二次函数综合题分类练习

更新时间:2023-05-14 07:47:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

二次函数之面积、周长最值问题

1、如图,抛物线y=

12

x bx c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3. 2

(1)求抛物线的解析式.

(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.

2、如图,已知抛物线y=-x+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.

(1)抛物线及直线AC的函数关系式;

(2)设点M在对称轴上一点,求使MN+MD的值最小时的M的坐标;

(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

2

3、(2013 自贡)如图,已知抛物线y=ax+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.

(1)求抛物线的解析式;

(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

2

4、(2014 德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式;

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

5、如图12,已知二次函数y 交于点C,且OC2 OA OB.

12

x bx c(c 0) 的图象与x轴的正半轴相交于点A、B,与y轴相2

(1)求c的值;

(2)若△ABC的面积为3,求该二次函数的解析式; (3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使△PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

6、如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.

(1)求点B的坐标;

(2)求经过A、O、B三点的抛物线的解析式;

(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.

(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.

二次函数之等腰三角形问题

1、如图,抛物线y ax2 5ax 4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上, 点C在y轴上,且AC BC.

(1)求抛物线的对称轴;

(2)写出A,B,C三点的坐标并求抛物线的解析式;

(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形.若存在, 求出所有符合条件的点P坐标;不存在,请说明理由.

2、(2013 安顺)如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3). (1)求抛物线的解析式;

(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;

(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.

3、(2014 邵阳,第26题10分)在平面直角坐标系xOy中,抛物线y=x﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C. (1)若m=2,n=1,求A、B两点的坐标;

(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小; (3)若m=2,△ABC是等腰三角形,求n的值.

2

4、(2014年四川资阳,第24题12分)如图,已知抛物线y=ax+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1. (1)求抛物线的解析式;

(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;

(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.

2

5、(2013 衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1. (1)求抛物线对应的函数关系式;

(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.

①当t为何值时,四边形OMPQ为矩形;

②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

6、(2013 湘西州)如图,已知抛物线y=﹣x+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

(1)求抛物线的解析式及它的对称轴方程;

(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式; (3)试判断△AOC与△COB是否相似?并说明理由;

(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.

2

7、已知Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系内,使其斜边AB与x轴重合(其中OA<OB),直角顶点在y轴正半轴上。如图1 (1)求线段OA,OB的长和经过点A,B的抛物线的解析式;

(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。

①当△BDE是等腰三角形时,直接写出此时点E的坐标;

②连接CD,CP,如图3,△CDP是否有最大面积?若有,求出它的最大面积和此时点P的坐标;若没有,请说明理由。

二次函数之面积问题

1、如图9,已知正比例函数和反比例函数的图象都经过点A(3,3). (1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式; (3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式; (4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:3S1=2S?若存在,求点E的坐标;若不存在,请说明理由.

2、阅读材料: 如图12-1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=

ah

,即三角形面积等于水平宽与铅垂高2

B

y 乘积的一半. 解答下列问题: 如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式;

(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB; 1 x

(3)是否存在一点P,使S△PAB= 若不存在,请说明理由.

9S ABC

8

,若存在,求出P点的坐标;O

1

A

图12-2

本文来源:https://www.bwwdw.com/article/vu7e.html

Top