经济数学作业答案

更新时间:2023-11-27 05:55:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

经济数学基础形成性考核册

作业(一)

(一)填空题 1.limx?sinxxx?0?_______0________.

x?0x?0?x2?1,2.设f(x)???k,,在x?0处连续,则k?____1____.

123.曲线y?x在(1,1)的切线方程是 y?(x?1) .

4.设函数f(x?1)?x2?2x?5,则f?(x)?_____2x_______. 5.设f(x)?xsinx,则f??()?____?2π?2______.

(二)单项选择题

1. 当x???时,下列变量为无穷小量的是( D ) A.ln(1?x) B.

x2?1x2x?1 C.e D.

sinxx

2. 下列极限计算正确的是( B ) A.limxx?1 B.lim?x?0xxx?0?1

C.limxsinx?01x?1 D.limsinxxx???1

3. 设y?lg2x,则dy?( B ). A.

12xdx B.

1xln10dx C.

ln10xdx D.

1xdx

4. 若函数f (x)在点x0处可导,则( B )是错误的.

A.函数f (x)在点x0处有定义 B.limf(x)?A,但A?f(x0)

x?x0 C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微 5. 若f()?x,则f(x)?( B ).

x1A.

1x2 B.?1x2 C.

1x D.?1x

(三)解答题 1.计算极限 (1)limx?3x?2x?122x?1?lim(x?1)(x?2)(x?1)(x?1)x?1?limx?2x?1x?1??12

1

(2)limx?5x?6x?6x?822x?2?lim(x?2)(x?3)(x?2)(x?4)x?2?limx?3x?4x?2?12

(3)x?0lim1?x?1x?lim(1?x?1)(1?x?1)x(1?x?1)x?0

?lim?xx(1?x?1)x?0?lim?11?x?1x?0??12

(4)limx?3x?53x?2x?4221??limx??3x2x??52x?1 43x??3?x32limsin3xsin5xlimx?0(5)

x?0?limsin3x3x5xsin5x5x35x?0sin5x5??35sin3x3x2

limx?0limx?4sin(x?2)x?2(6)

x?2?lim(x?2)sin(x?2)x?2?(x?2)

?limx?2sin(x?2)?lim(x?2)?1?4?4x?21?xsin?b,?x?2.设函数f(x)??a,sinx??x?x?0x?0, x?0问:(1)当a,b为何值时,f(x)在x?0处有极限存在? (2)当a,b为何值时,f(x)在x?0处连续. 3.计算下列函数的导数或微分: (1)y?x?2?log2x2x2x?2,求y?

2x2y??(x)??(2)??(log2x)??(2)??2x?2ln2?1xln2

(2)y?y???ax?bcx?d,求y?

(ax?b)?(cx?d)?(ax?b)(cx?d)?(cx?d)(cx?d)22a(cx?d)?c(ax?b)?ad?bc(cx?d)2

2

(3)y?13x?5?12,求y?

y?(3x?5),?y???12(3x?5)?32(3x?5)???32(3x?5)?32

(4)y?y??(?12xx?xe,求y?

xx)??(xe)???(x?1)exx12x?(x?e?x(e)?)xx

(5)y?esinbx,求dy

y??(e ?eaxax)?sinbx?eax(sinbx)?axax(ax)?sinbx?esinbx?beaxcosbx(bx)? ?ae ?eax

cosbxax(asinbx?bcosbx)ax?dy?e(asinbx?bcosbx)dx

1(6)y?ex?xx,求dy

1321xy?ex?x,?y??e(1x211x)??321x2??1x21ex?321x2?dy?(?ex?321

x2)dx2(7)y?cosy???sinx?e?x,求dy

?x2x?(x)??e?(?x)???212xsinx?2xe?x2

?dy?(?12xnsinx?2xe?x2)dx

(8)y?siny??nsinn?1x?sinnx,求y?

n?1x?(sinx)??cosnx(nx)??nsin2x?cosx?ncosnx

(9)y?ln(x?1?x),求y?

