大兴区2009初三数学答案

更新时间:2024-05-12 06:09:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

大兴区2009~2010学年度第一学期期末检测试卷

初三数学参考答案

第Ⅰ卷(共32分,答在答题纸上)

一、选择题(本大题共8个小题,每小题4分,共32分)

下列各题的四个备选答案中,只有一个符合题意.请将符合题意选项前的字母填在答题纸..中相应题号下的空格内.

题号 答案 1 B 2 A 3 B 4 C 5 A 6 D 7 A 8 D 第Ⅱ卷(共88分,答在答题纸上)

二、填空题: (共4道小题,每小题4分,共16分)

9. 16:25 10. 80? 11.y??2(x?3)2?1 12.27 三、解答题:(本大题共3个小题,共15分) 13.(本题满分5分)

解:原式?2?21?2??1?3?3.......................................................................4分 22?2?1....................................................................................................5分14.(本题满分5分)

k解:?反比例函数y?的图象经过点(?1,2),xk??2,...........................................................................................................................2分?1?k??2.............................................................................................................................3分

?2?反比例函数解析式为:y?..................................................................................4分x当x?2时,y??1...........................................................................................................5分15.(本题满分5分)

解:设这个二次函数的解析式为y?a(x?1)?2………………………………..2分 ∵二次函数的图象过坐标原点,

∴0?a(0?1)?2

22…………………………………………………….….…3分

a?2 ………………………………………………………………………4分

1

∴这个二次函数的解析式是y?2(x?1)2?2,

即y?2x2?4x………………………………………………………………………5分

四、解答题:(本大题共3个小题,共15分)

16.(本题满分5分) 证明: ∵ AC?3,BC?6?3,DC2 CE42 ………………………………..2分 ∴ AC?BC.

DCCE ………………………………………………3分又 ∠ACB=∠DCE=90°,……………………………………4分 ∴ △ACB∽△DCE.……………………………………….5分

17.(本题满分5分) 解:(1)∵AD是BC上的高,

∴∠ADB=∠ADC=90°.

∵sinB=

4,AD=12, 5∴AB=15. …………………………………………………………2分 BD?AB2?AD2

?152?122?9??????????????????????????3分

∵BC=14, ∴DC=BC-BD=14-9=5. …………………………………………………4分

5∴tan?DAC?……………………………………………………………5分

1218.(本题满分5分) 解:如图, 连结OA. ∵ CD=10cm,

∴ OA=5cm,………………………………1分 ?AB?CD,

??AMO?90?.在Rt△AOM中, ?OM?3cm,

?AM?OA2?OM2?52?32?4??????????????????????3分

又∵ CD是直径,

AB是弦,

AB⊥CD于M ,

2

∴ AB=2AM .

∴ AB=8cm . ………………………5分 五、解答题:(本大题共2个小题,共10分)

19.(本小题满分5分)

解:如图,过C点作CD垂直于AB交BA的延长线于点D. ············································· 1分

??CAB?120?,

??CAD?180???CAB?180??120??60?.

在Rt△CDA中,AC=300,

··············································································· 2分 CD?AC?sin?CAD?300sin60??1503.

·················································································· 3分 AD?AC?cos?CAD?300?cos60??150 ·在Rt△CDB中,

C ?BC?700,BD2?BC2?CD2 ?BD?7002?(1503)2?650

D A B ·························································································· 4分 ?AB?BD?AD?650?150?500 ·

答:A、B两个凉亭之间的距离为500m. ··············································································· 5分

20. (本题满分5分)

开始 解:

6 7 2 6 2 7 6 2 7 6 2 7

···································································································································· 2分

1. ······································································································ 3分 34(2)P(两数字和大于10)=. ································································································ 5分

9(1)P(两数字相同)=

六、解答题:(本大题共2个小题,共11分) 21.(本题满分5分)

x?解:(1)根据题意,得y?(2400?2000?x)?8?4???,

50??22x?24x?3200.…………………………………………………3分 2522(2)对于y??x?24x?3200,

25即y??

3

当x??24?150时,……………………………………………….4分

?2?2?????25?150??y最大值?(2400?2000?150)?8?4???250?20?5000.

50??所以,每台彩电降价150元时,商场每天销售这种彩电的利润最大,最大利润是5000元.………………………………………………………………………………………………5分 22.(本题满分6分)(1)直线BD和⊙O相切. ··························································· 1分

证明:

∵?AEC??ODB,?AEC??ABC, ∴?ABC??ODB. ························································ 2分 ∵OD⊥BC,

∴?DBC??ODB?90°. ∴?DBC??ABC?90°. 即?DBO?90°. ∵AB是⊙O直径,

∴直线BD和⊙O相切. ··················································· 3分 (2)连接AC. ∵AB是⊙O直径, ∴?ACB?90°.

