实验一-高频小信号调谐放大器

更新时间:2023-11-11 03:50:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

实验报告

实验名称 姓名 学号 高频小信号调谐放大器 马晓恬 08103040142 专业班级 指导教师 电信081 刘富强 成绩 12.19 实验日期 提交报告日期 一、实验目的 小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数,通频带,矩形系数),进一步掌握高频小信号调谐放大器的工作原理。学会小信号调谐放大器的设计方法。 二、实验内容 1、 调节谐振回路使谐振放大器谐振在10.7MHz。 2、 测量谐振放大器的电压增益。 3、 测量谐振放大器的通频带。 4、 判断谐振放大器选择性的优劣。 三、实验仪器 1、BT-3(G)型频率特性测试仪(选项)一台 2、20MHz模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 1、原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。

1

图1-1 小信号调谐放大器 放大器在高频情况下的等效电路如图1-2所示,晶体管的4个y参数yie,yoe,yfe及yre分别为 输入导纳 yie?1?rb'b?gb'e?jwcb'e?1?rb'b?gb'e?jwcb'e?gmrb'bjwcb'egb'e?jwcb'e (1-1) 输出导纳 yoe??jwcb'e (1-2) 正向传输导纳 yfegm? (1-3) 1?rb'b?gb'e?jwcb'e?1?rb'b?gb'e?jwcb'e??jwcb'e (1-4) 反向传输导纳 yre? 图1-2 放大器的高频等效回路 式中,gm——晶体管的跨导,与发射极电流的关系为 gmI??EmAS 26?(1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关, 其关系为 gb'e??IE?mAS1? (1-6) rb'e26?rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法; Cb’e——发射结电容,一般为几十皮法至几百皮法。 由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β有关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,IE=2mA,UCE=8V条件下测得3DG6C的y参数为: 2

gie?11?2mS Cie?12pF goe??250mS rieroeCoe?4pF yfe?40mS yre?350uS 如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工程估算的方法。 图1-2中所示的等效电路中,p1为晶体管的集电极接入系数,即 P1?N1/N2 (1-7) 式中,N2为电感L线圈的总匝数。 P2为输出变压器T的副边与原边的匝数比,即 P2?N3/N2 (1-8) 式中,N3为副边(次级)的总匝数。 gL为调谐放大器输出负载的电导,gL=1/RL。通常小信号调谐放大器的下一级仍为晶体管调谐放大器,则gL将是下一级晶体管的输入导纳gie2。 由图1-2可见,并联谐振回路的总电导g?的表达式为 222g??p1goe?p2gie?jwc? 2?p1goe1?GjwL (1-9) 12?p2gL?jwc??GjwL式中,G为LC回路本身的损耗电导。谐振时L和C的并联回路呈纯阻,其阻值等于1/G,并联谐振电抗为无限大,则jwC与1/(jwL)的影响可以忽略。 2、调谐放大器的性能指标及测量方法 表征高频小信号调谐放大器的主要性能指标有谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。 放大器各项性能指标及测量方法如下: (1)谐振频率 放大器的调谐回路谐振时所对应的频率fo称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),fo的表达式为 f0?12?LC? (1-10) 式中,L为调谐回路电感线圈的电感量; C?为调谐回路的总电容,C?的表达式为 3

