The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
更新时间:2023-05-10 08:26:01 阅读量: 实用文档 文档下载
- the推荐度:
- 相关推荐
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
arXiv:0707.1860v1 [math.DG] 12 Jul 2007
TheGauss-Bonnet-GrotemeyerTheoreminspacesof
constantcurvature
EricL.GrinbergandHaizhongLi
Abstract
In1963,K.P.GrotemeyerprovedaninterestingvariantoftheGauss-BonnetThe-orem.LetMbeanorientedclosedsurfaceintheEuclideanspaceR3withEulercharacteristicχ(M),GausscurvatureGandunitnormalvector eld n.Grote-meyer’sidentityreplacestheGauss-BonnetGbythenormalmoment integrand22( a· n)G,whereaisa xedunitvector:M( a· n)Gdv=2π
3
χ(M),(1.1)
where a· ndenotestheinnerproductof aand n,χ(M)istheEulercharacteristicofM.Remark1.1Let{E1,E2,E3}bea xedorthogonalframeinR3andchoose a=Ei.Wehave
2π
(Ei· n)2Gdv=
M
TheprojectispartiallysupportedbythegrantNo.10531090ofNSFC.
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
Notingthat(Ei· n)(Ei· n)= n· n=1,weobtainthefollowingGauss-Bonnetformulaviasummationof(1.2)overifrom1to3:
i
Corollary1(Gauss-BonnetTheorem).UnderthesamehypothesisofTheorem1,wehave
Gdv=2πχ(M).(1.3)
M
ThuswecanconsiderGrotemeyer’sTheorem1asanextendedformoftheGauss-Bonnet
Theorem.
LetnbeevenandletNn+1(k)bean(n+1)-dimensionalsimplyconnectedRiemannianmanifoldofconstantsectionalcurvaturek.Thatis,Nn+1(k)=Rn+1ifk=0;Nn+1(k)=Sn+1(1k),an(n+1)-dimensionalspherespacewithradius1kifk>0;Nn+1(k)=
1
),an(n+1)-dimensionalhyperbolicspacewith,asBolyaiwouldsay,radiusHn+1( k√
kifk<0.WewilloftencallNn+1(k)aspaceform.WewillviewNn+1(k)as
standardlyimbeddedinanappropriatelinearspaceLn+1(k)(Rn+2ifk>0,Rn+1,1ifk<0andRn+1ifk=0).
Thiswillenableustode nefunctionsonMsuchas( a· n),where aisa xedvectorintheambientlinearspace, nisanormalvector eldonM,and(·)denotestheinnerproductontheambientlinearspace.ThegeneralizedGrotemeyerTheoremwehaveinmindcanbestatedasasfollows:
Theorem2Letneven,n≥2.Let x:M→Nn+1(k)beanimmersedn-dimensionalorientedclosedhypersurfaceinthe(n+1)-dimensionalspaceformNn+1(k),withEulercharacteristicχ(M),Gauss-KroneckercurvatureGandunitnormalvector eld n.Assume
n+1
thatN(k)isstandardlyimbeddedinthelinearspaceLn+1(k).Thenforany xedunitvector ainLn+1(k)wehave
1i2
χ(M) icikMKn ( a· n)Gdv= 2idv]2M(1.4)k2
+( a· x)Gdv,n+1M
wheretheciareconstantsthatdependonlyonthedimensionnandKiisthei-thmean
curvatureofM.
Inthecasen=2intheTheoremabove,weobtain
Corollary2LetMbeanorientedclosedsurfaceinthe3-dimensionalspaceformN3(k)withextrinsiccurvatureGandunitnormalvector eld n.Thenforany xedunitvector ainthelinearspaceL3(k)wehave
vol(M)( a· n)2Gdv=2π
3M (1.5)k2
+( a· x)Gdv,3MwhereK1isthemeancurvatureofMandχ(M)istheEulercharacteristicofM.
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
Remark1.2OurCorollaryreducestoGrotemeyer’soriginaltheoreminthecasek=0.Remark1.3Inthecasek=0andn≥3,Theorem2wasprovedbyB.-Y.Chenin[Ch]byadi erentmethod.
