计算(裂项、换元与通项归纳)

更新时间:2024-01-31 20:43:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

计算(裂项、换元与通项归纳)

第一部分 裂项

11111+2+3+4+……+20 26122042011111 =(1+2+3+……+20)+(++++……+)

26122042011111 =210+(++++……+)

1?22?33?44?520?21111111111 =210+(1-+-+-+-- )

223344520211 =210+(1- )

2120 =210

21【1】 计算 1

【2】

123-15-17-19-111-113-1111111 =+++++

6?88?1010?1212?142?44?61111111111111 =(-+-+-+-+-+-)×

244668810101212142111 =(-)×

2142613 =× =

14214+

12+

1

2

1

2

12+

12

365791113【3】计算 ++++++

57612204230361111111111 =++(+)+(+)+(+) +(+)+(+)

572334455667311611111111 =(++)+(+)+(++)+(+++)

555772443366 =4

【4】计算:(此题用到公式

k11??)

n??n?k?nn?k1-=1-

3102--……-

?1?2?3????9???1?2?3????10?1??1?2??1?2???1?2?3?234510----……-

45?551?33?66?1010?151

1111111111=1-(-)-(-)-(-)-(-)-……-(-)

610361015451355111111111=1-1+-+-+-+-……-+

610101533645551= 55

【5】计算: 1?2?2?3?3?4?4?5?5?6?6?7?7?8?8?9?9?10?________.

11?1???1?2?3???2?3?4??1?2?3??33?3?1?1????9?10?11??8?9?10?

3?3?1??9?10?11?330 3从这个题目我们可以归纳出一般性的结论。

1×2+2×3+3×4+4×5+……+n(n+1)

11111×1×2×3+(×2×3×4-×1×2×3) +(×3×4×5-×2×3×4) +……3333311+ [n(n+1)(n+2)-(n-1) n(n+1)]

331 = n(n+1)(n+2)

3 =

即:1?2?2?3?1?n??n?1??n?n?1??n?2?

3

另外,例6还有另外一种解法:

根据 n?n?1??n2?n 所以

1?2?2?3?3?4?4?5?5?6?6?7?7?8?8?9?9?10?

??12?1???22?2????12?22???92?9?

?9?

?92???1?2?11??9?10?19??9?10?330 62

第二部分 换元

【6】计算:(

621739458621739458378739458378++)×(++)-(+++)×126358947126358947358947207207739458+) 358947739458739458378解:设a=+ b=++

358947358947207621621 原式=(+a)b-(+b)a

126126621621 = b+ab- a-ab

126126

2

621378× =9 126207

11111111++……+)×(++……+)-(1+++……232007232008231111+)×(++……+) 2008232007111111解: 设a=++……+ b=++……+

【7】计算:(1+

232007232008 原式=(1+a)×b-(1+b)×a =b+ab-a-ab =b-a =

12008

第三部分 通项归纳

【8】计算: 11+11?2+11?2?3+……+11?2?3????100

解:先推导出通项公式。

ɑɑan=

11?2?3????n=1?1?n??n?2=2n??n?1?

原式=

21?2+22?3+23?4+……+2100?101 =2×(11111?2+2?3+3?4+……+100?101)

=2×(1-11111112+2-3+3-4+……+100-101) =2×(1-1101)

=2×100200101=101

2222

【9】计算:

22×32×4?13?142?1×……×992992

?1

2⑴先推导出通项公式an=

nn2?1=n?n(n?1)(n?1) n=2、3、4、……、2222

222?1×332?1×442?1×……×99992

?1

99

3

99?992?23?34?4×××……×

98?1001?32?43?5299=× 110099 =

50=

5791113151719+-+-+-+

7256906122042301111111111 =1-(+)+(+)-(+)+(+)-(+)

2334455667111111+(+)-(+)+(+)

78899101111111111111111 =1--++--++--++--++

7889910233445566711 =1-+

2103 =

5【10】计算1-

【11】计算:==

35124+++……+

1?2?4?52?3?5?63?4?6?710?11?13?141?2?3?4?532+

2?3?4?5?642+

3?4?5?6?752+……+

10?11?12?13?14122

1?5?41?6?42?7?410?14?4+++……+

1?2?3?4?52?3?4?5?63?4?5?6?710?11?12?13?141?51?62?710?14=(+++……+)+

1?2?3?4?52?3?4?5?63?4?5?6?710?11?12?13?144444(+++……+) 1?2?3?4?52?3?4?5?63?4?5?6?710?11?12?13?14111144=(+++……+)+(+

