人教版物理选修3—5第十七章教案

更新时间:2023-04-12 13:01:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

人教版物理选修3—5

第十七章教案

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十七章波粒二象性

新课标要求

1、内容标准

(1)了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。

(2)通过实验了解光电效应。知道爱因斯坦光电效应方程以及意义。

(3)了解康普顿效应。

(4)根据实验说明光的波粒二象性。知道光是一种概率波。

(5)知道实物粒子具有波动性。知道电子云。初步了解不确定性关系。

(6)通过典型事例了解人类直接经验的局限性。体会人类对世界的探究是不断深入的。

例1:通过电子衍射实验,初步了解微观粒子的波粒二象性,体会人类对于物质世界认识的不断深入。

2、活动建议:阅读有关微观世界的科普读物,写出读书体会。

17.1 能量量子化:物理学的新纪元

三维教学目标

1、知识与技能

(1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。

(2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。

(3)了解能量子的概念。

2、过程与方法

(1)了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。

(2)体会量子论的建立深化了人们对于物质世界的认识。

3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。

教学重点:能量子的概念

教学难点:黑体辐射的实验规律

教学方法:教师启发、引导,学生讨论、交流。

教学用具:投影片,多媒体辅助教学设备

教学过程:

第一节能量量子化:物理学的新纪元

(一)引入新课

介绍能量量子化发现的背景:(多媒体投影,见课件。)

19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的 Maxwell方程。另外还找到了力、电、光、声----等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。

1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。”

也就是说:物理学已经没有什么新东西了,后一辈只要把做过的实验再做一做,在实验数据的小数点后面在加几位罢了!

2

3 但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到:“但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,----”这两朵乌云是指什么呢?

一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。然而, 事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路, 柳暗花明又一村”。点出课题:我们这节课就来体验物理学新纪元的到来――能量量子化的发现。

(二)进行新课

1、黑体与黑体辐射

在了解什么是黑体与黑体辐射之前,请同学们先阅读教材,了解一下什么是热辐射。阅读教材关于热辐射的描述。通过课件展示,加深学生对热辐射的理解。并通过课件展示,使学生进一步了解热辐射的特点,为黑体概念的提出准备知识。

(1)热辐射现象

固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。

例如:铁块 温度↑ 从看不出发光到暗红到橙色到黄白色,从能量转化的角度来认识,是热能转化为电磁能的过程。

(2)黑体

除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。不同的物体吸收和反射电磁波的能力是不一样的。

概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。(课件展示黑体模型)不透明的材料制成带小孔的的空腔,可近似看作黑体。如图所示。研究黑体辐射的规律是了解一般物体热辐射性质的基础。

2、黑体辐射的实验规律

阅读教材“黑体辐射的实验规律”,接合课件展示,讲解黑体辐射的实验规律。如图所示。

黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。

提出1:怎样解释黑体辐射的实验规律呢?

在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,见课件)

黑体模型

6 (μm)

e 实验结果

4

3、能量子:超越牛顿的发现

利用已有的理论解释黑体辐射的规律,导致了荒谬的结果。必然会促使人们去发现新的理论。这就是能量子概念。

1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为:

这个最小能量值,就叫做能量子。课件展示:普朗克的能量子假说和黑体辐射公式

(1)黑体辐射公式

1900.10.19 普朗克在德国物理学会会议上提出一个黑体辐射公式:

普朗克后来又为这种与经典物理格格不入的观念深感不安,只是在经过十多年的努力证明任何复归于经典物理的企图都以失败而告终之后,他才坚定地相信h 的引入确实反映了新理论的本质。

1918年普朗克荣获了诺贝尔物理学奖。

他的墓碑上只刻着他的姓名和( )

黑体辐射的研究卓有成效地展现在人们的眼前,紫外灾难的疑点找到了,为人类解决了一大难题。使热爱科学的人们又一次倍感欣慰,但真理与谬误之争就此平息了吗(没有)

物理难题:1888年,霍瓦(Hallwachs)发现一个带负电的金属板被紫外光照射会放电。近10年以后,1897年,汤姆孙发现了电子 ,此时,人们认识到那就是从金属表面射出的电子,后来,这些电子被称作光电子(photoelectron),相应的效应叫做光电效应。人们本着对光的完美理论(光的波动性、电磁理论)进行解释会出现什么结果?明天,我们就继续学习“科学的转折:光的粒子性”。

17.2 科学的转折:光的粒子性

三维教学目标

1、知识与技能

(1)通过实验了解光电效应的实验规律。

(2)知道爱因斯坦光电效应方程以及意义。

(3)了解康普顿效应,了解光子的动量

2、过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。

3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。

教学重点:光电效应的实验规律

教学难点:爱因斯坦光电效应方程以及意义

教学方法:教师启发、引导,学生讨论、交流。

教学用具:投影片,多媒体辅助教学设备

ν

εh =1π2)(/3

2-=kT h e c h T M ννν秒

焦??=-3410626.6h

5 教学过程:

第一节 科学的转折:光的粒子性

(一)引入新课

回顾前面的学习,总结人类对光的本性的认识的发展过程?

(多媒体投影,见课件。)光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。

(二)进行新课

1、光电效应

实验演示1:(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电 器张角增大到约为 30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。上述实验说明了什么(

表明锌板在射线照射下失去电子而带正电)

概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。

2、光电效应的实验规律

(1)光电效应实验

如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。光电子在电场作用下形成光电流。

概念:遏止电压,将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。当 K 、A 间加反向电压,光电子克服电场力作功,当电压达到某一值 Uc 时,光电流恰为0。 Uc 称遏止电压。

根据动能定理,有:

(2)光电效应实验规律 ① 光电流与光强的关系:饱和光电流强度与入射光强度成正比。

② 截止频率νc ----极限频率,对于每种金属材料,都相应的有一确定的截止频率νc ,当入射光频率ν>νc 时,电子才能逸出金属表面;当入射光频率ν <νc 时,无论光强多大也无电子逸出金属表面。

③ 光电效应是瞬时的。从光开始照射到光电子逸出所需时间<10-9

s 。

221c e v m c eU

6

3、光电效应解释中的疑难

经典理论无法解释光电效应的实验结果。

经典理论认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。

光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。

光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。

为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。

4、爱因斯坦的光量子假设

(1)内容

光不仅在发射和吸收时以能量为h ν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν 的光是由大量能量为 E =h ν的光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。

(2)爱因斯坦光电效应方程

在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W0,另一部分变为光电子逸出后的动能 Ek 。由能量守恒可得出:

W 0为电子逸出金属表面所需做的功,称为逸出功。W k 为光电子的最大初动能。

(3)爱因斯坦对光电效应的解释

①光强大,光子数多,释放的光电子也多,所以光电流也大。

②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。

③从方程可以看出光电子初动能和照射光的频率成线性关系

④从光电效应方程中,当初动能为零时,可得极限频率:h W c 0

爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。

5、光电效应理论的验证

美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h 的值与理论值完全一致,又一次证明了“光量子”理论的正确。

6、展示演示文稿资料:爱因斯坦和密立根

由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。

密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。

点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。

光电效应在近代技术中的应用

(1)光控继电器

可以用于自动控制,自动计数、自动报警、自动跟踪等。

W E h k +=ν

本文来源:https://www.bwwdw.com/article/vp7l.html

Top