平面四杆机构毕业设计说明书

更新时间:2023-12-05 22:46:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

本科毕业设计说明书(论文)

1 绪论

1.1 课题背景

第 1 页 共 41 页

平面连杆机构在重型机械、纺织机械、食品机械、包装机械、农业机械中都有广泛的应用。但是要在尽可能短的时间内设计出一个满足多种性能要求的机构却不是一件很容易的事情。过去人们已建立了一些四杆机构的设计方法,然而这些方法与工程设计的要求还有一段距离,常常花费很多时间却只得到一个不可行的设计方案。因为机构的运动性能如急回特性K,压力角α,从动件的摆角Ψ,极位夹角θ与构件尺寸有关,本身的这些运动性能之间也都相互影响,比如,四杆机构中,从动件急回特性K完全取决于极位夹角θ的作用。

本篇论文主要研究工程中应用比较多的Ⅰ、Ⅱ曲柄摇杆机构的传动角γ,极位夹角θ与机构尺寸之间的关系,然后运用工程分析软件ADAMS针对机构进行运动学分析,从而能给出设计平面四杆机构时为保证有较好的特性时,选取构件尺寸的建议。进而为工程应用提供依据。

1.2 平面四杆机构的基本型式

平面四杆机构可分为铰链四杆机构和含有移动副的四杆机构。其中只有转动副的平面四杆机构称为铰链四杆机构[1]。

在铰链四杆机构中,能作整周回转的称为曲柄,只能在一定角度范围内摆动的称为摇杆。由于曲柄和摇杆长度的不同,又可以将铰链四杆机构分为曲柄摇杆机构、双曲柄机构和双摇杆机构[2]。

平面四杆机构最基本的型式为图1-1所示的曲柄摇杆机构。图1-1中,AD为机架,AB和DC为连架杆。其中构件AB能绕其固定铰链中心A作整周转动而称为曲柄。构件DC只能绕其固定铰链中心D在一定范围内往复摆动而称为摇杆。构件BC不与机架直接相联而仅仅连接两连架杆AB和DC,因而称为连杆。连杆机构正是因为连杆的存在而得名[3]。

本科毕业设计说明书(论文)

第 2 页 共 41 页

图1.1 曲柄摇杆机构

两连架杆均为曲柄的铰链四杆机构称为双曲柄机构[4]。图1-2中,AD为机架,AB和DC为曲柄。其中构件AB、DC能绕其固定铰链中心A、D作整周转动而称为曲柄。若两对边构件长度相等且平行,则称为正平行四边形机构。

图1.2 双曲柄机构

两连架杆均为摇杆的铰链四杆机构称为双摇杆机构[5]。如图1-3中,AD为机架,构件AB、DC只能绕其固定铰链中心A、D在一定范围内往复摆动而称为摇杆。

图1.3 双摇杆机构

1.3 平面四杆机构的演化

1. 回转副演化成移动副

本科毕业设计说明书(论文)

第 3 页 共 41 页

下图1-4表示了曲柄摇杆机构先演化为曲柄滑块机构过程。在实际中,曲柄滑块机构在金属切削机床、内燃机和空气压缩机等各种机械中得到了广泛的应用。

图1.4 移动副的演化过程

2. 取不同的构件为机架

铰链四杆机构的三种基本型式,可看作是由曲柄摇杆机构改变机架而得到的,如图1-5所示。

图1.5 曲柄摇杆机构的演化过程

对于曲柄滑块机构,若选取不同构件为机架,同样也可以得到不同型式的机构,如图1-6所示。

曲柄滑块机构 导杆机构 摇块机构 直动滑杆机构

图1.6 改变曲柄滑块机构的机架得到的不同型式

3. 扩大回转副

由于结构的需要和受力的要求,使曲柄与连杆连接处的回转副的销轴扩大,形成一个几何中心与其回转中心不重合的圆盘,此盘就称为偏心轮。回转中心与几何轴心的距离称为偏心距(即曲柄长度),这种机构称为偏心轮机构(如图1-7)。显然,这种机构与曲柄滑块机构的运动特性完全相同。常用于要求行程短、受力大的场合,如冲床、剪床等机械中[6]。

本科毕业设计说明书(论文)

