Evaluation of the stability of anchor-reinforced slopes(预应力锚杆边坡稳定性评价)
更新时间:2023-07-17 10:03:01 阅读量: 实用文档 文档下载
- evaluation推荐度:
- 相关推荐
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
1342
Evaluationofthestabilityofanchor-reinforcedslopes
D.Y.Zhu,C.F.Lee,D.H.Chan,andH.D.Jiang
Abstract:Theconventionalmethodsofslicesarecommonlyusedfortheanalysisofslopestability.Whenanchorloadsareinvolved,theyareoftentreatedaspointloads,whichmayleadtoabruptchangesinthenormalstressdistri-butiononthepotentialslipsurface.Assuchabruptchangesarenotreasonableanddonotreflectrealityinthefield,analternativeapproachbasedonthelimitequilibriumprincipleisproposedfortheevaluationofthestabilityof
anchor-reinforcedslopes.Withthisapproach,thenormalstressdistributionovertheslipsurfacebeforetheapplicationoftheanchor(i.e.,σ0)iscomputedbytheconventional,rigorousmethodsofslices,andthenormalstressontheslipsurfacepurelyinducedbytheanchorload(i.e.,λpσp,whereλpistheloadfactor)istakenastheanalyticalelasticstressdistributioninaninfinitewedgeapproximatingtheslopegeometry,withtheanchorloadactingontheapex.Thenthenormalstressontheslipsurfacefortheanchor-reinforcedslopeisassumedtobethelinearcombinationofthesetwonormalstressesinvolvingtwoauxiliaryunknowns,η1andη2;thatis,σ=η1σ0+η2λpσp.Simultaneouslysolvingthehorizontalforce,theverticalforce,andthemomentequilibriumequationsfortheslidingbodyleadstotheexplicitexpressionforthefactorofsafety(Fs)—ortheloadfactor(λp),iftherequiredfactorofsafetyisprescribed.Thereasonablenessandadvantagesofthepresentmethodincomparisonwiththeconventionalproceduresaredemon-stratedwithtwoillustrativeexamples.Theproposedprocedurecanbereadilyappliedtodesignsofexcavatedslopesorremediationoflandslideswithsteelanchorsorprestressedcables,aswellaswithsoilnailsorgeotextilereinforce-ments.
Keywords:slopes,factorofsafety,anchors,limitequilibriummethod.
Résumé:Lesméthodesconventionnellesdestranchessonthabituellementutiliséespourl’analysedelastabilitédesta-lus.Lorsquedeschargesd’ancragesontimpliquées,ellessontsouventtraitéescommedeschargesponctuelles,cequipeutconduireàmedetelschangementsabruptesnesontpasraisonnablesetnereflètentpaslaréalitésurleterrain,onproposeuneapprochealternativebaséesurleprinciped’équilibrelimitepourl’évaluationdelastabilitédestalusarméspardesancrages.Aveccetteapproche,ladistributiondelacontraintenormalesurlasurfacedeglissementavantl’applicationdel’ancrage,i.e.,σ0,estcalculéeparlesméthodesconventionnellesrigoureusesdestranches,alorsquelacontraintenormalesurlasurfacedeglissementpurementinduiteparlacharged’ancrage,i.e.,λpσp(λpétantlefacteurdecharge),estprisecommeladistributiondelacontrainteanalytiqueélastiqueenuncoininfiniquireprésenteap-proximativementlagéométriedelapenteaveclacharged’ancrageagissantsurlesommet.Alorsonsupposequelacontraintenormalesurlasurfacedeglissementpourletalusarméd’ancragesestlacombinaisonlinéairedecesdeuxcontraintesnormalesimpliquantdeuxinconnuesη1etη2,c’est-à-dire,σ=η1σ0+η2λpσsolutionsimultanéedeséquationsdelaforcehorizontale,delaforceverticaleetdumomentd’équilibrepourlecorpsenmouvementconduitàl’expressionexplicitepourlecoefficientdesécuritéFsoupourlefacteurdechargeλpsilecoefficientdesécuritére-quisestprescrit.Lecaractèreraisonnableetl’avantagedelaprésenteméthodeencomparaisonaveclesprocéduresconventionnellessontdémontréprocédureproposéepeutêtreappliquéeaisémentauxconceptionsdepentesexcavéesoudecomportementdeglissementsavecdesancragesd’acieroudescâ-blesprécontraints,demêmequ’avecdesclousdanslesoloudesarmaturesgéotechniques.Motsclés:talus,coefficientdesécurité,ancrages,méthoded’équilibrelimite.[TraduitparlaRédaction]
Received18August2004.Accepted16May2005.PublishedontheNRCResearchPressWebsiteathttp://cgj.nrc.caon4October2005.