在Rt△ABC中,AB?10,BC?8, ∴AC?······························································································· 4分 AB2?BC2?6. ·

∵BD和⊙O相切,

∴?OBD?90°.

∴?ACB??OBD?90°. 由(1)得?ABC??ODB, ∴△ABC∽△ODB. ········································································································· 5分

ACBC?. OBBD68∴?, 5BD20∴BD?. ························································································································· 6分

3∴

六、解答题:(本大题共3个小题,共21分)

23. (本题满分6分)

解:以A为圆心,以a为半径作圆.延长BA交⊙A于E点,

连接ED…………………………………………………………..………..1分 ∵AB∥CD,

∴?CAB??DCA,

?DAE??CDA.

4 ∵AC=AD,

??DCA??CDA,

??DAE??CAB.…………………………………………………..…..…..2分

在△ABC和△DAE中,

?AD?AC,???DAE??CAB, ?AE?AB.?∴△CAB≌△DAE, ……………………………………………….…….……..3分 ∴ED=BC=b……………………………………………………………………..4分 ∵BE是直径, ∴?EDB?90? 在Rt△EDB中, ED=b, BE=2a, 由勾股定理得

ED2?BD2?BE2.

∴BD?BE2?ED2?(2a)2?b2?4a2?b2.……………………………….5分

BD?cos?DBA??BE4a2?b2………………………………………………………6分 2a24. (本题满分7分)(1)①由题意知:

对称轴为直线x?∴?1,b=1 2b1?, 2a2∴a??1. …………………………………………………………………..1分

12992②y??x?x?2??(x?)??…………………………………………2分

244∵y的值为正整数

∴y1?1,2y2?2 ………………………………………………………………3分

2∴?x?x?2?1或?x?x?2?2 ∴x?x?1?0或x?x?0 解,得 x1?221?51?5,x2? ,x3?0, x4?1……………………4分 222(2)∵当a?a1时,抛物线y?ax?x?2与x轴的正半轴相交于点M(m,0) ∴0?a1m?m?2 ①

∵当a?a2时,,抛物线y?ax?x?2与x轴的正半轴相交于点N(n,0) ∴0?a2n?n?2 ②

2225

∴a1??m?2?n?2a?,…………………………………………………………5分 2m2n2?m?2?n?2?(m?2)n2?(n?2)m2?mn2?2n2?nm2?2m2???∴a1?a2? m2n2m2n2m2n2?mn(m?n)?2(m?n)(m?n)(mn?2m?2n)(m?n)?…………………6分

m2n2m2n2

∵点M在点N的左边,且M、N均在x轴正半轴 ∴m?0,n?0,m?n

∴mn?2m?2n?0,m?n?0,m2n2?0 ∴a1?a2=

(mn?2m?2n)(m?n)?0

m2n2∴a1?a2……………………………………………………………………………7分 25.(本题满分8分) 解:

(1)?B(1,0),?OB?1.?OC?3?B0?C(0,?3)......................................................................................................................................1分

∵y?ax?3ax?c过B(1,0)、C(0,-3),

2?c??3∴?

a?3a?c?0?解这个方程组,得 3??a?,4 ???c??3.∴抛物线的解析式为: y?3x2?9x?3………………………………………………2分

44(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N. 在y?329x?x?3中,令y=0,得方程 44329x?x?3?0 44解这个方程,得

x1??4,x2?1

?A(?4,0)

设直线AC的解析式为y?kx?b

6

?0??4k?b, ???b??3.解这个方程组,得 3??k??,4 ???b??3.?AC的解析式为:y??3x?3…………………………………3分 4

?S四边形ABCD?S?ABC?S?ADC151??DM?(AN?ON)2215??2?DM2?设D(x,x2?3493x?3),M(x,?x?3) 443393DM??x?3?(x2?x?3)??(x?2)2?3 ………4分

4444当x??2时,DM有最大值3 此时四边形ABCD面积有最大值(3)如图所示,

①过点C作CP1∥x轴交抛物线于点P1,过点P1作

27.………………5分 2PE11∥AC交x轴于点E1,此时四边形ACPE11为平

行四边形, ∵C(0,-3)

∴设P1(x,-3) ∴

329x?x?3??3 44解得 x1?0,x2??3

∴P,?3)………………………………………………………………………………6分 1(?3 ②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形, ∵C(0,-3)

3), ∴设P(x,∴

329x?x?3?3 44x2?3x?8?0

7

?3?41?3?41或x?,

22?3?41?3-41此时存在点P2(, 3)和P3(, 3)

22解得x?综上所述存在3个点符合题意,坐标分别是P,?3),P2(1(?3?3?41, 3),2P3(

?3-41, 3)…………………………………8分 2说明:以上各题,凡有不同解法,只要正确,请参照本评分标准给分。

8

本文来源:https://www.bwwdw.com/article/vr6g.html

Top