无穷级数习题及答案

更新时间:2023-12-18 09:01:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第十一章 无穷级数

(A)

用定义判断下列级数的敛散性

1.

???n?1?11??1;3.???n?n?。 n?2?n?1 ;2.?5?n?12n?2n?2?n?1?3??判断下列正项级数的敛散性

????nen4n!2n?3n?14.?;5.?n;6.?;7.?;8.?; n??nn?32n100en?1n?1n?1n?1n!n?1??n???1??n?9.??。 ?;10.?n2n?1n?1?3n?1??nn求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛

11.???1?n?1?n?1n2n?1;12.???1?n?2?n1;13.1.1?1.01?1.001?1.0001??; lnn14.

1234?2?2?2??; 22?13?14?1求下列幂级数的收敛半径和收敛区间

15.?n?1??3n??xn1nnx;16.???1?n;17.?n!x;18.?n?x?1?;

nnn?1n?12nn?1n?n19.?n?112n?1x2n?1n2n;20.?nx;

n?13?求下列级数的和函数

21.?nxn?1?n?1;22.?n?1?122n?1; xn?1将下列函数展开成x?x0的幂的级数

ex?ex23.shx?,x0?0;24.cos2x,x0?0;

225.?1?x?ln?1?x?,x0?0;26.

1,x0?3; x将下列函数在区间???,??上展开为付里叶级数

27.A?x??cosx,????x???。28.f?x???2t,????x??? 2 1

?2x,?3x?t?029.将函数f?x???展开成付里叶级数。

x,0?t?3?l?x,0?x???230.将函数f?x???分别展开成正弦级数和余弦级数。

l?l?x,?x?l?2?

(B)

用定义判断下列级数的敛散性

??111.?;2.?;3.?????????3n?13n?4nn?1n?2n?0n?1n?1?? n?2?2n?2?n;

?判断下列正项级数的敛散性

?2nn!?2n?4.?n;5.???n3n?1?n?1n1??2n?3nn?an;6.?,(a?0); nn?1?2n?1???b7.???n?1?an????,其中an?a(n??),an,b,a均为正数; ?1n?1xna?08.?,();9.2x; ?n?01?x41?1n?1n?1?判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛

???n?12nn?1n?1;11.???1?;12.???1?n2?n?1n!n?1n?1210.???1?n?1n?11??ln?2??n??;

?3n?2??3n?2?求下列幂级数的收敛半径和收敛域

?xnx2n13.???1?;14.?n,(a?0,b?0); n??2n!a?bn?1n?1?n?13n???2?2n?115.???1?nn?x?5?;16.??x?1?n;

24nn?1n?1?nn求下列级数的和函数

?2n?12n17.?nx;18.?x;19.?n2xn;

n!n?1n?1n?12n??20.求证:ln2??

1; nn?1n?22

?将下列函数展开成x?x0的幂的级数

21.f?x??11x??fx?,;22.,;23.,x0?0; x?0x?10022x2?3x?1x21?x24.证明偶函数的付里叶级数数仅含余弦项; 25.写出函数f?x??1?x?2k??,x???2k?1??,?2k?1???,k?0,?1,?2,?的2付里叶级数,并讨论收敛情况。

26.设f?x?是周期为2?的周期函数,它在???,??上的表达式为

????,???x???22????f?x???x,??x?,将f?x?展开成付里叶级数。

22????,?x???22?27.将函数f?x??x2,(0?x?l)分别展开成正弦级数和余弦级数。

(C)

1.用定义判断下列级数的敛散性

1 ???????2n?12n?12n?3n?1?2.设ai?0,?i?1,2,??,判断级数

ana1a2??????的敛散性。

?1?a1??1?a2???1?an?1?a1?1?a1??1?a2?判断下列正项级数的敛散性

1????lnn3n?n!2n?1??1?; 3.?n;4.?1;5.?n??n?1n?1?n?1n?2nn2?1n?6.判断级数?sin的敛散性。

n2n?1?求下列幂级数的收敛半径和收敛区间

7.?n?1??n?1?n2x?n2n11?n?;8.???1??1?????xn;

n??2n?13

?