D.Y.Zhu.1InstituteofMountainHazardsandEnvironment,ChineseAcademyofSciences,Chengdu610015,China.C.F.Lee.2DepartmentofCivilEngineering,UniversityofHongKong,PokfulamRoad,HongKong.
D.H.Chan.DepartmentofCivilandEnvironmentalEngineering,UniversityofAlberta,Edmonton,ABT6G2W2,Canada.H.D.Jiang.CollegeofCivilEngineering,HohaiUniversity,Nanjing210098,China.
12
Presentaddress:CollegeofCivilEngineering,ChinaThreeGorgesUniversity,Yichan443000,ChinaCorrespondingauthor(e-mail:leecf@hkucc.hku.hk).
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
Zhuetal.Introduction
Anchorsandsoilnailsarecommonlyusedtostabilizepo-tentiallyunstableslopes.Theanchorloadsnotonlydirectlyprovidetheforcesand(or)momentscounteractingthoseforcestendingtodestabilizetheslopebutalsoimprovetheshearresistancealongtheslipsurfacebyincreasingthenor-malstressonthatsurface(HobstandZajic1983;Bromhead1994).Evaluationofslopestability,includingtheanchorloads,isimportantforthedesignofstabilizationmeasuresinvolvinganchors.
Limitequilibriummethodsofsliceshavebeenwidelyusedforcalculatingfactorsofsafetyfornaturalandconstructedslopes(Duncan1996).ThecommonlyusedmethodsincludethoseproposedbyFellenius(1936),Bishop(1955),Morgen-sternandPrice(1965),Spencer(1967),andJanbu(1973).Inprinciple,alltheseconventionalmethodsofslicescouldac-commodateanchorloadsorothertypesofconcentratedforcesactingupontheslope.Themoststraightforwardtreat-mentofconcentratedforcesistoincludethemasexternalforcesactingoncorrespondingslices(Hutchinson1977;FredlundandKrahn1977;Zhuetal.2001).However,suchatreatmentwillleadtoanunreasonablyabruptincreaseinnormalstressonthebaseoftheassociatedslices(Krahn2003).Thismeansthatthecontributionofanchorloadstotheincreaseinshearresistanceissolelyrelatedtotheshearstrengthofthatassociatedsegmentontheslipsurface,aswillbeshownlaterinthispaper.Thisisevidentlyunreason-ablefromboththeoreticalandpracticalpointsofview,asthenormalstressesontheslipsurfaceinducedbyananchorwouldnotbeconcentratedonanarrowsegment.Thus,ques-tionsareraisedonthereasonablenessofdirectlyusingcon-ventionalmethodsofslicesforanalysingthestabilityofanchor-reinforcedslopes.
Notwithstandingtheabovelimitation,themethodsofslicesaregenerallyacceptedasareliableanalyticaltoolforslopestability,astheyhavebeenfoundtogiveapproxi-matelyequalfactorsofsafety(within15%tolerance)aslongastheysatisfythecompleteequilibriumconditionsforthewholeslidingbody.Thecommonlyusedrigorousmethodsofslicesgenerallyassumecontinuous(andoftenrathersmooth)distributionoftheinclinationsofintersliceforces(MorgensternandPrice1965;Spencer1967)orcontinuouslocationofthelineofthrustacrosstheslidingmass(Janbu1973),therebyresultingincontinuousdistributionofnormalstressesalongtheslipsurface.Suchassumptionsofcontinu-ityapproximatelyreflecttherealcharacteristicsofthoseslopessubjecttogravity,pore-waterpressures,andseismicforces.However,whentheslopeisacteduponbyaconcen-tratedloadatthegroundsurface,boththeinclinations(andthemagnitude)oftheintersliceforcesandthelocationofthelineofthrustarenolongercontinuousacrosstheslidingbody,butthenormalstressdistributionalongtheslipsurfaceshouldstillremaincontinuous.Thus,iftheconventionalas-sumptionsaremadeinthiscase,theresultantcharacteristicsoftheintersliceforcesandthenormalstressesontheslipsurfacewouldbereversedandcontrarytoreality.Toover-comethisinherentshortcomingoftheconventionalmethods,weproposeanalternativebasedontheassumptionofcon-tinuousnormalstressdistributionalongtheslipsurface.Be-foretheapplicationofanchorloads,thenormalstressesontheslipsurfaceareassumedtobethosecalculatedbythe
1343
conventionalrigorousmethodsofslices(e.g.,theMorgenstern–PricemethodortheSpencermethod).Thenormalstressesinducedbytheanchorloadareapproximatelyobtainedfromanelasticsolution.Thelinearcombinationofthesetwopartsconstitutesthedistributionofnormalstressesontheslipsur-faceoftheanchor-reinforcedslope.Solvingthecompleteequilibriumequationsfortheslidingbodyyieldsthefactorofsafetyfortheslopewithgivenanchorloadsorthemagni-tudeoftheanchorloadrequiredtostabilizetheslopewithaspecifiedvalueforthefactorofsafety.
