高中数学第一章导数及其应用1_3导数在研究函数中的应用教材习题
更新时间:2023-04-24 22:26:01 阅读量: 实用文档 文档下载
- 高中数学导数的应用推荐度:
- 相关推荐
高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用教材
习题点拨 新人教A 版选修2-2
教材问题解答
(问题)
如果在某个区间内恒有f ′(x )=0,那么函数f (x )有什么特征?
答:如果在某个区间上恒有f ′(x )=0,那么函数f (x )在这个区间上是常数函数. (思考)
请同学们回顾一下函数单调性的定义,并思考某个区间上函数y =f (x )的平均变化率的几何意义与其导数正负的关系.
答:函数y =f (x )的平均变化率f x 2-f x 1x 2-x 1
的几何意义是经过(x 1,f (x 1)),(x 2,f (x 2))两点直线的斜率.
当导数为正值时,函数单调递增,平均变化率
f x 2-f x 1x 2-x 1>0;当导数为负值时,函数单调递减,平均变化率
f x 2-f x 1x 2-x 1<0. (问题)
如果不用导数的方法,直接运用单调性的定义,你如何求解本题?运算过程麻烦吗?你有什么体会?
答:如果不用导数的方法,直接运用单调性的定义,也可以求解本题,但运算过程相对麻烦,有时需要变形的很多技巧,特别是判断三次的多项式函数的单调性时,这种方法不是一种简便的方法,导数是研究函数单调性的工具,其方法具有普适性、通用性. 练习1
1.解:(1)因为f (x )=x 2-2x +4,所以f ′(x )=2x -2.
当f ′(x )>0,即x >1时,函数f (x )=x 2-2x +4单调递增;
当f ′(x )<0,即x <1时,函数f (x )=x 2-2x +4单调递减.
(2)因为f (x )=e x -x ,所以f ′(x )=e x -1.
当f ′(x )>0,即x >0时,函数f (x )=e x -x 单调递增;
当f ′(x )<0,即x <0时,函数f (x )=e x -x 单调递减.
(3)因为f (x )=3x -x 3,所以f ′(x )=3-3x 2.
当f ′(x )>0,即-1<x <1时,函数f (x )=3x -x 3单调递增;
当f ′(x )<0,即x >1或x <-1时,函数f (x )=3x -x 3单调递减.
(4)因为f (x )=x 3-x 2-x ,所以f ′(x )=3x 2-2x -1.
当f ′(x )>0,即x >1或x <-13
时,函数f (x )=x 3-x 2-x 单调递增; 当f ′(x )<0,即-1
3<x <1时,函数f (x )=x 3-x 2-x 单调递减.
2.解:如图所示.
点拨:图象形状不唯一.
3.解:因为f (x )=ax 2+bx +c (a ≠0),所以f ′(x )=2ax +b .
(1)若a >0,
f ′(x )>0,即x >-b
2a 时,函数f (x )=ax 2+bx +c (a ≠0)单调递增;
f ′(x )<0,即x <-b
2a 时,函数f (x )=ax 2+bx +c (a ≠0)单调递减.
(2)若a <0,
f ′(x )>0,即x <-b
2a 时,函数f (x )=ax 2+bx +c (a ≠0)单调递增;
f ′(x )<0,即x >-b
2a 时,函数f (x )=ax 2+bx +c (a ≠0)单调递减.
4.证明:因为f (x )=2x 3-6x 2+7,所以f ′(x )=6x 2-12x . 当x ∈(0,2)时,
f ′(x )=6x 2-12x <0,
因此函数f (x )=2x 3-6x 2+7在(0,2)内是减函数.
练习2
1.解:x 2,x 4是函数的极值点,其中x =x 2是函数y =f (x )的极大值点, x =x 4是函数y =f (x )的极小值点.
2.解:(1)因为f (x )=6x 2-x -2,所以f ′(x )=12x -1.
令f ′(x )=12x -1=0,得x =1
12.
当x>1
12
时,f′(x)>0,f(x)单调递增;
当x<1
12
时,f′(x)<0,f(x)单调递减.
