
thesingle-particleGreen’sfunctionG(k;!)isdeÿnedintermsofthecorrelationfunctionofparticlecreationandannihilationoperatorsinstandardtextbooks[195,4,222,168].Forourpresentpurpose,itissu cienttonotethatitisrelatedtothespectralfunctionA(k;!),whichhasaclearphysicalmeaningandwhichcanbededucedthrough-angleresolvedphotoemissionexperiments
∞
A(k;x)
G(k;!)=dx:(5)
∞A(k;!)thusisthespectralrepresentationofthecomplexfunctionG(k;!).Herewehavedeÿned
theso-calledretardedGreen’sfunctionwhichisespeciallyusefulsinceitsrealandimaginary
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417
277
Fig.6.Schematicillustrationoftheperturbativeexpansion(8)ofthechangeofwavefunctionasaresultoftheadditionofanelectrontotheFermiseaduetointeractionswiththeparticlesintheFermisea.
partsobeytheKramers–Kronigrelations.IntheproblemwithinteractionsG(k;!)willdif-ferfromG0(k;!).Thisdi erencecanbequitegenerallydeÿnedthroughthesingle-particleself-energyfunction (k;!):
(G(k;!)) 1=(G0(k;!)) 1 (k;!):
Eq.(5)ensurestherelationbetweenG(k;!)andA(k;!)
1
A(k;!)= ImG(k;!):
(7)(6)
Withthesepreliminariesoutoftheway,letusconsidertheformofA(k;!)whenweaddaparticletoaninteractingsystemoffermions.
Duetotheinteraction(assumedrepulsive)betweentheaddedparticleandthosealreadyintheFermisea,theaddedparticlewillkickparticlesfrombelowtheFermisurfacetoabove.Thepossibletermsinaperturbativedescriptionofthisprocessareconstrainedbytheconser-vationlawsofcharge,particlenumber,momentumandspin.ThosewhichareallowedbytheseconservationlawsareindicatedpictoriallyinFig.6,andleadtoanexpressionofthetype
1=2 N+1N
| k =Zkck |
+
1
k1;k2;k3 1; 2; 3
k1 1k2 2k3 3ckcck2k13
× k;k1 k2+k3 ( ; 1; 2; 3)| N +::::
(8)
’sandck’sarethebareparticlecreationandannihilationoperators,andthedotsindi-Heretheck
catehigher-orderterms,forwhichtwoormoreparticle–holepairsarecreatedand ( ; 1; 2; 3)expressesconservationofspinundervectoraddition.Themultiple-particle–holepairsforaÿxedtotalmomentumcanbecreatedwithacontinuumofmomentumsoftheindividualbareparticlesandholes.Therefore,anaddedparticlewithÿxedtotalmomentumhasawidedistributionofenergies.However,ifZkdeÿnedbyEq.(8)isÿnite,thereisawell-deÿnedfeatureinthisdis-tributionatsomeenergywhichisingeneraldi erentfromthenon-interactingvalue 2k2=(2m).ThespectralfunctioninsuchacasewillthenbeasillustratedinFig.5(b).Itisusefultoseparatethewell-deÿnedfeaturefromthebroadcontinuumbywritingthespectralfunction
Singular or non-Fermi liquids
278C.M.Varmaetal./PhysicsReports361(2002)267–417
asthesumoftwoterms,A(k;!)=Acoh(k;!)+Aincoh(k;!).Thesingle-particleGreen’sfunc-tioncansimilarlybeexpressedasasumoftwocorrespondingterms,G(k;!)=Gcoh(k;!)+Gincoh(k;!).Then
Zk
Gcoh(k;!)=;(9)
kkwhichforlargelifetimes kgivesaLorentzianpeakinthespectraldensityatthequasiparticle
energy k≡ k .TheincoherentGreen’sfunctionissmoothandhenceforlarge kcorrespondstothesmoothbackgroundinthespectraldensity.