Basicformulation
Atypicalslopewithanchorloads(λpP3,λpP2,withλastheloadfactor)isshowninFig.1a.Forgeneralpurposes,ptheslipsurfaceisofarbitraryshape.Inadditiontothean-chorloads,theslopebodyissubjecttoself-weight(γ),hori-zontalseismicforce(kshowninthefigure).Withoutcγ)andthepore-wateractionofanchorpressureloads,u(notthefactorofsafetycanbecalculatedbyusinganymethodofslicesaccommodatingthegeneral-shapedslipsurface.TheMorgenstern–Pricemethod(MorgensternandPrice1965),withanintersliceforceofconstantinclination,issuggestedforthispurpose.Thedistributionofnormalstresses(σtermsoftotalstress)canbeobtainedasaby-productof0,inthecomputationprocess.
Inresponsetotheactionofanchorloads,anadditionalnormalstressdistribution(λpσp)isinducedalongtheslipsurface.Considerasingleanchorload,P,actingatpoint(xp,yp)ontheslopeatanangleofitothehorizontal,asshowninFig.1b.Theinducednormalstressontheslipsur-faceisdenotedbyσp.Becausetheanalysisiswithintheframeworkoflimitequilibrium,thenormalstressontheslipsurfaceisnotrequiredtobetheoreticallyexact.Thus,forpracticalpurposes,σpisassumedtobetheelasticstressas-sociatedwithaninfinitewedgewithitstwoedgesconnect-ingthepointofactionofPandthetwoendsoftheslipsurface.Fortunately,theanalyticalsolutiontoσpisavailablefromthemechanicsofelasticity.AsshowninFig.2,apairofforces,PH(horizontal)andPinfinitewedgewithitssymmetricalV(vertical)actattheapexofanaxisinthehorizontaldirectionanditsedgeslyingatangleofβtothehorizontal.Accordingtothemechanicsofelasticity(TimoshenkoandGoodier1970),thestressesatapointwithpolarcoordinates(r,θ)inthewedgeare[1a]σPθPr=
HcosVsinθr(β+0.5sin2β)
+
r(β 0.5sin2β)
[1b]σθ=0[1c]
τrθ=0
whereσristheradialstress;σθisthecircumferentialstress;andτrθistheshearstress.
NowconsiderthecorrespondingwedgeshowninFig.1b,βwithitslowerandupperedgesextendingatanglesofβhorizontal,respectively.Theconcentratedforce1and2tothePliesatanangleofωwiththesymmetricalaxisMM′.Thepolarcoordinatesofthepointconsideredare(r,θ′),corre-spondingto(r,θ)inthecoordinatesysteminFig.2.Fromthegeometricalrelation,wecanseethat
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
1344
Fig.1.Diagramofananchor-reinforcedslope.(a)Slopewithnormalstressesontheslipsurfaceinducedbyself-weightandanchorloads,respectively.(b)Geometryforcomputingnormalstressesontheslipsurfacepurelyinducedbyananchor
load.
[2a]
β=
β1+β2
2
[2b]
θ=θ′+β2
β1+β2β β2
2=θ′ 1
2[2c]ω=θ′ θ i=
β1 β2
2
iThus[3a]
PH=Pcosω=Pcos β β
2 i
[3b]
PV= Psinω= Psin β 1 β22
i
Substitutingeqs.[3a]and[3b]intoeq.[1a]gives
Can.Geotech.J.Vol.42,
2005
Fig.2.Stressdistributioninawedgewithconcentratedforcesatitsapex.
σ β1 β2 i cos θ′ β1 β2
[4]
r=
2Pcosr 2 2
β1+β2+sin(β1+β2)
sin β β2 β β2
12i sin θ′ 12
β 1+β2 sin(β1+β2)
Thecircumferentialandshearstressesarestillzero.
Thenormalstressσpontheslipsurfacewithaninclina-tionofαtothehorizontalisobtainedfromstaticanalysisas[5]
σp=σrsin2(θ′+α)
Ifmorethanoneanchorloadisactingontheslope,σtheirindividualcontributions.
pistakenasthesumofUsually,theprestressingofananchorisaccomplishedoverashortduration,andsomecohesivesoilsare,tosomedegree,inanundrainedcondition.Thiswillleadtoachangeinpore-waterpressure( u)withintheslidingmass.Accord-ingtoSkempton(1954), uisrelatedtochangesintheprin-cipalstressesinthesoilbythefollowingrelationship:[6]
u=B[ σ3+A( σ1– σ3)]
where σAandBareporepressureparameters;and σmajorandminorprincipalstresses1and3arechangesinre-spectively.