所以,当x=1
12时,f(x)有极小值,并且极小值为f?
?
??
?1
12
=6×
?
?
??
?1
12
2-
1
12
-2=-
49
24
.
(2)因为f(x)=x3-27x,
所以f′(x)=3x2-27.
令f′(x)=3x2-27=0,得x=3或x=-3.
下面分两种情况讨论:
①当f′(x)>0,即x>3或x<-3时;
②当f′(x)<0,即-3<x<3时.
当x变化时,f′(x), f(x)变化情况如下表:
当x=3时,f(x)有极小值,并且极小值为-54. (3)因为f(x)=6+12x-x3,所以f′(x)=12-3x2. 令f′(x)=12-3x2=0,得x=2或x=-2.
下面分两种情况讨论:
①当f′(x)>0,即-2<x<2时;
②当f′(x)<0,即x>2或x<-2时.
当x变化时,f′(x), f(x)变化情况如下表:
当x=2时,f(x)有极大值,并且极大值为22. (4)因为f(x)=3x-x3,所以f′(x)=3-3x2.
令f′(x)=3-3x2=0,得x=1或x=-1.
下面分两种情况讨论:
①当f′(x)>0,即-1<x<1时;
②当f ′(x )<0,即x >1或x <-1时. 当x 变化时,f ′(x ), f (x )变化情况如下表:
当x =1时,f (x )有极大值,并且极大值为2. 练习3
解:(1)我们知道,在[1,2]上,函数f (x )=6x 2
-x -2无极大值和极小值.因为f (1)=3,f (2)=20,所以函数f (x )=6x 2
-x -2在[1,2]上的最大值是20,最小值是3.
(2)我们知道,在[-3,3]上,函数f (x )=x 3
-27x 无极大值和极小值.因为f (-3)=54,
f (3)=-54,所以函数f (x )=x 3-27x 在[-3,3]上的最大值是54,最小值是-54.
(3)我们知道,在??????-13,1上,函数f (x )=6+12x -x 3
无极大值和极小值.因为f ? ??
?
?-13=5527,f (1)=17,所以函数f (x )=6+12x -x 3
在????
??-13,1上的最大值是17,最小值是5527. (4)我们知道,在[1,2]上,函数f (x )=3x -x 3
无极大值和极小值.因为f (1)=2,f (2)=-2,所以函数f (x )= 3x -x 3
在[1,2]上的最大值是2,最小值是-2.
习题1.3
A 组
1.解:(1)因为f (x )=-2x +1,所以f ′(x )=-2<0.因此,函数f (x )=-2x +1是单调递减函数.
(2)因为f (x )=x +cos x ,x ∈? ????0,π2,所以f ′(x )=1-sin x >0, x ∈? ????0,π2.因此,
函数f (x )=x +cos x ,x ∈?
????0,π2是单调递增函数.
(3)因为f (x )=-2x -4,
所以f ′(x )=-2<0.因此,函数f (x )=-2x -4是单调递减函数. (4)因为f (x )=2x 3
+4x ,
所以f ′(x )=6x 2
+4.由于f ′(x )=6x 2
+4>0, 因此函数f (x )=2x 3+4x 是单调递增函数.
2.解:(1)因为f (x )=x 2
+2x -4,所以f ′(x )=2x +2. 当f ′(x )>0,即x >-1时, 函数f (x )=x 2
+2x -4单调递增;
当f ′(x )<0,即x <-1时,
函数f (x )=x 2
+2x -4单调递减.
(2)因为f (x )=2x 2-3x +3,
所以f ′(x )=4x -3.
当f ′(x )>0,即x >34时, 函数f (x )=2x 2-3x +3单调递增;
当f ′(x )<0,即x <34
时, 函数f (x )=2x 2-3x +3单调递减.
(3)因为f (x )=3x +x 3,所以f ′(x )=3+3x 2>0.因此,函数f (x )=3x +x 3是单调递增函数.
(4)因为f (x )=x 3+x 2-x ,
所以f ′(x )=3x 2+2x -1.