Theconditionfortheoccurrenceofthewell-deÿnedfeaturecanbeexpressedastheconditionthattheself-energy (k;!)hasananalyticexpansionabout!=0andk=kFandthatitsrealpartismuchlargerthanitsimaginarypart.Onecaneasilyseethatwereitnotso,thenexpression(9)forGcohcouldnotbeobtained.TheseconditionsarenecessaryforaLandauFermiliquid.Uponexpanding (k;!)in(12)forsmall!andsmalldeviationsofkfromkFandwritingitintheform(9),wemaketheidentiÿcations
k;1= ZkIm (kF;!=0); k= kZkZ(10)
k
where
19 9 1
=1+;Z:(11)Zk=1
!=0;k=kFF!=0;k=kFFromEq.(8),wehaveamorephysicaldeÿnitionofZk:Zkistheprojectionamplitudeof
N+1| k ontothestatewithonebareparticleaddedtothegroundstate,sinceallothertermsintheexpansionvanishinthethermodynamiclimitintheperturbativeexpressionembodiedby(8):
1=2N+1 NZk= k|ck| :
(12)
Inotherwords,ZkistheoverlapofthegroundstatewavefunctionofasystemofinteractingN±1fermionsoftotalmomentumkwiththewavefunctionofNinteractingparticlesandabareparticleofmomentumk.Zkiscalledthequasiparticleamplitude.
TheLandautheorytacitlyassumesthatZkisÿnite.Furthermore,itassertsthatforsmall!andkclosetokF,thephysicalpropertiescanbecalculatedfromquasiparticleswhichcarrythesamequantumnumbersastheparticles,i.e.,charge,spinandmomentumandwhichmaybedeÿnedsimplybythecreationoperator k; :
N+1N
| k = k; | :
(13)
ClosetokF,andforTsmallcomparedtotheFermienergy,thedistributionofthequasiparticlesisassumedtobetheFermi–Diracdistributionintermsoftherenormalizedquasiparticleen-ergies.Thebareparticledistributionisquitedi erent.AsisillustratedinFig.4,itisdepletedbelowkFandaugmentedabovekF,withadiscontinuityatT=0whosevalueisshowninmicroscopictheorytobeZk.AcentralresultofFermiliquidtheoryisthatclosetotheFermienergyatzerotemperature,thewidth1= kofthecoherentquasiparticlepeakisproportionalto( k )2sothatneartheFermienergythelifetimeislongandquasiparticlesarewell-deÿned.
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417279
Likewise,attheFermienergy1= kvarieswithtemperatureasT2.Fromthemicroscopicderiva-tionofthisresult,itfollowsthattheweightinthispeak,Zk,becomesequaltothejumpZinnk whenweapproachtheFermisurface:Zk→Zfork→kF.Forheavyfermions,aswealreadymentioned,Zcanbeoftheorderof10 3.However,aslongasZisnon-zero,onehasFermiliquidpropertiesfortemperatureslowerthanaboutZEF.Degeneracyise ectivelylostfortemperaturesmuchhigherthanZEFandclassicalstatisticalmechanicsprevails.3
Anadditionalresultfrommicroscopictheoryistheso-calledLuttingertheorem,whichstatesthatthevolumeenclosedbytheFermisurfacedoesnotchangeduetointeractions[195,4].ThemathematicsbehindthistheoremisthatwiththeassumptionsofFLT,thenumberofpolesintheinteractingGreen’sfunctionbelowthechemicalpotentialisthesameasthatforthenon-interactingGreen’sfunction.Recallthatthelatterisjustthenumberofparticlesinthesystem.