Remark1.4.WecanrecoverthestandardGauss-BonnetTheoremfromourTheoremasfollows.LetmbethedimensionofthelinearspaceLn+1(k).(Thusm=n+1inthe atcase,m=n+2inthepositiveandnegativelycurvedcases.)Let{E1,···,Em}bea xedorthonormalframeinLn+1(k);choose a=Ei.Then
1i2
x(M) ckKn 2idv](E· n)Gdv=iii2MM
(1.6)+k
G(Ei·x)2dv,(i=1,2,...)n+1M
Noting(Ei· n)(Ei· n)= n· n=1andi(Ei· n)(Ei·x)= n·x=0,weobtainthe
i
followingGauss-Bonnetformulabysummingof(1.6)overallappropriatei:
Corollary3(Gauss-BonnetTheorem).UnderthesamehypothesisofTheorem2,wehave
volSn(1)
Gdv=
M
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
Forthefollowingcriterionforselfadjointnessoftheoftheoperator2seeCheng-Yau[CY]orLi[L1],[L2].Proposition 2.1LetMbeaclosedorientableRiemannianmanifoldwithsymmetrictensorφ=φijθiθj.Then2isaselfadjointoperatorifandonlyif
i,j
n j=1
where{θij}istheLevi-Civitaconnectionofg.
φij,j=0,1≤i≤n.(2.3)
Hereφij,kisthederivativeofthetensorφijinthedirectionek.
Remark2.1Wecall2theCheng-Yauoperator.ItwasintroducedbyS.Y.Chengand
S.T.Yauin1977[CY].Ifφ=φijθiθjsatis estheCheng-Yaucondition(2.3),then
i,j
2f=
i,j
φijfij=
i,j
(φijfi)j=div(φ f).
Letx:M→Nn+1(k)beann-dimensionalclosedhypersurfaceinan(n+1)-dimensionalspaceformofconstantsectionalcurvaturek.Let(hij)bethecomponentsofthesecondfundamentalformofM.WerecalltheReillyoperator,whichisasecondorderdi erentialoperatorLr:C∞(M)→C∞(M)de nedby
r
Lrf=Tijfij,f∈C∞(M),(2.4)
i,j
r
whereTijisgivenby
Tij
=δij,
rTij
=Krδij
k
r 1hikTkj,
r=1,2,···,n.(2.5)
(SeeReilly[Re],Rosenberg[Ro]orBarbosa-Colares[BC].)
DenotetherthmeancurvatureofMby
B=(hij)=(kiδij).ki1···kir,Kr=
i1<···<ir
(2.6)
WenotethattheGauss-KroneckercurvatureofMisG≡Kn.
De nition2.1([Re])Ther-thNewtontransformation,r∈{0,1,···,n}isthelinear
transformation
Tr=KrI Kr 1B+···+( 1)rBr,(2.7)i.e.,
r
Tij
=Krδij Kr 1hij+···+( 1)
r
j1,···,jr
hij1hj1j2···hjrj.
(2.7)′
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
Thenwehave(seeReilly[Re])
Kr=
1
IfI≡i1,···,iqde ne
1,JδI= 1,
0,
andJ≡j1,···,jqaremulti-indicesofintegersbetween1andn,ifi1,···,iqaredistinctandJisanevenpermutationofIifi1,···,iqaredistinctandJisanoddpermutationofIotherwise.
r!
j1···jrjδihi1j1···hirjr.1···iri
(2.9)
Proposition2.3eachr,wehave Forr
(1)divTr=Tij,j=0,
j
(2)Newton’sformula:trace(BTr)=(r+1)Kr+1,(3)trace(Tr)=(n r)Kr
Proposition2.4Let x:M→Nn+1(k)beann-dimensionalhypersurfacewithunitnormalvector eld n.Thenwehave
xi=ei, ni= hijej,xij=hij n kxδij.(2.10)
j
Lrx=(r+1)Kr+1 n (n r)kKrx,
Proof.Let abea xedvectorinLn(k).Write
f= n· a,
Then(2.11)isequivalentto
Lrg=(r+1)Kr+1f (n r)kKrg.
g= x· a.
(2.11)
(2.12)
(2.11)′
Choosinganorthonormalframe{e1,···,en, n}andtheirdualframe{θ1,···,θn,θn+1}
alongMinNn+1(k),wehavethestructureequations
dx=θiei,dei=θijej+hijθj n kxθi,d n= hijθjei.(2.13)
i
j
j
i,j
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
Herewehavesometimesabbreviated xasmerelyx,forsimplicity.Byuseof(2.13)andthroughadirectcalculationweget
gi=ei· a,
gij=fhij kgδij.
(2.14)
Byuseofproposition2.3and(2.14),weget
rrr
Lrg=Tijgij=Tijhijf kgTijδij=(r+1)Kr+1f k(n r)gKr.
i,j
ij
i,j
Thuswehaveproved(2.11)′,whichisequivalentto(2.11).Similarly,fromde nitionsoffi,wegetbyuseof(2.13)
fi= hij(ej· a).
j
(2.15)
Because aisarbitrary,wehaveproved(2.10)from(2.14)and(2.15).