当f ′(x )>0,即x >13
或x <-1时,函数f (x )=x 3+x 2-x 单调递增; 当f ′(x )<0,即-1<x <13
时,函数f (x )=x 3+x 2-x 单调递减. 3.解:(1)
(2)加速度为0.
4.解:(1)在x =x 2处,导函数y = f ′(x )有极大值;
(2)在x =x 1和x =x 4处,导函数y = f ′(x )有极小值;
(3)在x =x 3处,函数y =f (x )有极大值;
(4)在x =x 5处,函数y =f (x )有极小值.
5.解:(1)因为f (x )=6x 2+x +2,所以f ′(x )=12x +1.
令f ′(x )=12x +1=0,得x =-112
. 当x >-112时,f ′(x )>0,f (x )单调递增;
当x<-1
12
时,f′(x)<0,f(x)单调递减.
所以,当x=-1
12
时,f(x)有极小值,并且极小值为f?
?
??
?
-
1
12
=6×
?
?
??
?1
12
2-
1
12
+2=
47
24
.
(2)因为f(x)=x3-12x,
所以f′(x)=3x2-12.
令f′(x)=3x2-12=0,得x=2或x=-2.
下面分两种情况讨论:
①当f′(x)>0,即x>2或x<-2时;
②当f′(x)<0,即-2<x<2时.
当x变化时,f′(x), f(x)变化情况如下表:
当x=2时,f(x)有极小值,并且极小值为-16.
(3)因为f(x)=6-12x+x3,所以f′(x)=-12+3x2.
令f′(x)=-12+3x2=0,得x=2或x=-2.
当x变化时,f′(x), f(x)变化情况如下表:
并且极小值为-10.
(4)因为f(x)=48x-x3,
所以f′(x)=48-3x2.
令f′(x)=48-3x2=0,得x=4或x=-4.
下面分两种情况讨论:
①当f′(x)>0,即-4<x<4时;
②当f′(x)<0,即x>4或x<-4时.
当x变化时,f′(x), f(x)变化情况如下表:
当x =4时,f (x )有极大值,并且极大值为128.
6.解:(1)在[-1,1]上,函数f (x )=6x 2+x +2有极小值f (-12
)=3, 由于f (-1)=7,f (1)=9,
所以f (x )=6x 2
+x +2在[-1,1]上的最大值和最小值分别为9,3.
(2)在[-3,3]上,当x =-2时,函数f (x )=x 3-12x 有极值,并且极大值为16;当x =2时,函数f (x )=x 3-12x 有极小值,并且极小值为-16.
又由于f (-3)=9,f (3)=-9,所以函数f (x )=x 3-12x 的最大值和最小值分别为16,-16. (3)我们知道,在??????-13,1上,函数f (x )=6-12x +x 3无极大值和极小值.由于f ? ??
??-13=26927,f (1)=-5,所以函数f (x )=6-12x +x 3在????
??-13,1上的最大值和最小值分别为26927,-5.
(4)我们知道,当x =4时, f (x )有极大值,并且极大值为128.又由于f (-4)=-128,f (5)=115,因此函数f (x )=48x -x 3在[-4,5]上的最大值和最小值分别为128,-128.
B 组
1.证明:(1)设f (x )=sin x -x ,x ∈(0,π),因为f ′(x )=cos x -1<0,x ∈(0,π),所以f (x )=sin x -x 在x ∈(0,π)内单调递减,因此f (x )=sin x -x <f (0)=0,x ∈(0,π),即sin x <x ,x ∈(0,π).
(2)设f (x )=x -x 2,x ∈(0,1),因为f ′(x )=1-2x ,x ∈(0,1),所以当x ∈? ??
??0,12时,f ′(x )=1-2x >0,f (x )单调递增,f (x )=x -x 2>f (0)=0;当x ∈? ??
??12,1时, f ′(x )=1-2x <0,f (x )单调递减, f (x )=x -x 2>f (1)=0,又f ? ????12=14
>0,因此,x -x 2>0,x ∈(0,1).