LandauactuallystartedhisdiscussionoftheFermiliquidbywritingtheequationforthedeviationofthe(Gibbs)freeenergyfromitsgroundstatevalueasafunctionalofthedevia-tionofthequasiparticledistributionfunctionn(k; )fromtheequilibriumdistributionfunctionn0(k; )
n(k; )=n(k; ) n0(k; )asfollows:
1 1
( k ) nk +f nk nk +···G=G0+ kk;
k;
kk;
(14)
(15)
Notethat( k )isitselfafunctionof n;sotheÿrsttermcontainsatleastacontributionof2order( n)whichmakesthesecondtermquitenecessary.Inprinciple,theunknownfunction
fkk ; dependsonspinandmomenta.However,spinrotationinvarianceallowsonetowritethespinpartintermsoftwoquantities,thesymmetricandantisymmetricpartsfsandfa.Moreover,forlowenergyandlong-wavelengthphenomenaonlymomentawithk≈kFplayarole;ifweconsiderthesimplecaseof3HewheretheFermisurfaceisspherical,rotationinvarianceimpliesthatformomentaneartheFermimomentumfcanonlydependontherelativeanglebetweenkandk ;thisallowsonetoexpandinLegendrepolynomialsPl(x)bywriting
k≈k ≈kFs;a
N(0)fkk ; →
∞ l=0
): ·kFls;aPl(k
(16)
Fromexpression(15)onecanthenrelatethelowestorderso-calledLandaucoe cientsF0
sandthee ectivemassm tothermodynamicquantitieslikethespeciÿcheatC,theandF1v
compressibilityÄ,andthesusceptibility :
m Cv=;v03
Äsm=(1+F0);
0 am=(1+F0):
0(17)
ItisanunfortunatecommonmistaketothinkofthepropertiesinthisregimeasSFLbehavior.
Singular or non-Fermi liquids
280C.M.Varmaetal./PhysicsReports361(2002)267–417
Heresubscripts0refertothequantitiesofthenon-interactingreferencesystem,andmisthemassofthefermions.ForaGalileaninvariantsystem(like3He),thereisasimplerelation
s,andthereisnorenormalizationbetweenthemassenhancementandtheLandauparameterF1
oftheparticlecurrentj;however,thereisarenormalizationofthevelocity:onehas
s Fm
j=k=m;v=k=m ;(18)=1+:
Thetransportpropertiesarecalculatedbydeÿningadistributionfunction n(k ;r;t)whichis
slowlyvaryinginspaceandtimeandwritingaBoltzmannequationforit[208,37].
ItisadelightfulconceitoftheLandautheorythattheexpressionsofthelow-energyproper-tiesintermsofthequasiparticlesinnoplaceinvolvethequasiparticleamplitudeZk.Infactinatranslationallyinvariantproblemsuchasliquid3He;Zkcannotbemeasuredbyanythermo-dynamicortransportmeasurements.AmasterlyuseofconservationlawsensuresthatZ’scanceloutinallphysicalproperties(onecanextractZfrommeasurementofthemomentumdistri-bution.Byneutronscatteringmeasurements,itisfoundthatZ≈1=4[112]forHe3nearthemeltingline).Thisisnolongertrueonalattice,intheelectron–phononinteractionproblem[212]orinheavyfermions[265]orevenmoregenerallyinanysituationwheretheinter-actingproblemcontainsmorethanonetypeofparticlewithdi erentcharacteristicfrequencyscales.
2.3.UnderstandingmicroscopicallywhyFermi-liquidtheoryworks
LetustrytounderstandfromamoremicroscopicapproachwhytheLandautheoryworkssowell.Wepresentaqualitativediscussioninthissubsectionandoutlinetheprincipalfeaturesoftheformalderivationinthenextsubsection.
Aswealreadyremarked,acrucialelementintheapproachistochoosethepropernon-interactingreferencesystem.ThatthisispossibleatallisduetothefactthatthenumberofstatestowhichanaddedparticlecanscatterduetointeractionsisseverelylimitedduetothePauliprinciple.Asaresult,non-interactingfermionsareagoodstablesystemtoperturbabout;theyhaveaÿnitecompressibilityandsusceptibilityinthegroundstate,andsocollectivemodesandthermodynamicquantitieschangesmoothlywhentheinteractionsareturnedon.Thisisnottruefornon-interactingbosonswhichdonotsupportcollectivemodeslikesoundwaves.Soonecannotperturbaboutthenon-interactingbosonsasareferencesystem.
LandaualsolaidthefoundationsfortheformaljustiÿcationofFermiliquidtheoryintwoandthreedimensions.The urryofactivityinthisÿeldfollowingthediscoveryofhigh-TcphenomenahasledtonewwaysofjustifyingFermi-liquidtheory(andunderstandingwhytheone-dimensionalproblemisdi erent).However,theprincipalphysicalreason,whichwenowdiscuss,remainsthephase-spacerestrictionsduetokinematicalconstraints.