求下列级数的和

n?1??1?9.? ??n2n?1n?1??d?ex?1?n?10.展开?为幂级数,并推出?1。 x??dx?xn?1?n?1?!??11.求级数?n2x3n?1的收敛区间及和函数。

n?1?n2???x?,0?x??2212.设函数f?x???,试分别将f?x?展成为以2?为周期的

??0,?x???2?区弦级数和余弦级数。

??1,???,0?13.将周期函数f?x???,展为付氏级数,并据此求周期函数?1,?0,???a,???,0?,f2?x??|x|,???,??的付氏级数,求下面级数f1?x?????b,0,???4?111?1?2?2????。 ??2????34?2n?1??第十一章 无穷级数

(A)

1.解:∵Sn??k?1n?nk?2?k?1?n?2?2??,(n??),∴原级数

?发散。

11n?11?1?11?12.解:∵Sn????????????,

2k?1?2k2k?2?2?22n?2?4k?12k?2k?2?(n??),∴原级数收敛且和为

1。 41?11??nn1?n113?3n?13.解:∵Sn???k?k???k??k?15?k?13k?1?3k?151?3?

1??1???1?n???5?5??1?1

1241?533,(n??),∴原级数收敛且和为。

444

Un?1?n?1?!100nn?14.解:∵lim?limlim??,∴由比值判别法知原级

n??Un??100n?1n??100n!n数发散。

eUn?1?n?1?en1?n?1?15.解:∵lim?limn?1?lim??1,∴由比值判别法??en??Un??en??e?n?enne知,原级数收敛。

6.解:∵limUn?limn??n??n?11??0,∴原级数发散。 2n2?Unn?2n?3?1?lim?2,而?发散,∴由比较判别法知原级7.解:∵limn??1n??n?n?3?n?1nn数发散。

4Un?1?n?1?n!1?n?1?8.解:∵lim?lim?lim???0,∴由比值判别法

n??Un???n?1?!n4n??n?1?n?n4知,原级数收敛。

n1?n??lim??1,∴由比值判别法知,9.解:∵limnUn?limn??n??n??n??3n?13?3n?1?n原级数收敛。

n10.解:∵

nUlimn?n??n?1n?Un?2nnnn?1n?1n?11,而lim?lim?,故

n??n??22221?1,∴由比值判别法知,原级数收敛。 2??11.解:?|Un|??n?1n?1n2n?1,由正项级数的比值判别可知,此级数收敛,故

原级数绝对收敛。

??1111?,而?发散,故?12.解:|Un|?发散。因此原级数非绝对lnnnn?2nn?2lnn收敛,又,显然

111?0,故由莱布尼兹判别?,n?2,3,?,且limn??lnnln?n?1?lnn法知原级数条件收敛。

13.解:∵lim|Un|?lim|0?0|?0,∴原级数发散。

n??n?? 5

?|Un|n1?2?n?1,14.解:此为交错级数,∵(n??)而级数?发散,1n?1n?1nn?故?|Un|发散,即原级数非绝对收敛,显然

n?1n单调递减且趋向于零,故原n2?1级数条件收敛。

an?1113n?1nnR?x?15.解:∵lim,∴,当时,?lim?lim3??3nn??an??n??33n?1n?13n级数为?n?1??11n1发散,当x??时,级数为???1?收敛。故原级数的收敛区