第 4 页 共 41 页

图1.7 曲柄滑块机构演化成偏心轮机构

1.4 平面四杆机构的主要工作特性

在讨论平面四杆机构的运动特性之前,就与机构运动性能有关的一些基本知识作一些简单的介绍。

1.4.1 铰链四杆机构的曲柄存在条件

铰链四杆机构的曲柄存在条件:(1)在曲柄摇杆机构中,曲柄是最短杆;(2)最短杆与最长杆长度之和小于或等于其余两杆长度之和。以上两条件是曲柄存在的必要条件。

因此,当各杆长度不变而取不同杆为机架时,可以得到不同类型的铰链四杆机构。

(a)取最短杆相邻的构件(如杆2)为机架时,最短杆1为曲柄,而另一连架杆3为摇杆,故图1.8所示的机构为曲柄摇杆机构。

(b)取最短杆为机架,其连架杆2和4均为曲柄,故图1.9所示为双曲柄机构。

(c)取最短杆的对边(杆3)为机架,则两连架杆2和4都不能作整周转动,故图1.10所示为双摇杆机构。

图1.8 曲柄摇杆机构

本科毕业设计说明书(论文)

第 5 页 共 41 页

图1.9 双曲柄机构

图1.10 双摇杆机构

如果铰链四杆机构中的最短杆与最长杆长度之和大于其余两杆长度之和,则该机构中不可能存在曲柄,无论取哪个构件作为机架,都只能得到双摇杆机构。

由上述分析可知,最短杆和最长杆长度之和小于或等于其余两杆长度之和是铰链四杆机构存在曲柄的必要条件。满足这个条件的机构究竟有一个曲柄、两个曲柄或没有曲柄,还需根据取何杆为机架来判断[7]。 1.4.2 行程速度变化系数

当原动件(曲柄)做匀速定轴转动时,从动件相对于机架作往复运动(摆动或移动)的连杆机构,从动件正行程和反行程的位移量相同,而所需的时间一般并不相等,正反两个行程的平均速度也就不相等。这种现象称为机构的急回特性。在工程实际中,为了提高生产率,保证产品质量,常常使从动件的慢速运动行程为工作行程,而从动件的快速运动行程为空回行程。因此,正确分析平面连杆机构的急回特性,在机构分析和设计中具有很重要意义。为反应急回特性的相对程度,引入从动件行程速度变化系数,用K表示,其值为从动件快行程平均速度与从动件慢行程

本科毕业设计说明书(论文)

平均速度的比值(K≥1) 第 6 页 共 41 页

在图1.11所示的曲柄摇杆机构中,曲柄与连杆重叠共线的AB1和拉直共线的AB2分别对应于从动件的两个极限位置C1D和C2D,矢径AB1和AB2将以A为圆心、曲柄长为半径的圆分割为圆心角不等的两部分,其中圆心角较大的用α1(≥180°)表示,小者用α2(≤180°)表示,由

α1=180°+θ,α2=180°-θ

可得

θ=(α1-α2)/2

若曲柄以匀速转过α1和α2对应的时间为t1(对应于从动件慢行程)和t2(对应于从动件快行程),则根据行程速度变化系数的定义,有:

??180?k?1 k?1因此,机构的急回特性也可以用θ角来表示,由于θ与从动件极限位置对应的曲柄位置有关,故称其为极位夹角。对于曲柄摇杆机构,极位夹角即为∠C1AC2。其值与机构尺寸有关,可能小于90°,也可能大于90°,一般范围为0°到180°。

图1.11 曲柄摇杆机构的行程速比系数分析

除曲柄摇杆机构外,偏置曲柄滑块机构和导杆机构也有急回特性。如图1.12所示的偏置曲柄滑块机构,极位夹角为θ=∠C1AC2<90° 滑块慢行程的方向与曲柄的转向和偏置方向有关。当偏距e=0时,θ=0,即对心曲柄滑块机构无急回特性。

本科毕业设计说明书(论文)

第 7 页 共 41 页

图1.12 偏置曲柄滑块机构

图1.13表示了摆动导杆机构的极位夹角,其取值范围为(0°,180°),并有ψ=θ。导杆慢行程摆动方向总是与曲柄转向相同[8]。

图1.13 转动导杆机构

4.3 压力角和传动角

在图1.14所示的曲柄摇杆ABCD中,若不考虑构件的惯性力和运动副中的摩擦力的影响,当曲柄AB为主动件时,则通过连杆BC作用于从动件摇杆CD上的力P即沿BC方向。该力P的作用线与其作用点C的绝对速度υc之间所夹的锐角α称为压力角。

本科毕业设计说明书(论文)

第 8 页 共 41 页

图1.14 曲柄摇杆机构的压力角分析

由图可见,力P可分解为沿点C绝对速度υc方向的分力Pt及沿构件CD方向的分力Pn,Pn只能使铰链C及D产生径向压力,而分力Pt才是推动从动件CD运动的有效分力,其值Pt =Pcosα=Psinγ.显然,压力角α越小,其有效分力Pt则越大,亦即机构的传动效益越高。为了便于度量,引入压力角α的余角γ=90°-α,该角γ称为传动角。显然,角γ越大,则有效分力Pt则越大而Pn就越小,因此在机构中常用其传动角γ的大小及其变化情况来表示机构的传力性能。