WelearnedinSection2.2thatinordertodeÿnequasiparticles,itwasnecessarytohaveaÿniteZkF,whichinturnneededaself-energyfunction (kF;!)whichissmoothnearthechemicalpotential,i.e.,at!=0.LetusÿrstseewhyaFermigashassuchpropertieswheninteractionsareintroducedperturbatively.
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417
281
Fig.7.Thethreesecond-orderprocessesinaperturbativecalculationofthecorrectiontothebareinteractioninaFermiliquid.
Wewillexplicitlyconsideronlyshort-rangeinteractionsinthissection,sothattheycanbecharacterizedatallmomentumtransfersbyasingleparameter.Nevertheless,theessentialresultsofLandautheoryremainvalidinthepresenceofCoulombinteractionsbecausescreeningmakestheinteractionsessentiallyshort-ranged.Thecouplingconstantgbelowmaythenbeconsideredtoparametrizethescreenedinteraction.
InFig.7,weshowthethreepossibleprocessesthatariseinsecond-orderperturbationtheoryforthescatteringoftwoparticleswithÿxedinitialenergy!andmomentumq.Notethatintwoofthediagrams,Fig.7(a)and(b)theintermediatestatehasaparticleandaholewhiletheintermediatestateindiagram7(c)hasapairofparticles.
Wewillÿndthat,forourpresentpurpose,thecontributionofdiagram7(a)ismoreimportantthantheothertwo.Itgivesacontribution
g
2
k
fk+q fk
:
k+qk(19)
Here,gisameasureofthestrengthofthescatteringpotential(thevertexinthediagram)inthelimitofsmallq.Thedenominatorensuresthatthelargestcontributiontothescatteringcomesfromsmallscatteringmomentaq:forthesetheenergydi erenceislinearinq;Ek+q Ek≈q·vk,wherevkisavectoroflengthvFinthedirectionofk.Moreover,theterminthenumeratorisnon-zeroonlyintheareacontainedbetweentwocircles(ford=2)orspheres(ford=3)withtheircentersdisplacedbyq—herethephase-spacerestrictionisduetothePauliprinciple.Thisareaisalsoproportionaltoq·vk,andsointhesmallqapproximationfromdiagram7(a)wegetatermproportionalto
g2
q·vkdf
:
kk
(20)
Nowweseewhydiagram7(a)isspecial.Thereisasingularityat!=q·vkanditsvalueforsmall!andqdependsonwhichofthetwoissmaller.Thissingularityisresponsibleforthelow-energylong-wavelengthcollectivemodesoftheFermiliquidinLandautheory.Atlowtemperatures,df=d k= ( k ),sothesummationisrestrictedtotheFermisurface.Therealpartof(19)thereforevanishesinthelimitqvF=!→0,whileitapproachesaÿnitelimit
Singular or non-Fermi liquids
282C.M.Varmaetal./PhysicsReports361(2002)
267–417
Fig.8.(a)Restrictiononallowedparticle–holeexcitationsinaFermiseaduetokinematics.Theplasmonmodehasbeendrawnforthecased=3;(b)theabsorptivepartoftheparticle–holesusceptibility(inthecharge,currentandspinchannels)for!¡qvFintheFermigas.
for!→0.Theimaginarypartinthislimitisproportionalto4!:
!
Im (q;!)=g2 N(0)for!¡qvF;
F
(21)
whileIm (q;!)=0for!¿vFq.ThisbehaviorissketchedinFig.8(b).Anexplicitevaluationfortherealpartyields
!! qvF 2 ;Re (q;!)=gN(0)1+ln (22)FF whichgivesaconstant(leadingtoaÿnitecompressibilityandspinsusceptibility)at!small
comparedtoqvF.Fordiagram7(b),wegetaterm! (Ep1 p2+k+q Ek)inthedenominator.Thistermisalwaysÿniteforgeneralmomentap1andp2,andhencethecontributionfromthisdiagramcanalwaysbeneglectedrelativetotheonefrom7(a).Alongsimilarlines,oneÿndsthatdiagram7(c),whichdescribesscatteringintheparticle–particlechannel,isirrelevantexceptwhenp1= p2,whenitdivergesasln!.