22 C??C?P(1-11) 1Coe?P2Cie 式中, Coe为晶体管的输出电容;Cie为晶体管的输入电容。 谐振频率fo的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点fo。 (2)电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数Avo称为调谐放大器的电压放大倍数。Avo的表达式为 AV0?p1p2yfeu0?p1p2yfe (1-12) ????22uig?p1goe?p2gie?G式中,g?为谐振回路谐振时的总电导。因为LC并联回路在谐振点时的L和C的并联电抗为无限大,因此可以忽略其电导。但要注意的是yfe本身也是一个复数,所以谐振时输出电压u0与输入电压ui相位差为(180+ Φfe)。 AV0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中RL两端的电压u0及输入信号ui的大小,则电压放大倍数AV0由下式计算: AV0?U0Ui 或AV0?20lg?UoUi? dB (1-13) (3)通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数AV下降到谐振电压放大倍数AV0的0.707倍时所对应的频率偏移称为放大器的通频带BW,其表达式为 BW?2?f0.7?f0QL (1-14) 式中,QL为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数Avo与通频带BW的关系为 AV0?BW?oyfe2?C? (1-15) 上式说明,当晶体管选定即yfe确定,且回路总电容CΣ为定值时,谐振电压放大倍数AV0与通频带BW的乘积为一常数。这与低频放大器中的增益带宽积为一常数的概念是相同的。 通频带BW的测量方法:是通过测量放大器的谐振曲线来求通频带。测量方法可以是扫频法,也可以是逐点法。逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率fo及电压放大倍数Avo然后改变高频信号发生器的频率(保持其输出电压uS 4

不变),并测出对应的电压放大倍数Avo。由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图1-3所示。 由式(1-14)可得 BW?fH?fL?2?f0.7 (1-16) 图1-3 谐振曲线 通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,由式(1-15)可知,除了选用yfe较大的晶体管外,还应尽量减小调谐回路的总电容量CΣ。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。 (4)选择性——矩形系数 调谐放大器的选择性可用谐振曲线的矩形系数Kv0.1时来表示,如图(1-3)所示的谐振曲线,矩形系数Kv0.1为电压放大倍数下降到0.1 AV0时对应的频率偏移与电压放大倍数下降到0.707 AV0时对应的频率偏移之比,即 KV0.1?2?f0.12?f0.7?2?f0.1BW (1-17) 上式表明,矩形系数Kv0.1越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。一般单级调谐放大器的选择性较差(矩形系数Kv0.1远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器。可以通过测量调谐放大器的谐振曲线来求矩形系数Kv0.1。 3、实验参考电路 5

图1-4 单级调谐放大器 (1)主要技术指标:谐振频率fo=10.7MHz,谐振电压放大倍数AV0≥10-15 dB,通频带BW=1 MHz,矩形系数Kr0.1<10。因fT比工作频率fo大(5—10)倍,所以选用3DG12C,选β=50,工作电压为12V,查手册得rbˊb=70, CbˊC=3PF,当IE=1.5mA时Cbˊe为25PF,取L≈1.8μH,变压器初级N2=23匝,次级为10匝。 P2=0.43, P1=0 (2)确定电路为单级调谐放大器,如上图1-4。 (3)确定电路参数。 a、设置静态工作点 由于放大器是工作在小信号放大状态,放大器工作电流ICQ一般选取0.8—2mA为宜,现取IE=1.5mA,UEQ=2.25V,UCEQ=9.75V。 则 RE?UEQIE?1.5K? 则RA6=1.5KΩ 取流过RA3的电流为基极电流的7倍,则有: RA3?UBQ7IBQ?UBQ??7IE?17.6K? 取18 KΩ 则 RA2?WA1?12?3.7?18?40K? 3.7则取RA2=5.1K WA1选用50K的可调电阻以便调整静态工作点。 b、计算谐振回路参数 由式(1-6)得 gb'e??IE?mA26?S?1.15mS 由式(1-5)得 gm??IE?mA26S?58mS 由式(1-1)~(1-4)得4个y参数 6