Proposition2.5LetMbeann-dimensionalorientedclosedhypersurfacein(n+1)-dimensionalspaceformNn+1(k).ThenforanysmoothfunctionsfandgonMwehave
gLn 1fdv=fLn 1gdv,Ln 1fdv=0.(2.16)
M
M
M
Proof.Choosingr=n 1in(1)ofproposition2.3,andusingthecriteriorfrompropostion
2.1,weknowthattheoperatorLn 1isaselfadjointoperator.Thusweobtain(2.16).Proposition2.6LetMbeann-dimensionalhypersurfacein(n+1)-dimensionalspaceformNn+1(k).Thenwehave
n 1hikTkj=0.(2.17)Gδij
k
Proof.Choosingr=n 1in(2.5)andnotingthatG=Kn,wehave
n 1n
hikTkjTij=Gδij .
k
j1···jnjn
Fromthede nitionofTijin(2.9)andthede nitionofδi,wehave1···ini
n
Tij=0.
(2.18)
(2.19)
Now(2.17)followsfrom(2.18)and(2.19).
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
3.ProofofTheorem2
Proposition3.1Letx:M→Nn+1(k)beann-dimensionalorientedclosedhypersurfacein(n+1)-dimensionalspaceformNn+1(k).AssumeMhasGauss-KroneckercurvatureG=Knandaunitnormalvector n.Thenforany xedunitvector ainLn+1(k),wehave
m+1
0=(n+m) M( a· n)Gdv mM( a· n )m 1Gdv
(3.1)
kM( a· n)m( a· x)Kn 1dv+mkM( a· n)m 1( a· x)2Gdv,
whereKn 1isthe(n 1)-thmeancurvatureofM.Proof.Write
f=qmx,
q= a· n.(3.2)
Byde nitionofthe rstderivativeandthesecondderivativeoff(see(2.2)),wehave
fi=(qm)ix+qmxi,
fij=(qm)ijx+(qm)ixj+(qm)jxi+qmxij.
Byde nitionofoperatorLn 1,wehave
Ln 1(f)=xLn 1(q)+2
Letr=n 1in(2.11).Wehave
Ln 1x=nG n kKn 1x.
(3.6)
m
(3.3)(3.4)
i,j
n 1m
Tij(q)ixj+qmLn 1x.
(3.5)
thatis,weobtainform=1,2,3,···
ByProposition2.5,(3.6),(2.10)andproposition2.6,wegetbyintegrating(3.5)overM
n 1m
(q)ixjdv0=2Mqm(Ln 1x)dv+2MTij
i,j m n 1m 1
Tijmq[ hik( a·ek)]ejdv=2Mq(nG n kKn 1x)dv+2M
(3.7) m i,j,km 1
=2Mq(nG n kKn 1x)dv 2mMqG( a·ej)ejdv
m m 1j
=2Mq(nG n kKn 1x)dv 2mMqG[ a ( a· n) n k( a· x) x]dv,
qm 1G advndv m0=(n +m)MqG M mm 1
kMqKn 1xdv+mkMq(x· a)Gxdv.
m
(3.8)
Takingthescalarproductof awithbothsidesof(3.8),wegetProposition3.1.
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
Remark3.1Equation(3.1)wasprovedbyBang-YenCheninthecasek=0byadi erentmethod.
ProofofTheorem2Choosingm=1inProposition3.1,wehave
2
(n+1)M( a· n)Gdv=a· n)( a· x)Kn 1dv MGdv+k2M(
kMG( a· x)dv.
(3.9)
BecauseMisaclosedhypersurfaceinNn+1(k),theGauss-BonnetTheoremstatesinthis
casethat
volSn(1)
Gdv=
M
n+m 1
[qm 2Gdv kqm 2(x· a)2Gdv+
M
M
k
[volS
(n+m 1)(n+m 3)···(n+1)+k
qm 2+n+m 1[
1
n(1)
(m 1)(m 3)(n+m 1)(n+m 3)
M
qm 3+···+
(n+m 1)(n+m 3)···(n+1)
(m 1)(m 3)···3
]( x· a)2Gdv
+k
M
[
n+m 1
1
qm 2+
(m 1)(m 3)(n+m 1)(n+m 3)
qm 3+···+
(n+m 1)(n+m 3)···(n+2)
(m 1)(m 3)···2
q]( x· a)2Gdv
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
Note:Inthecasek=0,Proposition3.2wasprovedbyBang-YenChen;seeTheorem2in[Ch].
Acknowledgements.TheauthorsbeganthisresearchworkswhenH.Livisiteddepart-mentofmathematicsandstatisticsinUniversityofNewHampshireonJulyof2006.H.LiwouldliketothankE.L.G.anddepartmentfacultymembersfortheirhospitalityandthehelptheyextendedtohimforhisacademicvisit.