Ofcourse,ndaunoticedthissingularitybutignoreditsimplication.5Indeed,aslongasthee ectiveinteractionsdonotfavorsuperconductivityoraslongasweareattemperaturesmuchhigherthanthesupercon-ductingtransitiontemperature,itisnotimportantforFermi-liquidtheory.
Letusnowlookfurtherattheabsorptivespectrumofparticle–holeexcitationsintwoandthreedimensions,i.e.,weexaminetheimaginarypartofEq.(19).Whenthetotalenergy!ofthepairissmall,boththeparticleandtheholehavetoliveclosetotheFermisurface.In
Thisbehaviorimpliesthatthisscatteringcontributionisamarginaltermintherenormalizationgroupsense,whichmeansthatita ectsthenumericalfactors,butnotthequalitativebehavior.5
Attractiveinteractionsinanyangularmomentumchannel(leadingtosuperconductivity)arethereforemarginallyrelevantoperators.
4
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417
283
Fig.9.Thesingle-particleself-energydiagraminsecondorder.
thislimit,wecanmakeanyexcitationwithmomentumq62kF.Forÿxedbutsmallvaluesofq,themaximumexcitationenergyis!≈qvF;thisoccurswhenqisinthesamedirectionasthemainmomentumkofeachquasiparticle.Forqnear2kF,themaximumpossibleenergyis!=vF|q 2kF|.Combiningtheseresults,weobtainthesketchinFig.8(a),inwhichtheshadedareainthe!–qspaceistheregionofallowedparticle–holeexcitations.6Fromthisspectrum,onecancalculatethepolarizability,orthemagneticsusceptibility.
Thebehaviorsketchedaboveisvalidgenerallyintwoandthreedimensions(butaswewillseeinSection4,notinonedimension).Theimportantpointtorememberisthatthedensityofparticle–holeexcitationsdecreaseslinearlywith!for!smallcomparedtoqvF.WeshallseelaterthatonewayofundoingFermi-liquidtheoryistohave!~k2intwodimensionsor!~k3inthreedimensions.
WecannowuseIm (q;!)tocalculatethesingle-particleself-energytosecondorderintheinteractions.ThisisshowninFig.9wherethewigglylinedenotes (q; )whichinthepresentapproximationisjustgivenbythediagramofFig.7(a).
Fortheperturbativeevaluationofthisprocess,theintermediateparticlewithenergy–momentum(!+ );(k+q)isafreeparticle.Second-orderperturbationtheorythenyieldsanimaginarypart,oradecayrate,
2
1!
Im (k;!)=(23)=g2N(0)
Finthreedimensionsfork≈kF.Intwodimensions,thesameprocessyieldsIm (kF;!)~
!2ln(EF=!).
The!2decayrateisintimatelyrelatedtotheanalyticresult(22)forIm (q;!)exhibitedinFig.(8).Asmaybefoundintextbooks,thesamecalculationforelectron–phononinteractionsorforinteractionwithspinwavesinanantiferromagneticmetalgivesIm (kF;!)~(!=!c)3,where!cisthephononDebyefrequencyintheformerandthecharacteristiczone-boundaryspin-wavefrequencyinthelatter.
Therealpartoftheself-energymaybeobtaineddirectlyorbyKramers–Kronigtransforma-tionof(23).Itisproportionalto!.Therefore,ifthequasiparticleamplitudeZkFisevaluated
Inthepresenceoflong-rangeCoulombinteractions,inadditiontotheparticle–holeexcitationspectrumassociatedwiththescreened(andhencee ectivelyshort-ranged)interactionsonegetsacollectivemodewithaÿniteplasma
√
frequencyasq→0ind=3anda!~behaviorind=2.Theplasmamodeisahigh-frequencymodeinwhichthemotionofthelightelectronscannotbefollowedbytheheavyions:screeningisabsentinthisregimeandthelong-rangeCoulombinteractionsthengiverisetoaÿniteplasmafrequencyind=3.