TheporepressureparametersAandBcandeterminedbylaboratorytests.Forsaturatedsoils,Bapproachesunity.ThevalueofAvarieswiththedegreeofoverconsolidationofthesoil,beingpositivefornormallyconsolidatedsoils(intherangeof0.5–1.0),andincontrast,beingnegativeforheavilyconsolidatedsoils(intherangeof–0.5to0.0).
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
Zhuetal.Asisshownineqs.[1a]–[1c],ifonlyoneanchorloadacts,thechangesinmajorandminorprincipalstresseswouldbe[7a] σ1=λpσr[7b] σ3=0
Thus[8]
u=λpσrwhere=BA.
However,iftwoormoreanchorloadsact,thesoilintheslopewillnolongerbeunderuniaxialstress.Becauseweareattemptingtoonlyapproximatelyevaluatetheeffectofthedegreeofdrainageonslopestability, σthesimplealgebraicsumofσ1ishereinassumedtobercausedbyindividualan-chorloads.
Beforetheapplicationofanchorloads,wecancalculatethefactorofsafetyfortheslopewithexistingmethodsofslicesandobtainthenormalstressontheslipsurfaceσ0.Af-tertheanchorloadsareapplied,thefactorofsafetyfortheslopewouldchangeandwouldneedtoberecalculated.Ratherthanusingtheconventionalmethodsofslices,whichmakeassumptionsabouttheintersliceforces,weapplytheprincipleofthenewlyproposedprocedure(Zhuetal.2003)bymodifyingthenormalstressontheslipsurfaceandusingittocomputethestabilityoftheanchor-reinforcedslopes.Becausetherearethreeequilibriumconditionsforthewholeslidingbody,andoneunknown(i.e.,thefactorofsafety,Fs)istobedetermined,wecanassumenormalstress(σ)ontheslipsurface,withtwoauxiliaryunknowns.Natu-rally,theσnormalstress(σ)iscontributedbytwoparts:σandλweassume0thatpp.Torendertheproblemdeterminate,[9]
σ=η1σ0+η2λpσp
whereη1andη2aretheauxiliaryunknowns.
Aconstantfactorofsafety(Fs)isassignedtothewholeslipsurface.TheshearresistancealongtheslipsurfaceisdeterminedbytheMohr–Coulombfailurecriterionandtheprincipleofeffectivestress:[10]
τ=
1
F[(σ u u)tanφ′+c′]s
whereφ′andc′aretheeffectiveinternalfrictionangleand
cohesion,respectively.
Forsimplicity,supposethat[11]
ψ=tanφ′;c=c′
Fromeqs.[10]and[11],itfollowsthat[12]
τ=
1F[(σ u)ψ+c] 1λp σ1ψsFs
Fromthehorizontalandverticalforceequilibriumandthemomentequilibriumwithrespecttoanarbitrarilyspecifiedpoint(xc,yc),oneobtains[13a]
∫b
a( σs′+τ kcw)dx= λp∑Px
1345
[13b]∫b
a(σ+τs′ w)dx=
λp∑Py
[13c]
∫b
a( σs′+τ)(yc s)+(σ+τs′ w)(x xc)
kcw(yc 0.5∑s 0.5g)]dx
=λpPx(yp yc)+λp∑Py(xp xc)
wherePx(positivetotheright)andPverticalcomponentsy(positivedownwards)arehorizontalandofanchorloadP(thesuffixidentificationisomittedforsimplicity);s(x)andg(x)denotethecurvesoftheslipsurfaceandtheground,re-spectively;w(x)denotestheself-weightofasliceofunitwidth;ands′(x)istheinclinationoftheslipsurface(i.e.,s′=tanα).
Assumingthat[14a]Fb
x=∫akcwdx
[14b]
Fb
y=∫awdx
[14c]Mbc=∫a
[kcw(yc 0.5s 0.5g)+w(x xc)]dx[14d]
∑Mp=∑Px(yp yc)+∑Py(xp xc)
[14e]rσ(x)= s′(yc s)+x xc[14f]
rτ(x)=yc s+s′(x xc)
andconsideringeqs.[9]and[12],eqs.[13a]–[13c]arere-writtenas[15a]
∫b
a(η1σ0+η 2λpσp) s′+ψ1
F dxs
=Fx λp∑Px+
1b
F(uψ c)dxs∫a
+λp
b
F σ1ψdxs
∫a[15b]
∫b
a(η1σ0+η2λpσp) 1
1+s′ψF
dxs=Fy+λp∑Py+
1b
Fs′(uψ c)dxs∫a
+λpb
Fs
∫as′ σ1ψdx
[15c]
∫b
a(η1σ0+η2λ pσp) 1
rσ+rτψF
dxs
=Mc+λp∑Mp+
1b
Frτ(uψ c)dxs∫a
+λpb
Frτ σ1ψdx
s
∫aSolvingeqs.[15a]–[15c]simultaneouslywillyieldsolutionstothefactorofsafety(Fs)—ortheloadfactor(λp)ifFauxiliaryunknowns(λandλsisprescribed—andthe12)aswell.