3nnn?1?11?间为??,?。

?33?an?1nn1116.解:∵???0,?n???,∴R??,收敛n?1nann?1?n?1??1??1???n?区间为???,???。

an?111???0,?n???,∴R?0。 17.解:∵nann?1?1??1??n??an?12nn118.解:∵lim?limn?1?,∴R?2。故当|x?1|?2,即

n??an??2?n?1?2n?1?x?3时收敛,当x??1或x?3时发散,当x??1时,级数为???1?n?1?n1,收n1敛;当x?3时,级数为?,发散。故收敛区间为??1,3?。

n?1n?Un?1x2x2n?32n?1x2x2?1时,即19.解:∵,?n???,当?n2n?1??2Un222xx2?1,即x?2或x??2时发散,∴R?2。当?2?x?2时收敛,当2x??2时原级数为??22,发散,故收敛区间为?2,2。

n?1??? 6

2an?1?n?1?3n1?n?1?1?n?1??20.解:∵,?n???,∴R?3,当x??3??an33n23?n?2时,原级数???1?n2,发散。故收敛区间为??3,3?。

nn?1?21.解:设f?x???nxn?1,|x|?1,

n?1??x0??xx??n?1?n?1 f?x?dx????nx?dx???nxdx??xn?001?xn?1n?1?n?1?x?1?x?∴f?x???,|x|?1。 ??21?x??1?x??22.解:设f?x???1x2n?1,|x|?1,则

n?12n?1????1x2??1?2n?12n?1?2nx???x??x? f??x???? 22n?12n?11?xn?1?n?1?n?1???x0x2f??x?dx??dx,

01?x2xx?1?11??即f?x??f?0????????1?dx, 021?x1?x????11?x11?x?x?1?x?ln∴f?x??f?0??ln,|x|?1。

21?x21?xex?e?x1??1n?11?12kn?23.解: ???x????x????x,????x????。22?n?0n!n?0n!?2k?0?2k?!??11?1n24.解:cosx??1?cos2x???1????1??2x?2n?

?2n?!22?n?0?2n11?n2 ?????1?x2n,????x????。

?2n?!22n?025.解:?1?x?ln?1?x???1?x????1?n?1?n?1xn,|x|?1 nnn?1 ????1?n?1?n?1???1?n???1??n?1?xn?1。 xn?n?1????1?x??nn?1n?n?1?n?1 7

11126.解:??xx?3?33?11?n?x?3?n1n????1???????1?n?1?x?3? x?33n?03?3?n?01?3nx?3?1,即0?x?6 3x为偶函数,∴bn?0,?n?1,2,?? 21?x2?xa?coscosnxdx?coscosnxdx n????0?2?227.解:∵f?x??cos ?1???0??1??1??cos?nx?cos?n????x?dx ???2????2x??1?11?1??1??sin??n?x?sin??n?x? ??1??1?n?2?2???n?2?2?0 ?2??cosnxcosnx?11?n?12????????1???

??2n?12n?1???2n?12n?1?n?1 ???1?令n?0,得a0?41?4n2?1,n?0,1,2,?

x在???,??上连续 24?,且f?x??cosx24?n?1cosnx∴cos?????1?,????x???。

2??n?14n2?128.解:由于f?x???2x是奇函数,故an?0,n?0,1,2,?

2?1?1?? bn???2t?sinntdt?????xcosnx?sinx??

?????n?n????1?? ???1?∴f?x??4?n?1?n4 n??1?nsinnx。

n29.解:an?13n?10n?13n???fxcosxdx?2xcosxdx?xcosxdx 3??333??333?03036?n?xn?xn?x?3?n?xn?xn?x??sin?sin ?22?cos??22?cos? 333??3n??333?0n?? ?

3n?22?1???1??,n?2k时,an2k?0。

8

n?2k?1时,a2k?1? a0?6 22?2k?1??3131?0???3 ??fxdx?2xdx?xdx?0????3?3??33?213n?10n?13n?xxdx??2xsinx??xsindx bn??f?x?sin?3303333333n?3n??1?n?3n?? ???sinx??sinx? ?xcos??xcosx?n??xn?3??3n??3n?3?003 ?9??1?n?1,所以 n?36f?x????24??12k?1?9?n?n?11??cosx??1sinx ??23?n3n?0?2k?1?n?1?除x?3?2n?1?上均成立。?n?0,?1,?2,??