6
Singular or non-Fermi liquids
284C.M.Varmaetal./PhysicsReports361(2002)
267–417
Fig.10.Single-particleenergy kinonedimension,intheapproximationthatthedispersionrelationislinearizedaboutkF.NotethattheFermisurfaceconsistsofjusttwopoints.Thespectrumofparticle–holeexcitationsisgivenby!(q)= (k+q) (k)=kFq=m.Low-energyparticle–holeexcitationsareonlypossibleforqsmallorforqnear2kF.
Fig.11.Phasespaceforparticle–holeexcitationspectruminonedimensioncomparedwiththesameinhigherdimensions,Fig.8.Forlinearizedsingle-particlekineticenergy k=±vF(k kF),particle–holeexcitationsareonlypossibleonlinesgoingthroughk=0andk=2kF.
perturbatively7
ZkF≈1 2g2N(0)=EF:
(24)
Thusinaperturbativecalculationofthee ectofinteractionsthebasicanalyticstructureoftheGreen’sfunctionisleftthesameasfornon-interactingfermions.ThegeneralproofofthevalidityofLandautheoryconsistsinshowingthatwhatwehaveobtainedtosecondorderingremainsvalidtoallordersing.Theoriginalproofs[4]areself-consistencyarguments—wewillconsiderthembrie yinSection2.4.TheyassumeaÿniteZintheexactsingle-particleGreen’sfunctionsande ectivelyshowthattoanyorderinperturbationtheory,thepolarizabil-ityfunctionsretaintheanalyticstructureofthenon-interactingtheory,whichinturnensuresaÿniteZ.
Inonedimension,phase-spacerestrictionsonthepossibleexcitationsarecruciallydi erent.8HeretheFermisurfaceconsistsofjusttwopointsintheone-dimensionalspaceofmomenta—seeFig.10.Asaresult,whereasind=2and3acontinuumoflow-energyexcitationswithÿniteqispossible,inonedimensionatlow-energyonlyexcitationswithsmallkork≈2kFarepossible.ThesubsequentequivalentofFig.8fortheone-dimensionalcaseistheoneshowninFig.11.Uponintegratingoverthemomentumkwithacut-o ofO(kF)thecontributionfrom
ThisquantityhasbeenpreciselyevaluatedbyGalitski[104]forthemodelofadiluteFermigascharacterizedbyascatteringlength.8
Itmightappearsurprisingthattheyarenotdi erentinanyessentialwaybetweenhigherdimensions.
7
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417
285
Fig.12.(a)ThenestedFermisurfaceobtainedinatightbindingmodelonasquarelatticewithnearest-neighborhopping;(b)apartiallynestedFermisurfacewhichleadstocharge-densitywaveorantiferromagneticinstabilities.
thisparticle–holescatteringchanneltoRe (q;!)is
kF
1
dk~ln[(!+qvF)=EF]:F0
(25)
(Notethat(25)istrueforbothq kFand|q 2kF| kF.)Thisinturnleadstoasingle-particleself-energycalculatedbytheprocessinFig.9tobeRe (kF;!)~!ln!andso
Z~ln!givingahintoftrouble.TheCooper(particle–particle)channelhasthesamephase-spacerestrictions,andgivesacontributiontoRe (kF;!)proportionalto!ln!too.Thefactthatthesesingularcontributionsareofthesameorder,leadstoacompetitionbetweencharge=spin uctuationsandCooperpairing uctuations,andintheexactcalculationtopower-lawsingularities.Thefactthatinsteadofthecontinuumoflow-energyexcitationspresentinhigherdimensions,thewidthofthebandofallowedparticle–holeexcitationsvanishesas!→0,isthereasonthatthepropertiesofone-dimensionalinteractingmetalscanbeunderstoodintermsofbosonicmodes.Wewillpresentabriefsummaryoftheresultsforthesingle-particleGreen’sfunctionandcorrelationfunctionsinSection4.9.
Inspecialcasesofnestingintwoorthreedimensions,onecanhavesituationsthatresembletheone-dimensionalcase.Whenthenon-interactingFermisurfaceinatightbindingmodelhasthesquareshapesketchedinFig.12(a)(whichoccursforatight-bindingmodelwiththenearestneighborhoppingonasquarelatticeathalf-ÿlling)acontinuousrangeofmomentaonoppositesidesoftheFermisurfacecanbetransformedintoeachotherbyoneandthesamewavenumber.Thisso-callednestingleadstologandlog2singularitiesforacontinuousrangeofkintheperturbationtheoryfortheself-energy (k;!).Likewise,thepartiallynestedFermisurfaceofFig.12(b)leadstochargedensitywaveandantiferromagneticinstabilities.WewillcomebacktotheseissuesinSections2.6and6.