References
[BC]J.L.M.BarbosaandA.G.Colares,Stabilityofhypersurfaceswithconstantr-mean
curvature,Ann.GlobalAnal.Geom.15(1997),277-297.[Bi]I.Bivens,Someintegralformulasforhypersurfacesinasimplyconnectedspaceform,
Proc.Amer.Math.Soc.,88(2)(1983),113-118.[Ch]B.-Y.Chen,OnanintegralformulaofGauss-Bonnet-Grotemeryer,Proc.Amer.
Math.Soc.28(1971),No.1,208-212.[CY]S.Y.ChengandS.T.Yau,Hypersurfaceswithconstantscalarcurvature,Math.Ann.
225(1977),195-204.[C1]S.S.Chern,AsimpleintrinsicproofoftheGauss-BonnetformulaforclosedRie-mannianmanifolds,Ann.ofMath.(2)45(1944),747-752.[C2]S.S.Chern,OnthecurvaturaintegrainaRiemannianmanifold,Ann.ofMath.(2)
46(1945),674-684.[Gr]K.P.Grotemeyer,UberdasNormalenbundeldi erenzierbarerMannigfaltigeiten,
Ann.Acad.Sci.Fenn.Ser.A.I.No.336/15(1963).MR29568.[L1]H.Li,Hypersurfaceswithconstantscalarcurvatureinspaceforms,Math.Ann.
305(1996),665-672.[L2]H.Li,Globalrigiditytheoremsofhypersurface,Ark.Math.35(1997),327-351.[Re]R.Reilly,Variationalpropertiesoffunctionsofthemeancurvaturesforhypersurfaces
inspaceforms,J.Di .Geom.8(1973),465-477.[Ro]H.Rosenberg,Hypersurfacesofconstantcurvaturesinspaceforms,Bull.Sci.Math.
117(1993),211-239.
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature
[So]GilSolanes,IntegralgeometryandtheGauss-Bonnettheoreminconstantcurvature
spaces,Trans.Amer.Math.Soc.,358(2006),N0.3,1105-1115.
EricL.Grinberg
DepartmentofMathematics&StatisticsUniversityofNewHampshireDurham,NH03824
UnitedStatesofAmericaEmail:grinberg@unh.eduHaizhongLi
DepartmentofMathematicalSciencesTsinghuaUniversity100084,Beijing
People’sRepublicofChina
Email:hli@
正在阅读:
The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature05-10
卫星导航定位算法与程序设计(2014) - 第5课05-25
鲍时华2015年讲座(很详细) - 图文11-28
园林景观施工组织设计园林施工控制程序12-14
统筹城乡发展推进新农村建设建设情况汇报03-22
一根网线多台笔记本无线上网设置说明09-06
一至八单元作文范文12-21
公共关系学课程试题答案106-12
各工种操作规程制度牌-105-24
- 1Gauss-Jordan法实矩阵求逆
- 2扩展你的WebCenter_Spaces应用程序
- 3Gauss-Jordan法实矩阵求逆
- 4Gauss列主元消去法、QR(MATLAB)
- 5有限Abel群的结构定理(Fundamental Theorem of Finite Abelian Groups)
- 62 Jacobi与Gauss-Seidel迭代法
- 7Interpolation sets for Hardy-Sobolev spaces on the boundary of the unit ball of ${bf C}^n$
- 8Gauss完全主元素消去法解方程组完全
- 9Jacobi和Gauss_Seidel迭代法的预处理
- 10jacob迭代法 gauss-seidel迭代法 matlab命令
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Grotemeyer
- curvature
- constant
- Theorem
- Bonnet
- spaces
- Gauss
- 智能手机柔性屏幕解析
- 电子科技大学中山学院学生科技创新活动 结题报告
- 吃水不忘挖井人第二课时教案
- 新人教版2014年秋九年级英语单词表默写版
- 2010年煤炭经济运行情况及2011年走势分析
- 建设工程施工合同案例分析
- 中国石化作业许可管理规定
- 32例肺大泡破裂致自发性气胸的外科治疗体会
- EPB线束工艺流程图
- 鲁教版化学八年级期末测试题
- 中山市自驾游到清远市黄腾峡漂流所需费用
- 师德师风心得体会Microsoft Word 文档
- 中东呼吸综合征相关知识问答
- 《几何原本》版本研究(二)
- 对医院全面预算管理有关问题的探讨
- 九年级化学上册教学计划
- 函数单调性练习题
- 世界电炉炼钢的发展动向
- 电大离散数学本科试卷带答案 201007
- 2013三级山东省资质要求包过题库