3

y??x? ?x?11?x11?xcot22(x?1?x)??x?x1?x2212?(1?x)???1??221?x?21?x?

(1?)?11?x21x(10)y?21x?1?3x2?x2x,求y?

1y??2 ?2 ?cotln2?(cot1x)??(x1x1x)?(12?12?x6?12x?2)?x56?32cot1xln2?(?csc?2cot1x21xx)??(??32?16x?56)

ln2x2?csc2??164.下列各方程中y是x的隐函数,试求y?或dy (1)x?y?xy?3x?1,求dy

2x?2y?y??y?xy??3?0?(2y?x)y??y?2x?3?y??y?2x?32y?x?dy?y?2x?32y?xdx22

(2)sin(x?y)?exy?4x,求y?

xycos(x?y)?(1?y?)?e?y???(y?xy?)?4xy4?cos(x?y)?yecos(x?y)?xexy

5.求下列函数的二阶导数: (1)y?ln(1?x),求y??

2x1?x22y??,y???2(1?x)?2x?2x(1?x)222?2(1?x)(1?x)222

(2)y?1?xx1,求y??及y??(1)

y?x?12?x2,?y???12x?32?12x?12,y???34x?52?14x?32,?y??(1)?1

4

经济数学基础形成性考核册

作业(二)参考答案

(一)填空题

1.若?f(x)dx?2?2x?c,则f(x)?___2xln2?2_______. 2.

x?(sinx)?dx?___sinx?C_____.

23. 若?f(x)dx?F(x)?c,则?xf(1?x)dx? ?12F(1?x)?C .

24.设函数

ddx?e1ln(1?x)dx?____0____.

25. 若P(x)??0x11?t2dt,则P?(x)?____?11?x2_____.

(二)单项选择题

2

1. 下列函数中,( D )是xsinx的原函数. A.D.-1212cosx2 B.2cosx2 C.-2cosx2

cosx2

2. 下列等式成立的是( C ). A.sinxdx?d(cosx) B.lnxdx?d(x1x)

C.2dx?1ln2d(2) D.

x1xdx?dx

3. 下列不定积分中,常用分部积分法计算的是( C ). A.D.??cos(2x?1)dx, B.

x1?x2?x1?xdx C.

2?xsin2xdx

dx

4. 下列定积分中积分值为0的是( C D ). A.?2xdx?2 B.??1116?1dx?15

C.?cosxdx?0 D.?sinxdx?0

??????5. 下列无穷积分中收敛的是( B ).

A.???11xdx B.???11x2dx C.???0edx D.?x??1sinxdx

(三)解答题

5

1.计算下列不定积分 (1)?31?3??3?dx?dx??????c x??eeln3?1???e?2xxx(2)?(1?x)xdx??(1x3?2x?x2)dx?2x?433x2?255x2?c

(3)?(4)?x?4x?211?2x2dx??(x?2)dx?112x?2x?c

122dx???21?2x11d(1?2x)??ln|1?2x|?c

(5)?x2?xdx?sinxx22?22?xd(2?x)?22133(2?x)2?c

2(6)?xdx?2?sinxdx??2cosx?C

(7)?xsindx??2?xd(cosx2x2)??2xcosx2?2?cosx2dx

??2xcos?4sinx2?c

(8)?ln(x?1)dx?xln(x?1)??xln(x?1)??xd(ln(x?1))

?xx?1dx?xln(x?1)??(1?1x?1)dx

?xln(x?1)?x?ln(x?1)?c?(x?1)ln(x?1)?x?c

2.计算下列定积分 (1)?2?11?xdx?1221?121?1(1?x)dx?2?21(x?1)dx

?(x?x)?12?(x?x)12?52

211(2)?exx312dx???exd(1211xe111)??ex1?e?e2

e3(3)?e11x1?lnx3dx??(1?lnx)?121d(1+lnx)?2(1?lnx)21?2

6

?(4)?2xcos2xdx?01?20??214xd(sin2x)??122xsin2x0?1?20?2sin2xdx

?(5)