Singular or non-Fermi liquids
286C.M.Varmaetal./PhysicsReports361(2002)267–417
2.4.PrinciplesofthemicroscopicderivationofLandautheory
Inthissection,wewillsketchhowtheconclusionsintheprevioussectionbasedonsecond-orderperturbationcalculationaregeneralizedtoallordersinperturbationtheory.Thissectionisslightlymoretechnicalthantherest;thereadermaychoosetoskiptoSection2.6.
WefollowthemicroscopicapproachwhosefoundationswerelaidbyLandauhimselfandwhichisdiscussedindetailinexcellenttextbooks[197,208,37,4].Formorerecentmethodswiththesameconclusions,see[237,128].OuremphasiswillbeonhighlightingtheassumptionsinthetheorysothatinthenextsectionwecansummarizetheroutesbywhichtheFermi-liquidtheorymaybreakdown.Theseassumptionsareusuallynotstatedexplicitly.
Thebasicideaisthatduetokinematicconstraints,anyperturbativeprocesswithnparticle–holepairsintheintermediatestateprovidescontributionstothepolarizabilityproportionalto(!=EF)n.Therefore,thelow-energypropertiescanbecalculatedwithprocesseswiththesame“skeletal”structureasthoseinFig.7,whichhaveonlyoneparticle–holepairintheintermediatestate.Soonemayconcentrateonthemodiÿcationofthefour-leggedverticesandthesingle-particlepropagatorsduetointeractionstoallorders.Accordingly,thetheoryisformulatedintermsofthesingle-particleGreen’sfunctionG(p)andthetwo-bodyscatteringvertex
(p1;p2;p1+k;p2 k)= (p1;p2;k):
(26)
Hereandbelowweuse,forthesakeofbrevity,p,etc.todenotetheenergy–momentumfourvector(p;!)andwesuppressthespinlabels.Theequationfor isexpandedinoneofthetwoparticle–holechannelsas9
d4q(1)(1)
(p1;p2;k)= (p1;p2;k) i (p1;q;k)G(q)G(q+k) (q;p2;k);(27)
where (1)istheirreduciblepartintheparticle–holechannelinwhichEq.(27)isexpressed.Inotherwords, (1)cannotbesplitintotwopartsbycuttingtwoGreen’sfunctionlineswithtotalmomentumk.So (1)includesthecompletevertexintheother(oftencalledcross-)particle–holechannel.ThediagrammaticrepresentationofEq.(27)isshowninFig.13.Inthesimplestapproximation (1)ndautheoryassumesthat (1)hasnosingularities.10AnassumptionisnowfurthermadethatG(p)doeshaveacoherentquasiparticlepartat|p| pFand! 0:
G(p)=
Z
+Ginc;
pp(28)
Tosecondorderintheinteractionsthecorrectiontothevertexinthetwopossibleparticle–holechannelshas
beenexhibitedintheÿrsttwopartsofFig.7.10
ThetheoryhasbeengeneralizedforCoulombinteractions[208,197,4].Thegeneralresultsremainunchangedbecauseascreenedshort-rangeinteractiontakestheplaceof (1).Thisisunlikelytobetrueinthecriticalregionofametal–insulatortransition,becauseontheinsulatingside,theCoulombinteractionisunscreened.