(3)设f (x )=e x -1-x ,x ≠0,因为f ′(x )=e x -1, x ≠0,所以,当x >0时,f ′(x ) =e x -1>0,f (x )单调递增,f (x )=e x -1-x >f (0)=0;当x <0时,f ′(x )=e x -1<0,f (x )单调递减, f (x )=e x -1-x >f (0)=0.综上,e x >1+x ,x ≠0.
(4)设f (x )=ln x -x ,x >0,因为f ′(x )=1x -1,所以,当0<x <1时,f ′(x )=1x -
1>0,f (x )单调递增,f (x )=ln x -x <f (1)=-1<0;当x >1时,f ′(x )=1x
-1<0,f (x )单调递减, f (x )=ln x -x <f (1)=-1<0;当x =1时,显然ln 1<1.因此ln x <x .由(3)可知,e x >1+x >x ,x >0.综上,ln x <x <e x, x >0.
2.解:(1)函数f (x )=ax 3+bx 2+cx +d 的图象大致是个“双峰”图象.若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.
(2)因为f (x )=ax 3+bx 2+cx +d ,
所以f ′(x )=3ax 2+2bx +c .
下面分类讨论:
当a ≠0时,分a >0和a <0两种情形:
①当a >0且b 2-3ac >0时,设方程f ′(x )=3ax 2+2bx +c =0的两根分别为x 1,x 2,且x 1<x 2,当f ′(x )=3ax 2+2bx +c >0,即x >x 2或x <x 1时,函数f (x )=ax 3+bx 2+cx +d 单调递增;当f ′(x )=3ax 2+2bx +c ≤0,即x 1<x <x 2时,函数f (x )=ax 3+bx 2+cx +d 单调递减.
当a >0且b 2-3ac <0时,此时f ′(x )=3ax 2+2bx +c ≥0,函数f (x )=ax 3+bx 2+cx +d 单调递增.
②当a <0,且b 2-3ac >0时,设方程f ′(x )=3ax 2+2bx +c =0的两根分别为x 1,x 2,且x 1<x 2,当f ′(x )=3ax 2+2bx +c >0,即x 1<x <x 2时,函数f (x )=ax 3+bx 2+cx +d 单调递增;当f ′(x )=3ax 2+2bx +c <0,即x >x 2或x <x 1时,函数f (x )=ax 3+bx 2+cx +d 单调递减.
当a <0,且b 2-3ac ≤0时,此时f ′(x )=3ax 2+2bx +c ≤0,函数f (x )=ax 3+bx 2+cx +d 单调递减.
正在阅读:
高中数学第一章导数及其应用1_3导数在研究函数中的应用教材习题04-24
中梗阻自查报告06-28
可燃及易燃易爆危险品管理制度08-26
关于小学英语教研总结多篇04-25
共青团政和县委04-05
当好笔杆子,先要躲开这些“雷区”08-22
我劳动我快乐作文250字07-10
中学校长个人述职报告范文模版07-30
2013年机修钳工技师组题库 - 图文03-18
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 导数
- 应用
- 习题
- 函数
- 及其
- 教材
- 高中
- 数学
- 研究
- 三年级数学下册1位置与方向一认识东南西北一课三练新人教版
- 宝马变速箱维修需要5万?老司机带你轻松解决变速箱故障维修问题,
- C1210S272K4RAC中文资料
- 25042工作面过红13-2断层补充安全技术措施
- 广东电网公司数字化变电站验收规范
- 新版PEP人教版英语小学三年级下册Unit4考试卷练习题教学文稿
- 故宫的主要色彩及象征意义(新)
- 学习宣传和贯彻落实 工作总结
- 财务软件取数工具指引
- 2010年国家公务员考试行政能力测试真题WORD完整版含答案
- 影响领导力的八大因素
- 数码管前三位显示一个跑表,从000到999之间以百分之一秒速度运行,
- 《斑羚飞渡》阅读测试题
- 合肥工业大学的招生简章
- 《混凝土基础知识及配合比设计》培训试题
- 入党积极分子党课培训重点讲义
- 真正能用的《十九强选股公式》同花顺公式
- 小学科学学业评价方案及总结
- 名著《简爱》阅读题合编(含答案)
- 小学音乐质量分析报告