30.解:1)正弦级数,注意到f?0??0,作奇延拓F?x?,x???l,l?使在?0,l?上恒有F?x??f?x?。再将F?x?周期延拓得G?x?,x????,???,G?x?是一个以2l为周期的连续函数,G?x??F?x?,x???l,l?,计算付氏系数如下:

an?0,(n?0,1,2,?)

ll2?2n?xn?x?bn???xsindx??l?l?x?sindx?

0l?llx? ?4ln2?sin2n?,n?1,2,? 2?∴f?x??1n?n?x,?0?x?l?. sinsin2?22l?n?1n4l2)余弦函数

作偶延拓设F?x?,x???l,l?使在?0,l?上恒有F?x??f?x?。再将F?x?周期延拓得G?x?,x????,???,G?x?是一个以2l为周期的连续函数,G?x??F?x?,

x???l,l?,计算付氏系数如下:

ll?l2?2a0???xdx??l?l?x?dx??

l?02?x 9

ll2?2n?xn?x?an???xcosdx??l?l?x?cosdx?

l?0llx?2?2l2n?l2l2?n ??22cos?22???1?22?,n?1,2,?

l?n?2n?n??bn?0

l2l∴f?x???24??nn?1?1?n?n?xn?,?0?x?l?. ??2cos?1??1cos2??2l??(B)

n11?11?1?11?11.解:∵Sn????????????,

3n?4?3?43n?4?12k?1?3n?1??3n?4?k?13?3n?1n?n???,∴原级数收敛且和为

?1。 12?11?11?2.解:∵Sn???????

????k?2?k?1kk?1k?2k?1k?k?1?111?11??11?111????????????1???1???

kk?12kk?2k22k?1k?2?????k?1??1?311?,?n???,∴原级数收敛且和为。 444n?3.解:∵Sn??k?1??k?2?k?1???k?1?k????n?2?2????n?1?1

??n?2?n?1?1?2???1?1?2?1?2,

n?2?n?1??n???,∴原级数收敛且和为1?2。

Un?12n?1?n?1?!nn224.解:∵????1,?n???∴由比值判别n?1nnUne?n?1?2n!?1?1????n?法知原级数收敛。

?2n?5.解:∵nUn???3n?1??n2n?34?2n??2n?????????1,?n???∴由

9?3n?1??3n?1?2n3根值判别法知原级数收敛。

n2?Un?6.解:∵当n充分大时有

2n?1

10

nnnnn?ann?,而

?2n?1?n2n?1

n1n2n1lim?lim?,故limUn??1,∴由根值判别法知原级数收敛。

n??n??2n?1n??2n?122nnn?b?bbb??1,即 b?a时,原7.解:∵Un??,,∴当??n?????a?aana?n?b级数收敛;?1,即b?a ,原级数发散,当b?a时不定。

a8.解:当a?1时,∵lim1?0,∴级数发散。

n??1?ann?Unan1 当a?1时,∵(u??),而?收敛,∴级数发散。 ??1,

11?anan?1nan13n209.解:∵Un??1n0xdx??1?x41n02xdx?x3?2121,∵收敛,∴??3333n?1n2n2由比较判别法知级数收敛。

?Un?12?n?1?n!22n?1????,?n???,故?Un也发散,故10.解:∵

?n?1?!2n2n?1Unn?12也非条件收敛。

??n?12n22??,而?发散,故级数?|Un|发散,11.解:∵|Un|?2n?n?1n2nn?1n?1n?n?1?即原级数非绝对收敛,原级数为交错级数,显然数列?2?单调递减且收敛

?n?n?1?于零,故由莱布尼兹判别法知,原级数条件收敛。

1??nln?2????|Un|1n?ln2??lim?12.解:∵lim,而?发散,∴?|Un|发散,

2n??n??13n?1n?1n9n?4n即原级数非绝对收敛。

1??ln2????nn?1??0 记原级数为???1?an为交错级数,∵liman?lim?n??n??n?19n2?4 11

an?1an1??ln?2??n?1????3n?1??3n?5?1??ln?2??3n?2??3n?2???n?1??1?1???ln?2??ln?2??n?n????3n?2??3n?2??1,