2cos2x0??12

?e1xlnxdx?12?e1lnxdx?212exlnx12?12?e1xdlnx?2e22?12?e1xdx

?440e22?14ex21?e?142

4040(6)?(1?xe0?x)dx?x??40xd(e?e?x?x)?4?xe?5?5e?4?x??e?xdx

?4?4e

?440

经济数学基础形成性考核册

作业(三)参考答案

(一)填空题

?1?1.设矩阵A?3???20?21436?5??2,则A的元素a23?___3___. ??1??T2.设A,B均为3阶矩阵,且A?B??3,则?2AB22=___?72____.

23. 设A,B均为n阶矩阵,则等式(A?B)?A?2AB?B成立的充分必要条件是

AB?BA . 4. 设A,B均为n阶矩阵,(I?B)可逆,则矩阵A?BX?X的解

X?____(I_?B)?1. __A___??1??____?0???0???0??0?____. ??1??3???1?5. 设矩阵A?0???00200???10,则A??3??0120(二)单项选择题

7

1. 以下结论或等式正确的是( C ).

A.若A,B均为零矩阵,则有A?B

B.若AB?AC,且A?O,则B?C

C.对角矩阵是对称矩阵

D.若A?O,B?O,则AB?O

2. 设A为3?4矩阵,B为5?2矩阵,且乘积矩阵ACB( A )矩阵. A.2?4 B.4?2 C.3?5 D.5?3

T有意义,则C为

T

3. 设A,B均为n阶可逆矩阵,则下列等式成立的是( C ). ` A.(A?B)?1?A?1?B?1, B.(A?B)?1?A?1?B?1

C.AB?BA D.AB?BA 4. 下列矩阵可逆的是( A ).

?1? A.0???02203???1??3 B.1???3???1002?1??1 ?3?? C.??1?01??1 D.??0??22341?? 2??2?5. 矩阵A?3???42??3的秩是( B ). ?4??A.0 B.1 C.2 D.3

三、解答题 1.计算 (1)???2?51??0??3??12??1???3??01??1???0??31??0???0??0?2?? 5?0???0 0??0(2)??0(3)??125?3???04????0 ??1????2?8

?123???124??245?2.计算???122????143?????610?? ??1?32????23?1????3?27???7197??245??5152?解:原式???7120?????610?????1110?? ??0?4?7????3?27?????3?2?14??

?23?1??123?3.设矩阵A???111??,B???112??,求AB。 ??0?11????011??解:

?23?1??123??5611?5AB???111????112?????246??,?|AB|?2??0?11????011?????10?1???1?124?4.设矩阵A???2?1??,确定?的值,使r(A)最小。 ??110???124??124??124?解:A???2?1?????0??4?7?????0?1?4????110????0?1?4????009?4???所以当??94时r(A)最小.

?2?5321??5.求矩阵A??5?8543???1?7420?的秩。 ??4?1123???2?5321??1?7420??解: A??5?8543????8543???1?742???50?2?5321? ??4?1123????4?1123??9

61146?00?1

?1?7420??1?7420????027?15?63???0000???09?5?21???0?09?5?21???027?15?63????00000???1?7420

????09?5?21???00000?,?r(A)?2??00000??6.求下列矩阵的逆矩阵:

?1?32?(1)A????301?? ??11?1????13?6?3?(2)A =???4?2?1??. ??211???1?32100??1?3210解: (1)[A,I]????301010?????0?9731??11?1001????04?3?10?1?32100??1?32100????0?11112?????01?1?1?1?2?? ??04?3?101????001349???1?30?5?8?18??100113????010237?????010237?? ??001349????001349???113??A?1???237?? ??349????13?6?3100??114107?(1)[A,I]????4?2?1010?????001012?? ??211001????211001???114107??114107????001012?????0172013?? ??0?1?7?20?13????001012??10

0?0??1??

本文来源:https://www.bwwdw.com/article/w2qt.html

Top