9
Singular or non-Fermi liquids
C.M.Varmaetal./PhysicsReports361(2002)267–417
287
Fig.13.DiagrammaticrepresentationofEq.(27).
where pistobeidentiÿedastheexcitationenergyofthequasiparticle,Zitsweight,andGinctheincoherentnon-singularpartofG.(ThelatterprovidesthesmoothbackgroundpartofthespectralfunctioninFig.5(b)andtheformerthesharppeak,whichisproportionaltothe functionfor p= p .)Itfollows[195,4]from(28)that
2i z2vq·k
G(q)G(q+k)= ( ) (|q| pF)+ (q)
Fq(29)
forsmallkand!,andwhere and( +!)arefrequenciesofthetwoGreen’sfunctions.NotethecrucialroleofkinematicsintheformoftheÿrsttermwhichcomesfromtheproductofthequasiparticlepartsofG; (q)comesfromthescatteringoftheincoherentpartwithitselfandwiththecoherentpartandisassumedsmoothandfeatureless(asitisindeed,giventhatGincissmoothandfeaturelessandthescatteringdoesnotproduceaninfraredsingularityatleastperturbativelyintheinteraction).Thevertex inregionsclosetok≈kFand!≈0isthereforedominatedbytheÿrstterm.ThederivationofFermi-liquidtheoryconsistsinprovingthatEqs.(27)forthevertexand(28)fortheGreen’sfunctionaremutuallyconsistent.Theproofproceedsbydeÿningaquantity !(p1;p2;k)through
d4q!(1)(1)!
(p1;p2;k)= (p1;p2;k) i (p1;q;k) (q) (q;p2;k):(30)
!containsrepeatedscatteringoftheincoherentpartoftheparticle–holepairsamongitselfandwiththecoherentpart,butnoscatteringofthecoherentpartwithitself.Then,providedtheirreduciblepartof (1)issmoothandnottoolarge, !issmoothinkbecause (q)isbyconstructionquitesmooth.
Usingthefactthattheÿrstpartof(29)vanishesforvF|k|=!→0,andcomparing(27)and(30)onecanwritetheforwardscatteringamplitude
limlim (p1;p2;k)= !(p1;p2):(31)
!→0k→0
正在阅读:
Singular or non-Fermi liquids07-20
2021年汽修实习代表生发言稿08-15
性能学习题10-26
高考英语听力模拟试题(5)试题、原文及答05-03
思科IP设置操作步骤01-04
瓦格纳尔高压无气喷涂机 HC35-45-55G - c使用说明书 - 图文10-18
门式起重机应用水平导向轮装置的可行性分析02-03
龙樱动漫社2015迎新晚会策划案03-17
综合英语(一)上册课后习题答案05-24
- 1Non-perturbative chiral approach to Kp --gamma Y reactions
- 2The Fermi surface of Bi2Sr2CaCu2O8
- 3The Fermi surface of Bi2Sr2CaCu2O8
- 4NC4_non-contact_tool_setting_system_data_sheet
- 5加拿大非木质包装证明CANADA NON-WOOD CERTIFICATE
- 6大学英语语法-Exercises for non-finite verbs-key
- 7Density fluctuations and a first-order chiral phase transition in non-equilibrium
- 8Oscillatory and Power-law Mass Inflation in Non-Abelian Black Holes
- 9AS 1101.3-2005 Graphical symbols for general engineering - Welding and non-destructive examination
- 10Fermi surface and quasiparticle dynamics of Na(x)CoO2 {x=0.7} investigated by Angle-Resolve
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Singular
- liquids
- Fermi
- non
- 汾西矿业集团公司对“三项重点工作”的学习理解和宣传教育情况汇报
- 利用MATLAB实现遗传算法和MATLAB神经网络工具箱的使用
- 软件应用商店-最真实的教学实践平台
- 年产5000t丙烯腈合成工段的工艺设计开题报告
- 方兴地产 2009 中期报告
- 二年级口算100题(打印版)
- 上岗证考试章节复习题2xun
- 2013年职称英语真题理工A试题及答案
- 视功能检查:NRA PRA BCC的结果分析
- 鉴赏文学作品的表达技巧
- 沼气发电技术在污水处理厂的应用
- 外研版高中英语选修7单词默写单
- 2011合富辉煌万科旗忠项目营销提报106P
- 摄影测量学实验报告
- 微积分初步模拟试题
- 《隆中对》教案5
- 律师在公司股权转让中工作风险
- iso9000质量管理体系内部审核员学员手册及答案(全)
- 2015年内蒙古自治区物业管理师《综合能力》考点:市场需求包过题库
- 初中化学中考模拟试题(一)