?3n?1??3n?5?即an?1?an,故由莱布尼兹判别法知原级数收敛,故原级数条件收敛。

Un?1x2?n?1??2n?!x213.解:∵???0,?n???,故对?x,

?2?n?1??!x2n?2n?1??2n?1?Un原级数收敛,所以收敛半径为?,收敛区间为???,???。

14.∵liman?limnn??n??n11,∴R?max?a,b?,当x??max?a,b??ax?a,b?an?bnm时,原级数发散,故收敛区间为??R,R?,其中R?max?a,b?。

15.解:∵

2?x?5?∴当

2n?32Un?1??x?5?2n?4nx?5???,?n???, n?12n?1Un42?n?1??4?x?5?42?x?5??1,即?7?x??3时,原级数收敛,当

4?1,即x??3或

x??7时,原级数发散,当x??7,原级数收敛,当x??3时原级数也收敛。故

原级数收敛半径为2,收敛区间为??7,?3?。

?2?3?2???n?1an?13n?1???2?n?3?n?3,16.解:∵???n?nnann?13???2??2?n?11?????3??n???,∴R?1,当|x?1|?1,即?4?x??2,原级数收敛。当x??4时,

333332?42?原级数收敛,当x??时,原级数发散。故原级数的收敛区间为??,??。

3?33?nx?2n17.解:?nx??2nx2n?1,但

2n?1n?1??2nxn?1?2n?1????2n??1????x????1? 2??n?1??1?x?2x?1?x?22x?x2x,故有?nx??2nx2n?1?2n?121?x2n?12n????1?x?2?x222,?|x|?1?。

12

18.解:∵ex?2??2???112nx2n?1???x,????x????,而xex????? n!n!n?0?n?0???????12n?12n?12n2n?12n??x??x?1??x,

n!n!n!n?0n?0n?1??∴?2?222n?12nx?xex?1?ex?2x2ex?1,????x????。 n!n?1???n19.解:∵?nx?x?n?n?1?x2n?1n?1??n?1??nxn?1,

n?1?∵?nxn?1n?1???1??n??x????x???? ?2?n?1??1?x??1?x? ??n?1?nxn?1n?1???2??x2??1?n?1????,故 ???x?????x?1?3?1?x????1?x??1?x??n?1??????n2xn?xn?1?212xx,?|x|?1?。 ?x??3232?1?x??1?x??1?x??1?x??n?xn1?x?20.证明:考虑级数?????S?x?,|x|?2,逐项微分得:?nn?1n?2n?1n?2?1?x?S??x?????n?12?2??n?1?111,|x|?2。 ??x22?x1?21xdx??ln|2?x|0?ln2?ln|2?x|,取x?1,得02?xxf?x???S??x?dx??0xS?1???1?ln2。 nn2n?1?12112??21.解:f?x??,??2n?1xn,|x|?,

22x?3x?11?2x1?x1?2xn?0??1??xn,|x|?1 。 1?xn?0 13

∴f?x???2n?0?n?1x??x??2n?1?1xn,|x|?nnn?0n?0????1。 2????111??nn???22.解:2????????1??x?1?? ??1?x?1x?1??x?1??2??n?0??? ??n??1?n?1?n?1?x?1?n?1,(|x?1|?1)。

23.解:∵

111?321?3?5?74?1?x?x?x??

22?42?4?6?81?x? ?1????1?n?1n?2n?1?!!xn,|x|?1 ?2n?!!∴

x1?x2?x????1?n?1?n?2n?1?!!x2n?1,|x|?1。 ?2n?!!?1x125.解:an??xsinnxdx??cosnx????22x?2n????1??cosnxdx

?? ???1??n?11,n?1,2,? n∴f?x?~???1?n?1n?11sinnx。 n由于对?x???2k?1??,?2k?1???,有x?2????2k?1??,?2k?3???,所以

f?x?2???1??x?2???2?k?1????1?x?2k???f?x?。因此f 以2?周期的周期22函数,并且显然只有当x??2k?1??,k?0,?1,?2,?时x是f?x?及f??x? 第一类间断点,所以f?x?符合狄利克雷收敛定理的条件,故f?x?付氏级数在R处处收敛, ?k?0,?1,?2,?,有???1?n?1?n?1?f?x?,x??2k?1??1。 sinnx????0,x?2k?1?n?26.解:∵f?x?奇函数,所以an?0。

14

bn?2???0????2?2f?x?sinnxdx???xsinxdx???sinnxdx?