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
1346Solutiontothefactorofsafety
Ifthemagnitudeoftheanchorloadsisgiven,thesolutiontothefactorofsafetyofthereinforcedslopeisderivedinthissection.Assuming[16]
ωc=uψ c+λp σ1ψ
eqs.[15a]–[15c]arerewrittenas
[17a]ηb 1∫aσ0
s′+ψ1 b1
F dx+η2s ∫aλpσp s′+ψF dx
s =Fx λp∑Px+
1∫b
Fa
ωcdxs[17b]ηb 1∫aσ0
1+s′ψ1 F dx+η∫bλ 2pσp 1
1+s′ψF dx
s as =Fy+λp∑Py+
1b
Fa
s′ωcdxs∫[17c]
Fs=
ηbbb
1aσ0ψrτdx+η2a
λpσpψrτdx a
rτωcdx
η1∫a
σ0rσdx η2∫a
λpσprσdx+Mc+λp∑Mp
Theaboveequationsarerearrangedas
[18a]η 1 A1+1FA′ 1 +η2 A2+
1A′ 2 =A3+1
A′3s Fs Fs[18b]η 1 B1+1FB′ 1 +η 2 B2+1 1
s FB′2 =B3+
B′3s Fs[18c]
FDs=η+Dη+DE1η1+E2η2+E3
inwhich[19a]Ab
b
1= ∫as′σ0dx;
A′1=∫aψσ0dx
[19b]Ab
b
2= ∫a
s′λpσpdx;
A′2=∫a
ψλpσpdx
[19c]
A3=Fx λp∑Px;
A′b
3=∫a
ωcdx
[19d]Bb1=∫a
σ0dx;B′b
1=∫a
s′ψσ0dx
[19e]Bb
b
2=∫aλpσpdx;
B′2=∫a
s′ψλpσpdx
[19f]
B3=Fy+λp∑Py;
B′b
3=∫a
s′ωcdx
[19g]Dbb
1=∫a
σ0ψrτdx;D2=∫a
λpσpψrτdx;
Db3= ∫a
rτωcdx
Can.Geotech.J.Vol.42,2005
[19h]
Eb
b
1= ∫a
σ0rσdx;
E2= ∫a
λpσprσdx;
E3=Mc+λp∑Mp
Equations[18a]–[18c]canbeanalyticallyresolved,resultinginanexplicitsolutiontothefactorofsafety(Fs)asfollows:
[20]
Fts=
3
+
+
wherep,q,andtcanbecomputedwiththeparameters
shownineqs.[19a]–[19h].Thebriefderivationofeq.[20]ispresentedinAppendixA;fordetails,seeZhuetal.(2003).
Solutiontorequiredanchorloads
Inthedesignofmeasuresforstabilizingfailedslopesorslopeshavingunacceptablestabilityconditions,themagni-tudeoftherequiredanchorloadsisoftenneeded.Inthiscase,themagnitudeoftherequiredanchorloadscanbecal-culatedbytrialanderrorusingeq.[20]untiltheslopeat-tainsthespecifiedfactorofsafety.Itcanalsobedirectlycomputedusinganotherexplicitexpression,thederivationofwhichisgivenbelow.Assuming[21a]ωx= s′+ψ
1F;ωy=1+s′ψ
1s
F;s
ωr=rσ+rτψ
1Fs
[21b]ωu=
1
F(uψ c);ωb=
1
F σ1ψs
s
eqs.[15a]–[15c]arewritteninmatrixformas
a12
a13 [22]
a11
η1 a21a22a23
λpη2 c1
= a31
a32
a 33
λ c2 p c3
inwhich
[23a]a11=∫b
b
aσ0ωxdx,
a12=∫a
σpωxdx,
ab
13= ∫a
ωbdx+∑Px
[23b]ab
b
21=∫a
σ0ωydx,
a22=∫a
σpωydx,
ab
23= ∫a
s′ωbdx ∑Py
[23c]ab
31=∫a
σ0ωrdx,
ab
32=∫a
σpωrdx,
a33= ∫b
a
rcωbdx ∑Mp
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
Zhuetal.
