线性代数习题及答案(复旦版)

更新时间:2023-11-12 12:22:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

线性代数习题及答案

习题一

1. 求下列各排列的逆序数.

(1) 341782659; (2) 987654321;

(3) n(n?1)…321; (4) 13…(2n?1)(2n)(2n?2)…2. 【解】

(1) τ(341782659)=11; (2) τ(987654321)=36;

(3) τ(n(n?1)…32221)= 0+1+2 +…+(n?1)=

n(n?1)2;

(4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.

5x124. 本行列式D43?x1xi1i2i3i4x1234的展开式中包含x和x的项.

2x3122x(i1i2i3i4)解: 设

D4??(?1)?ai11ai22ai33ai44 ,其中i1,i2,i3,i4分别为不同列中对应元素的行下标,则D4展开式中含

x3项有

(?1)?(2134)?x?1?x?2x?(?1)?(4231)?x?x?x?3??2x3?(?3x3)??5x3

D4展开式中含x4项有

(?1)?(1234)?2x?x?x?2x?10x4.

5. 用定义计算下列各行列式.

02000010(1)

30000004【解】(1) D=(?1)

τ

12300020; (2)

30450001.

(2314)

4!=24; (2) D=12.

6. 计算下列各行列式.

1

213?142?1?1ab?ac?ae(1)

123?2; (2)

?bdcd?de;

506?2?bf?cf?efa?1001234(3)

1b?10234101c?1; (4)

3412.

001d4123506?2【解】(1)

Dr1?r23?12?1123?2?0; 506?21?1?1(2)

D?abcdef?11?1??4abcdef;

?1?1?1b?101?10(3)D?a1c?1?(?1)20c?1?a??bc?1?1?1???cd?101d01d?1d0d?

?abcd?ab?ad?cd?1;102341023410234c(4)D1?c210341r2?r1011?3r3?2r11?3c?c1?c310412r??201?cr3?rr102?2?2r4?r200?44?160.4101234?10?1?1?1000?47. 证明下列各式.

a2abb2(1)

2aa?b2b?(a?b)2; 111a2(a?1)2(a?2)2(a?3)2(2)

b2(b?1)2(b?2)2(b?3)2c2(c?1)2(c?2)2(c?3)2?0;

d2(d?1)2(d?2)2(d?3)21a2a31aa2 (3)

1b2b3?(ab?bc?ca)1bb2

1c2c31cc2 2

a00b0ab0(4)

D2n?0cd0?(ad?bc)n;

c00d1?a11111?a21(5)

?n1?n??1???1a?ai. ?i?i?i?1111?an【证明】(1)

c(a?b)(a?b)b(a?b)b2左端1?cc?32(a?b)a?b2b2?c3001

?(a?b)(a?b)b(a?b)2(a?b)a?b?(a?b)2a?bb21?(a?b)3?右端.a22a?14a?46a?9a22a?126c左端2-c1(2)

b22b?14b?46b?9c3-2c2b22b?126c?2c3?c12c?14c?46c?9c?4?3c24?c1cc22c?126?0?右端.d22d?14d?46d?9d22d?126(3) 首先考虑4阶范德蒙行列式:

1xx2x3f(x)?1aa2a31bb2b3?(x?a)(x?b)(x?c)(a?b)(a?c)(b?c)1cc2c3从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为

1aa2(ab?bc?ac)(a?b)(a?c)(b?c)?(ab?bc?ac)1bb2,1cc2但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故

1a2a3(?1)1?11b2b3, 1c2c3(4) 对D2n按第一行展开,得

(*)

3

ab00abababD2n?acd?bcd

cd00cd00dc00?ad?D2(n?1)?bc?D2(n?1)?(ad?bc)D2(n?1),据此递推下去,可得

D2n?(ad?bc)D2(n?1)?(ad?bc)2D2(n?2)??(ad?bc)n?1D2?(ad?bc)n?1(ad?bc) ?(ad?bc)n?D2n?(ad?bc)n.

(5) 对行列式的阶数n用数学归纳法.

当n=2时,可直接验算结论成立,假定对这样的n?1阶行列式结论成立,进而证明阶数为n时结论也成立. 按Dn的最后一列,把Dn拆成两个n阶行列式相加:

1?a11111?a1110D11?a21111?a210n??1111111?an?10111an?a1a2an?1?anDn?1.但由归纳假设

?1Dn?1?a1aa?n1?2n?1?1???1a?,

?ii?从而有

Dn?a1a2a?n?1a1?n?1?an1a2an?1??1??i?1a?i?nn

?a1a2aa?1??1?nn?1n??1??i?1a?????1??i?1a?ii??ai.i?18. 计算下列n阶行列式.

4

x1112222222(1)

D1x1n? (2)

Dn?2232;

11x222nxy0000xy00(3)Dn?. (4)Dn?aij其中aij?i?j(i,j?1,2,,n) ;

000xyy000x2100012100?01200(5)Dn.

0002100012【解】(1) 各行都加到第一行,再从第一行提出x+(n?1),得

111Dn?[x?(n?1)]1x1,

11x将第一行乘(?1)后分别加到其余各行,得

111D?10n?[x?(n?1)]1x?(x?n?1)(x?1)n?1.

00x?112222100002222r010D2?r100(2)

nr?10100按第二行展开?0020??2(n?2)!.

3?r11002rn?r11000n?2000n?2(3) 行列式按第一列展开后,得

5

本文来源:https://www.bwwdw.com/article/w0lv.html

Top