传动角γ的大小是随机构位置的不同而变化的。为了保证机构具有良好的传动性能,综合机构时,通常应使γ利用其传动角接近γ1.4.4 死点

在曲柄摇杆机构中,如图1.15所示,若取摇杆作为原动件,则摇杆在两极限位置时,通过连杆加于曲柄的力P将经过铰链A的中心,此时传动角γ=0,即α=90°,故Pt=0,它不能推动曲柄转动,而使整个机构处于静止状态。这种位置称为死点。对传动而言,机构有死点是一个缺陷,需设法加以克服,例如可利用构件的惯性通过死点。缝纫机在运动中就是依靠皮带轮的惯性来通过死点的。也可以采用机构错位排列的办法,即将两组以上的机构组合起来,使各组机构的死点错开。

max

max

≥40°。尤其对于一些具有短暂高峰载荷的机构,可

时进行工作,从而节省动力[9]。

本科毕业设计说明书(论文)

第 9 页 共 41 页

图1.15 曲柄摇杆机构死点位置

构件的死点位置并非总是起消极作用。在工程中,也常利用死点位置来实现一定的工作要求。例如图1.16所示工件夹紧机构,当在P力作用下夹紧工件时,铰链中心B﹑C﹑D共线,机构处于死点位置,此时工件加在构件1上的反作用力Q无论多大,也不能使构件3转动,这就保证在去掉外力P之后,仍能可靠夹紧工件。当需要取出工件时,只要在手柄上施加向上的外力,就可以使机构离开死点位置,从而松脱工件[10]。

图1.16 工件夹紧机构

1.5 连杆机构的特点与应用

平面连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面复杂运动,从而可用于实现已知运动规律和已知轨迹。连杆机构之所以能被广泛地应用于各种机械及仪表中,这是由于它具有显著的优点:由于运动副元素为圆柱面和平面而易于加工、安装并能保证精度要求,且因各构件之间为面接触而压强小,便于润

本科毕业设计说明书(论文)

第 10 页 共 41 页

滑,故其磨损小且承载能力大,两构件之间的接触是靠其本身的几何封闭来维系的,它不象凸轮机构有时需利用弹簧等力来保持接触;当主动件的运动规律不变时,仅改变机构中构件的相对长度,则可使从动件得到多种不同的运动规律:另外,也可利用连杆曲线的多样性来满足工程上的各种轨迹要求[11]。

1.6 简单介绍本篇论文中所用到的软件

(1) VB软件 a. 概述

Visual Basic(VB)的开发基础:Microsoft公司的Basic语言。Visual—“可视化”、“形象化”的意思,指的是开发图形用户界面(GUI—Graphical User Interfaces)的方法。Basic—是“Beginners All-purpose Symbolic Instruction Code” 的缩写,即“初学者通用符号指令代码”,是专为初学者设计的高级语言。 b. 特点

1.是面向对象的可视化编程工具不需要编写大量的代码。 2.仍然采用三种基本结构化程序设计方法。 3.采用事件驱动的编程机制。

4.提供了易学易用的应用程序集成开发环境。

5.支持多种数据库系统的访问(MS Access 、Foxpro 、SQL Sever)。 6.支持对象链接与嵌入技术(OLE—Object Linking and Embedding)。 7.完备的联机帮助系统(MSDN)。 (2) ADAMS软件 a. 概述

在机构设计中,要求机构的从动件必须满足某种运动规律,这就需要对机构进行必要的运动分析。常规的分析方法是图解法和解析法。但是,前者的设计精度低;后者的计算工作量大,必须借助计算机编程处理。如果借助ADAMS软件,通过仿真,可以确定构件的运动情况,检验构件之间是否干涉、执行件的运动是否与期望的相符。ADAMS软件是由美国MSC公司开发研制的集建模、求解、可视化技术于一体的虚拟样机软件,主要针对机械系统的仿真分析。ADAMS软件由一下几个模块构成的。核心模块、功能扩展模块、专业模块、工具箱和接口模块。最主要的模块为ADAMS/Ⅵew(用户界面模块)和ADAMS/Solver(求解器)。通过这两个模块,可以对大部分的机械系统进行仿真。该模型既可以在ADAMS下直接建模,也可以从其它CAD软

本文来源:https://www.bwwdw.com/article/vyrt.html

Top