[23d]cb
b
1=Fx+∫aωudx,
c2=Fy+∫a
s′ωudx,
c3=Mc+∫b
a
rcωudx
Thesolutiontoeq.[22]followstheCramerrule,with[24a]λp= 3 [24b]η1= 1 [24c]η2= 2 3
inwhich
a11
a12a13[25a] =a21
a22a23a31a32a33c1
a12a13[25b] 1=c2
a22a23c3a32a33a11
c1a13[25c] 2=a21
c2a23a31c3a33a11
a12c1[25d] 3=a21
a22c2a31
a32
c3
Illustrativeexamples
Example1
Aslopewithaheightof15mandaninclinationof45°isshowninFig.3a.Theslopemassconsistsoftwotypesofsoils,whoseparametersarepresentedinFig.3a.Theanchoristobeappliedatthehalfheightoftheslopewithanincli-nationof30°tothehorizontal.
Beforetheanchorisapplied,thefactorofsafetyforthisslopeis0.998,calculatedwiththeSpencermethod.Whenananchorloadof300kNperunitlengthisappliedtotheslopeandadrainedconditionisassumed(i.e.,=0),thefactorofsafetyoftheslopeisincreasedto1.286inthepresentap-proach.ThenormalstressdistributionovertheslipsurfaceaftertheapplicationoftheanchorloadisshowninFig.3b.Itcanbeseenthatundertheactionoftheanchorload,thenormalstressontheslipsurfaceiscontinuousandfairlysmoothinshape,withamaximumvalueof103kPaoccur-ringincloseproximitytothepointofactionoftheanchorload.Ifaminimumfactorofsafetyisrequiredfortheslope,thentheminimumanchorloadcanbedirectlycomputedbyusingeq.[24a]withavalueof485kN/m.
Forcomparisonpurposes,theSpencermethod,withcon-ventionaltreatmentofanchorloads,isalsousedinthisex-ample,andthecorrespondingresultsareshowninFig.3a.Inthiscase,thefactorofsafetyfortheslopewiththeanchor
1347
Fig.3.Slopeprofileandnormalstressesontheslipsurfaceforexample1.(a)Slopeprofileandsoilparameters.(b)Normalstressesonslipsurfacecomputedbyconventionalandpresentmethods.GWL,groundwaterlevel.
loadof300kN/mis1.357,whichis6%largerthanthatpro-videdintheabovesolution.Fromthepracticalpointofview,suchadifferenceisrathersmall.Theassociatednor-malstressdistributionontheslipsurfaceisalsoshowninFig.3b.Itcanbeseenthatthenormalstressontheslipsur-faceincreasesabruptlyatthepointimmediatelyunderthepointofactionoftheanchorload.Thisisquiteunreasonablefromthestaticpointofview,andthusonecannotensurethattheconventionalprocedureisvalidforanchorloadsinallcases(Krahn2003).
Example2
Theslopeprofileofanotherexampleandthesoilparame-tersareshowninFig.4.Threeanchorsaretobeappliedtostabilizethisslope.Foraslopewithoutapredefinedfailuresurface,thestabilizationmeasureshouldensurethatallpo-tentialslipsurfaceshavefactorsofsafetygreaterthanaspecifiedvalue,say1.2forthisexample.Alllocalcriticalslipsurfaceswithfactorsofsafetyof<1.2arelocatedbyus-ingthecriticalslipfieldmethod(Zhu2001).Atotalof11criticalslipsurfacesareplottedinFig.4.Thevaluesoffac-torsofsafety(Floadss0)correspondingtotheseslipsurfaceswith-outanchorarepresentedinthesecondcolumnofTable1.Toevaluatetheeffectonslopestabilityofpossibleexcesspore-waterpressureinducedbyabruptapplicationoftheanchorload,weassumethattheporepressureparameter()variesbetween0and1.0.
Thefactorsofsafetywithanchorloads(P1000kN/m)andtheloadfactorsrequiredby1=Pthe2=Pspecified3=factorofsafetyof1.2arepresentedinTable1for=0.00,0.25,0.50,0.75,and1.00.ItcanbeseenfromTable1that
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
1348
Fig.4.Slopeprofileandsoilparametersforexample2.