2?3?43?4?54?5?611?12?131?2?3?4?52?3?4?5?644++……+) 3?4?5?6?710?11?12?13?14111111111=×﹝-+-+-+……+-﹞+

2?33?43?45?611?1212?134?54?5211111﹝-+-+……+- 1?2?3?42?3?4?52?3?4?53?4?5?610?11?12?131﹞

11?12?13?1411111=×﹝-﹞+﹝-﹞

2?312?131?2?3?411?12?13?1421111=-+- 122?12?132411?12?13?14

4

75 616222【12】计算:13-1311?22?23+132?2?33221?2?3233-132?2?3?433221?2?3?41+……+3322?2???263221?2???263

⑴归纳通项公式an=13?2???n?2???n2321n(n?1)(2n?1)211=26=×(+) 23nn?1n?(n?1)42⑵ 13-132211?2?223+13?2?33221?2?33-13?2?3?433221?2?3?41+……+3322?2???263221?2???263

121111111×{(+)-(+)+(+)-……-(+)} 3334262712221=×(1-) 32722652=×= 32781=

[13]

计算:1155×﹝

571719++……++﹞

2?3?43?4?58?9?109?10?11⑴归纳通项公式an=⑵ 1155×﹝

n?(n?1)11=+ (n=2、3、4、…、9)

n?(n?1)?(n?2)(n?1)?(n?2)n?(n?2)571719++……++﹞ 2?3?43?4?58?9?109?10?11111111=1155×﹝++++……++﹞

3?42?44?53?510?119?11

1111111=1155×{﹝+++……+﹞+﹝++……+﹞}

3?44?55?610?119?112?43?51111111=1155×{﹝-﹞+﹝-+-﹞×}

31121031122188=1155×{+﹝+﹞×}

52333331=1155×

55=651

5

14、

110+140+11188+154+238 =12?5+11115?8+8?11+11?14+14?17

=13×(12-15+15-18+18-111+111111-14+14-17)

=13×(12-117)

=1153×34

=534

15、 1+1745+

12+920+815+1730+512 =114+5+13+1111121114+4+5+3+5+5+6+4+6

=(13+13+11116+6)+4×4++5×5

=3

16、 2?3?3?4?4?5??100?101? .

分析:应用公式1?2?2?3??n??n?1??13n?n?1??n?2?

原式??1?2?2?3?3?4?4?5??100?101??1?2

?13?100?101?102?2 ?343398

17、(1?0.12?0.23)?(0.12?0.23?0.34)?(1?0.12?0.23?0.34)?(0.12?0.23)?________.解:令1?0.12?0.23?a,0.12?0.23?b,则

(1?0.12?0.23)?(0.12?0.23?0.34)?(1?0.12?0.23?0.34)?(0.12?0.23)?

?a??b?0.34???a?0.34??b ?ab?0.34a?ab?0.34b ?0.34?a?b??0.34?1?0.34

18、1+

12?4+111122?4?6+2?4?6?8+2?4?6?8?10+2?4?6?8?10?12解:先推导出通项公式。 ɑɑa11n=

2?4?6????2n=

=1

2?n?n?1?n?n?1?2

6

111111+++++ 1?22?33?44?55?66?711111111111 =1-+-+-+- +-+-

722334455661 =1-

76 =

7 原式=

111119、+++……+

3?5?7????2133?53?5?7解:先推导出通项公式。 ɑɑan=原式=

111==

3?5?7????(2n?1)?2n?1?3?n?2n?n?2?111111++++……++

9?1110?124?61?32?43?5111111 =(++……+)+(++……+)

9?1110?122?44?61?33?511111=×(1-)+×(-)

112221211015=×+× 211212175= 264

9111019+++ 212435201111111325712 =+++++(+)+(+)+(+)+(+)

457835345738711111322571 = ×3+(+)+(++)+(++)+(+)

45578834577 20、 +++++

1334255778 =1+1+1+1+1 =5

7

本文来源:https://www.bwwdw.com/article/w9hw.html

Top