??022?????22?1??sinnx?nxcosnx??cosnx?? ?2???n2n02?? ?2?1n??n? ??sin??12???22nn???所以f?x??1?1n?n????sin??1sinnx,除x??2n?1??均成立,????n?1n?n22?2(n?0,?1,?2,?)。

2l2n?xdx 27.解:bn??xsinl0l2?l ???l?n??2n?2ln?2l2n??xcosx?xsinx?cos?ln?lln2?2???x??? ??0x ??2n??22l?ll??nn????l?1??1???? ?n?nxn?????2l24l2n?1??1??33??1?n?1 ?n?n???又∵函数f?x?展成正弦级数为

???1?n?12??1?n?1?n?f?x???x,?0?x?l? ??sin?32?n?1?nln??2l2???又∵a0?2l222xdx?l ?0l32l2n?4l2nxdx?22??1? an??xcosl0ln?l24l2∴f?x?展开成余弦级数为f?x???23?(C)

?n?1???1?ncosn?x,?0?x?l?。

n2ln111?11?1.解:Un????????

??????2k?12k?12k?32k?142k?1k?3??k?1k?1n1??11??11?? ???????????

2k?1??2k?12k?3??k?18??2k?1

15

n

1??1??11?? ???1??????

8??2n?1??32n?3????121???n???, 12?2n?1??2n?3?121。 12故原级数收敛,且和为

2.证:

Un?1a?n?1?1,由比较判别法知原正项级数收敛。 Un1?an?1Un?13n?1?n?1?!nn133.解:∵???3???1,?n???,∴由比n?1nnUne3?n!?n?1??1??1???n?值判别法知,原级数发散。

4.解:考虑函数f?x??x?12?1??2?由f??x??0x??0,???,f?x???1?lnx?x,lnx,

?2?13?22得x?e,易知fe?时f?x?的最大值,所以当n?1地,n2lnn??1,∴

e32??2Un?n?12?lnn11?n,但?n为收敛的几何级数,∴原级数也收敛。 2n2n?121lnn5.解:an?nnx2?1?1?en2?1?1,∵n?2有0?lnnlnn?1;而当0?x?1时,2n?1有e?1?e?x,∴当n?2时,0?e是收敛的,∴原级数收敛。

6.解:因为已知级数???1?n?1?n?1n2?1?lnnlnn,而级九?2可判别其?1?e?2n?1n?1n?11 条件收敛的级数。设其部分和数Sn极

?2n?1?1n?111限为S,则有limSn?S,而级数?sin?1?0??0??0???,取其前

n??2357n?1n?2n项,其和与???1?n?1?n?11的部分和相等且为Sn,当n??时,2n??,故2n?1原级数收敛且和为S。

U7.解:n?1?Un

?n?2?n?12n?12n?1?n22,?n???,x?2x?2xnn?1?n2n?2?n?1???16

当2x2?1,即|x|?级数为?n?1?2222时,收敛;当|x|?时发散。故R?,当x??时,

2222?n?1?n??n?1???22?1?。 ?,发散,故原级数收敛域为???n?1?n?22?nnn11n11?n?8.解:an???1??1?????,由于1?1?|an|?1?????n,

n?2n?211?n?而当lim|an|?1,故R?1;当x??1时,原级数为????1??1?????,由

n??n??2n?1n?于通项不以零为极限,故发散。所以原级数的收敛域为??1,1?。

n?1n?1???1???1?2n9.解:当|x|?1时,级数?x收敛。设f?x???x2n,

n?1n?2n?1?n?1n?2n?1???1n?12n?1?|x|?1?,?|x|?1?,f???x??2???1?n?1x2n?1?22,则f??x??2???1?x,