Can.Geotech.J.Vol.42,
2005
Table1.Valuesoffactorsofsafetyandrequiredloadfactors.
themostcriticalslipsurfaceisashallowsurface(No.11)passingthroughthetoeoftheslope.However,inthecaseof=0.00(i.e.,drainedcondition)forthisshallowslipsur-face,theincreasedfactorofsafetyisthelargest,andthere-quiredloadfactoristheleast.Inotherwords,thismostcriticalslipsurfacewithoutanchorloadistheleastcriticalaftertheapplicationofanchorloads.Iftheslopeistomeettheprescribedstabilityconditions,theanchorloadsshouldbedesignedwithdueconsiderationtothesecondmostcriti-calslipsurface(No.7),whichpassesbelowthetoeoftheslope:itisassociatedwiththelowestfactorofsafetyforthegivenanchorloads,anditalsorequiresthelargestanchorloadstoattainthespecifiedfactorofsafety.ItisevidentfromTable1thatwithanincreaseinporepressureparame-ters(thefactorofsafetydecreasesandtherequiredloadfactorincreases.Itshouldbenotedthatthelocationsandin-clinationsoftheanchorsshowninFig.3areselectedonlyforthepurposesofillustration.Inpracticalapplication,itisrecommendedthatanoptimizationprocessbeperformedtodetermineanoptimumcombinationofanchors.Theproce-dureproposedherewouldserveasausefultoolforthispur-pose.
ofconcentratedforces.Althoughtheextensionoftheconventionalmethodstoincludeanchorloadsisstraightfor-ward,anunreasonablenormalstressdistributionontheslipsurfacewouldariseasaresult.Analternativeprocedureisproposedinthispaperforamorerationalanalysisofanchor-reinforcedslopes.Withthisprocedure,thenormalstressontheslipsurfaceisassumedtobealinearcombina-tionoftwopartsinvolvingtwoauxiliaryunknowns:onepartcorrespondstotheunreinforcedslopeobtainedusingcon-ventionalmethods;theotherpartisinducedsolelybytheanchorloads,withanapproximateclosed-formsolution.Solvingthethreeequilibriumequationsyieldsexplicitsolu-tionstothefactorofsafetywithgivenanchorloadsandtotherequiredanchorloadswithaspecifiedfactorofsafety.Thedisadvantagesofconventionalproceduresindealingwithanchorloadscanthusbeovercome.Thismethodcanserveasapromisingtoolforthedesignofstabilizationmea-suresinvolvinganchorsorsoilnailandgeotextilereinforce-mentsforfailedslopesandforthosehavingunacceptablestabilityconditions.
Acknowledgements
ThestudywasfinanciallysupportedbytheResearchGrantsCouncilofHongKongandtheJockeyClubResearchandInformationCenterforLandslipPreventionandLandDevelopment,UniversityofHongKong.Theirsupportis
Conclusions
Thelimitequilibriummethodsofsliceshavebeenwidelyusedforanalysingthestabilityofslopeswithouttheaction
预应力锚杆边坡稳定性评价 原文 另附译文 请自行下载
Zhuetal.gratefullyacknowledged.PartofthisworkwascarriedoutattheUniversityofAlberta,Canada.Theauthorsaregrate-fultoProf.N.R.Morgensternforgivinginvaluableguidanceonthisstudy.DuringD.Y.Zhu’sstudyleaveinCanada,supportedbytheUniversityofHongKong,Dr.J.H.Chenprovidedusefulhelp,aswellasdiscussionsonthework.TherevisionofthisworkwaspartiallysupportedbytheNa-tionalNaturalScienceFoundationofChina(grantNo.40472138)andtheLaboratoryofHazardPreventionandMitigationatChinaThreeGorgesUniversity.
References
Bishop,A.W.1955.Theuseoftheslipcircleinthestabilityanaly-sisofearthslopes.Géotechnique,5(1):7–17.
Bromhead,E.N.1994.Thestabilityofslopes.2nded.BlackieAc-ademic&Professional,London,UK.
Duncan,J.M.1996.Stateoftheart:limitequilibriumandfinite-elementanalysisofslopes.JournalofGeotechnicalEngineering,ASCE,122(7):577–596.
Fellenius,W.1936.Calculationofthestabilityofearthdams.InTransactionsofthe2ndCongressonLargeDams,Washington,D.C.Vol.4,pp.445–462.
Fredlund,D.G.,andKrahn,parisonofslopestabilitymethodsofanalysis.CanadianGeotechnicalJournal,14(3):429–439.
Hobst,L.,andZajic,J.1983.Anchoringinrockandsoil.2nded.ElsevierScientificPublishingCompany,Amsterdam,TheNeth-erlands.DevelopmentsinGeotechnicalEngineering,No.33.Hutchinson,J.N.1977.Assessmentoftheeffectivenessofcorrec-tivemeasuresinrelationtogeologicalconditionsandtypesofslopemovement.InGeneralReportonTheme3,SymposiumonLandslidesandOtherMassMovements,Prague.IAEGBulletin,16:131–155.
Janbu,N.1973.Slopestabilitycomputations.InEmbankmentdamengineering,Casagrandememorialvolume.EditedbyE.HirschfieldandS.Poulos.JohnWiley&Sons,NewYork.pp.47–86.