yie?1?rb'b?gb'e?jwcb'e?gb'e?jwcb'e?1.373?10?3S?j2.88?10?3S 由于yie?gie?j?cie 则有gie =1.373ms rie?1gie?728? Cie?2.88mS?22.5pF wyoe?1?rb'b?gb'e?jwcb'e?jwcb'bcb'cgm?jwcb'e?0.216mS?j1.37mS 因yoe?goe?j?coe 则有 goe?0.216ms coe?1.37msW?10.2pF c、计算回路总电容C?1,由(1-10)得 C????2?f0?2L?1?2?3.14?10.7?10?62?1.8?10?6?123pF 由(1-11) C?C?P12Coe?P22Cie得 ?P12Coe?P22Cie?120?0.432?22.5?02?10.2?119pF C?C?则有CA3=119pF,取标称值120pF d、确定耦合电容及高频滤波电容 高频电路中的耦合电容及滤波电容一般选取体积较小的瓷片电容,现取耦合电容CA2=0.01μF,旁路电容CA4=0.1μF,滤波电容CA5=0.1μF 五、实验步骤 本实验中,用到BT-3和频谱仪的地方选做。 参考所附电路原理图G6。先调静态工作点,然后再调谐振回路。 1、按照所附电路原理图G6,按下开关KA1,接通12V电源,此时LEDA1点亮。 2、调整晶体管的静态工作点: 在不加输入信号(即ui=0),将测试点TTA1接地,用万用表直流电压档(20V档)测量三极管QA1射极的电压(即测P6与G两焊点之间的电压,见图0-2所示),调整可调电阻WA1,使uEQ=2.25V(即使IE=1.5mA),根据电路计算此时的uBQ,uCEQ,uEQ及IEQ值。 3、调谐放大器的谐振回路使它谐振在10.7MHz 方法是用BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端TTA1及测试端TTA2,通过调节y轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频

7

标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率f0=10.7MHz所对应的幅值最大。 如果没有频率特性测试仪,也可用示波器来观察调谐过程,方法是:在TTA1处由高频信号源提供频率为10.7MHz的载波(参考高频信号源的使用),大小为Vp-p-=20~100mV的信号,用示波器探头在TTA2处测试(在示波器上看到的是正弦波),调节变压器磁芯使示波器波形最大(即调好后,磁芯不论往上或往下旋转,波形幅度都减小)。 4、测量电压增益Av0 在有BT-3频率特性测试仪的情况下用频率特性测试仪测Av0测量方法如下: 在测量前,先要对测试仪的y轴放大器进行校正,即零分贝校正,调节“输出衰减”和“y轴增益“旋钮,使屏幕上显示的方框占有一定的高度,记下此时的高度和此时“输出衰减”的读数N1dB,然后接入被测放大器,在保持y轴增益不变的前提下,改变扫频信号的“输出衰减”旋钮,使谐振曲线清晰可见。记下此时的“输出衰减”的值N2dB,则电压增益为 AVO??N2?N1?dB 若用示波器测,则为输出信号的大小比输入信号的大小之比。如果AV01较小,可以通过调静态工作点来解决(即IE增大)。 在无BT-3频率特性测试仪的情况下,可以由示波器直接测量。方法如下: 用示波器测输入信号的峰峰值,记为Ui。测输出信号的峰峰值记为Uo。则小信号放大的电压放大倍数为Uo/Ui。 5、测量通频带BW 用扫频仪测量BW: 先调节“频率偏移”(扫 频宽度)旋钮,使相邻两个频标在横轴上占有适当的格数,然后接入被测放大器,调节“输出衰减”和y轴增益,使谐振特性曲线在纵轴占有一定高度,测出其曲线下降3dB处两对称点在横轴上占有的宽度,根据内频标就可以近似算出放大器的通频带 BW?B0.7?100KHZ??宽度? 6、测量放大器的选择性 放大器选择性的优劣可用放大器谐振曲线的矩形系数Kr0.1表示 用5)中同样的方法测出B0.1即可得: Kr0.1?B0.12?f0.1? B0.72?f0.7由于处于高频区,分布参数的影响存在,放大器的各项技术指标满足设计要求后的元件参数值与设计计算值有一定的偏差,所以在调试时要反复仔细调整才能使谐振回路处于谐振状态。在测试要保证接地良好。 8

六、实验记录 TTA1输入 TTA2输出 七、心得体会 通过这次试验,收获很大。虽然越到困难,但是在同学的帮助下一起解决了。

9

本文来源:https://www.bwwdw.com/article/vzsv.html

Top