1?xn?12n?1n?1??|x|?1?,两边积分得:

f??x??2?1dx?2a?tgx,(∵f??0??0); 01?x2x再积分一次

f?x???2arctgxdx?2xarctgx?ln1?x2,(∵f?0??0);

0x??∴?Un?limf?x??n?1x?1?0??2?ln2,即原级数的和S??2?ln2。

?x??????1de?1112??10.解:∵ex??xn,∴??1?x?x????? ????dx?x??x?2!n?0n!??????xx12n?1n?1n? ??1??????x???x???xn?1 ??2!3!?2!3!n!n?1?n?1?!??2?nxn?1n?n?1?|x|?0 因为当n??时,?n?1?n?1??n?1?n!d?ex?1?xex?ex?11?又当x?o时,??? 2??dx?x?2x故展开式对所有的x均成立,在展开式中令x?1,得

17

nxex?ex?1 ???1。 2??n?1!xn?1x?1?Un?1?n?1?2x3?n?1??1n?1211.解:???2|x|3?2|x|3,(n??),故nUnn23n?1n2x1n?12当2|x|?1,即当|x|?2时级数收敛,当x??2时级数发散,因此原级数收

1????166??2,2敛区间为???,且 ??3?16?16?n2x3n?1??2nx3n?1n?1?n2?n2??n?11x2??2n?13?n2??x??3nn?1???1?32?????2?x3?n?1????????n? ???n1??1?2x3?2x2?3?? ???2x???3??3?n?1?3?1?2x?1?2x3????21???6?,??|x|?2?。

??12.解:先求正弦级,将f?x?在???,0?作奇延拓,有an?0,

bn?2???0f?x?sinnxdx?2???20???x???sinnxdx

2?????????22????cosnx21??n??sinx??x????2cosnxdx????cos??2? ?0???n???2?n0n22nn0????? ?12n?2n??cos?2sin nn2n?2由狄里赫勒收敛定理知

?????fx,0?x?或?x???22?????bsinx?,x? ??n2n?1?2?0,x??,0??

18

????∴f?x???bnsinnx,?0?x?,?x???

22??n?1?再求余弦级数,将f?x?在???,0?作偶延拓,有

?an?2???0f?x?cosnxdx?2??20???x???cosnxdx

2??2n?2 ?sin?2n2n?n????1?,n?0 ?cos2??an?2???20??3?x?dx??,bn?0 ??2?4?a0?∴f?x????ancosnx

2n?1?3n?2n?2????2?? ?????sin?2cos,cosnx0?x?,?x????? 282n?2n??22??n?1?n13.解:an?1???f?x?cosnxdx?0

?? bn?1???f?x?sinnxdx??????1?sinxdx??????101?0sinnxdx

1?cosnx?1?cosnx?1 ???1?cosn??cosn??1? ????????n?????n?0n??4,n?1,3,5,?2?n ? 1???1???n?n???0,n?2,4,6,?0???4?11?4?sin?2n?1?x所以f?x???sinnx?sin3x??? sin?2n?1?x???????32n?1?2n?1?n?1∵f1?x??a?ba?b?f?x? 22a?bb?a4?sin?2n?1?xa?b2?a?b??sin?2n?1?x∴f1?x?? ??????22?n?12n?1222n?1n?1f2?x???f?x?dx?0?x4???0??sin?2n?1?x???2n?1?dx ?n?1?x?4?1 ????cos?2n?1?x?

?n?1??2n?1?2?0

19

?14?1 ?? ??cos2n?1x??23?n?1?2n?1??n?1?2n?1?4??4?1????x?时,f???代入上式有,??,即求得和式,且 222?n?1?2n?1??2?2?f2?x??

?2?1cos?2n?1?x,????x???。 ??n?1?2n?1?34? 20

本文来源:https://www.bwwdw.com/article/vuv5.html

Top