Krahn,J.2003.The2001R.M.HardyLecture:Thelimitsoflimitequilibriumanalyses.CanadianGeotechnicalJournal,40(3):643–660.
Morgenstern,N.R.,andPrice,V.E.1965.Theanalysisofthesta-bilityofgeneralslipsurfaces.Géotechnique,15(1):79–93.Skempton,A.W.1954.TheporepressurecoefficientsAandB.Géotechnique,36(3):425–447.
Spencer,E.1967.Amethodofanalysisofthestabilityofembank-mentsassumingparallelintersliceforces.Géotechnique,17(1):11–26.
Timoshenko,S.P.,andGoodier,J.N.1970.Theoryofelasticity.3rded.McGraw-HillBookCompany.NewYork.
Zhu,D.Y.2001.Amethodforlocatingcriticalslipsurfacesinslopestabilityanalysis.CanadianGeotechnicalJournal,38(2):328–337.
Zhu,D.Y.,Lee,C.F.,Qian,Q.H.,Zou,Z.S.,andSun,F.2001.AnewprocedureforcomputingthefactorofsafetyusingtheMorgenstern–Pricemethod.CanadianGeotechnicalJournal,38(3):882–888.
Zhu,D.Y.,Lee,C.F.,andJiang,H.D.2003.Generalizedframeworkoflimitequilibriummethodsforslopestabilityanalysis.Géotechnique,53(4):377–395.
1349
AppendixA.Solutionforthefactorofsafety
Solvingeqs.[18a]and[18b]forη1andη2,oneobtainsT0+
1
T1+1
[A1a]ηFF2T21=
s
G0+sFG1+
s
FG2sS0+
1
S1+1[A1b]ηFFS22=
G0+FG1+
s
F2G2s
where
[A2a]T0=A3B2 A2B3;
T1=A3B′2+A′3B2 A2B′3 A′2B3;
T2=A′3B′2 A′2B′3
[A2b]S0=A1B3 A3B1;
S1=A1B′3+A′1B3 A3B′1 A′3B1;
S2=A′1B′3 A′3B′1
[A2c]G0=A1B2 A2B1;
G1=A1B′2+A′1B2 A2B′1 A′2B1;
G2=A′1B′2 A′2B′1
Substitutingeqs.[A1a]and[A1b]intoeq.[18c]andrear-rangingyieldsacubicfunctionofFs,asfollows:[A3]F3s+t2F2
s+t1Fs+t0=0
where[A4a]tD0= 1T2+D2S2+D3G2E1T0+E2S0+E3G0
[A4b]tE1=1T2+E2S2+E3G2 D1T1 D2S1 D3G1
E1T0+E2S0+E3G0[A4c]tE2=
1T1+E2S1+E3G1 D1T0 D2S0 D3G0
E1T0+E2S0+E3G0
Equation[A3]isrewrittenas: 3
[A5] Fts 2 3 +p Fts 2
3
+q=0where[A6a]p= t223
+t
1[A6b]q=
127t32 1
3t1t2+t0Solvingeq.[A5]givestheexpressionforthefactorofsafety
Fsasineq.[20].
正在阅读:
Evaluation of the stability of anchor-reinforced slopes(预应力锚杆边坡稳定性评价)07-17
增强财务管理,提高企业价值06-28
群众观点群众立场自我剖析材料03-17
百年汇调查表 - 图文10-25
论文搜索题目03-17
小学语文四年级下册高效课堂资料《语文园地一》导学案 - 图文03-17
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 锚杆
- 边坡
- 预应力
- 稳定性
- Evaluation
- reinforced
- stability
- 评价
- anchor
- slopes
- 孕期护肤常见问题解答
- 浅谈新《医院会计制度》背景下的医院固定资产会计核算
- 2013-2014学年度第一学期安全教育教学工作总结
- 畜禽生产概论填空题
- 医疗纠纷第三方调解机制的方案
- 2014年1月如东县小学五年级阅读考级检测题
- 基于SVAR模型对我国外汇贷款增长问题的实证研究
- 农机信息化网络建设探讨
- 校园整治表态发言 文档
- MPEG系PC减水剂合成工艺
- 河北衡水中学2019-----2020高三数学二轮复习
- 《组织行为学》课程说明
- 贴膜施工规范及验收标准
- 校本教研评估汇报材料董校的
- 中风偏瘫现代康复治疗
- 美国应急管理体系的近期发展
- 无损检测质量控制系1
- 辅助运输车辆招标技术要求09.2.25
- 从文化转向看文心雕龙中心的翻译——在“文”中映射“心”
- 现代管理专题汇总