加速度及匀变速直线运动典型例题
更新时间:2023-10-01 18:06:01 阅读量: 综合文库 文档下载
加速度及匀变速直线运动典型例题
[例1]下列说法中正确的是 []
A.物体运动的速度越大,加速度也一定越大 B.物体的加速度越大,它的速度一定越大 C.加速度就是“加出来的速度”
D.加速度反映速度变化的快慢,与速度无关
[分析]物体运动的速度很大,若速度的变化很小或保持不变(匀速运动),其加速度不一定大(匀速运动中的加速度等于零).
物体的加速度大,表示速度变化得快,即单位时间内速度变化量大,但速度的数值未必大.比如婴儿,单位时间(比如3个月)身长的变化量大,但绝对身高并不高。
“加出来的速度”是指vt-v0(或△v),其单位还是m/s.加速度是“加出来的速度”与发生这段变化时间的比值,可以理解为“数值上等于每秒内加出来的速度”.
加速度的表达式中有速度v0、v1,但加速度却与速度完全无关——速度很大时,加速度可以很小甚至为零;速度很小时,加速度也可以很大;速度方向向东,加速度的方向可以向西. [答]D.
[说明]要注意分清速度、速度变化的大小、速度变化的快慢三者不同的含义,可以跟小孩的身高、身高的变化量、身高变化的快慢作一类比.
[例2]物体作匀加速直线运动,已知加速度为2m/s2,那么在任意1s内 [] A.物体的末速度一定等于初速度的2倍 B.物体的未速度一定比初速度大2m/s
C.物体的初速度一定比前1s内的末速度大2m/s D.物体的末速度一定比前1s内的初速度大2m/s
[分析]在匀加速直线运动中,加速度为2m/s2,表示每秒内速度变化(增加)2m/s,即末速度比初速度大2m/s,并不表示末速度一定是初速度的2倍.
在任意1s内,物体的初速度就是前1s的末速度,而其末速度相对于前1s的初速度已经过2s,当a=2m/s2时,应为4m/s. [答]B.
[说明]研究物体的运动时,必须分清时间、时刻、几秒内、第几秒内、某秒初、某秒末等概念.如图所示(以物体开始运动时记为t=0)。
[例3]计算下列物体的加速度:
(1)一辆汽车从车站出发作匀加速运动,经10s速度达到108km/h. (2)高速列车过桥后沿平直铁路匀加速行驶,经3min速度从54km/h提高到180km/h.
(3)沿光滑水平地面以10m/s运动的小球,撞墙后以原速大小反弹,与墙壁接触时间为0.2s.
[分析]由题中已知条件,统一单位、规定正方向后,根据加速度公式,即可算出加速度.
[解]规定以初速方向为正方向,则 对汽车v0=0,vt=108km/h=30m/s,t=10s,
对列车v0=54km/h=15m/s,vt=180km/h=50m/s,t=3min=180s.
对小球v0=10m/s,vt=-10m/s,t=0.2s,
[说明]由题中可以看出,运动速度大、速度变化量大,其加速度都不一定大,尤需注意,
,必须考虑速度的方向性.计算
结果a3=-100m/s2,表示小球在撞墙过程中的加速度方向与初速方向相反,是沿着墙面向外的,所以使小球先减速至零,然后再加速反弹出去.
速度和加速度都是矢量,在一维运动中(即沿直线运动),当规定正方向后,可以转化为用正、负表示的代数量. 应该注意:
物体的运动是客观的,正方向的规定是人为的.只有相对于规定的正方向,速度与加速度的正、负才有意义.。速度与加速度的量值才真正反映了运动的快慢与速度变化的快慢.所以,vA=-5m/s,vB=-2m/s,应该是物体A运动得快;同理,aA=-5m/s2,aB=-2m/s2,也应该是物体A的速度变化得快(即每经过1s速度减少得多),不能按数学意义认为vA比vB小,aA比aB小.
[例4]一个做匀变速直线运动的物体连续通过两段长s的位移所用时间分别为t1、t2,则该物体的加速度为多少?
[分析]根据匀变速运动的物体在某段时间内的平均速度等于中点时刻瞬时速度的关系,结合加速度的定义.即可算出加速度. [解]物体在这两段位移的平均速度分别为
它们分别等于通过这两段位移所用的时间中点的瞬时速度.由于两个时间
可知:
[说明]由计算结果的表达式可知:当t1>t2时,a>0,表示物体作匀加速运动,通过相等位移所用时间越来越短;当t1<t2时,a<0,表示物体作匀减速运动,通过相等位移所用时间越来越长.
[例5]图1表示一个质点运动的v-t图,试求出该质点在3s末、5s末和8s末的速度.
[分析]利用v-t图求速度有两种方法:(1)直接从图上找出所求时刻对应的纵坐标,即得对应的速度值,再根据速度的正负可知此刻的方向;(2)根据图线求出加速度,利用速度公式算出所求时刻的速度.下面用计算法求解. [解]质点的运动分为三个阶段:
AB段(0~4s)质点作初速v0=6m/s的匀加速运动,由4s内的速度变化得加速度:
所以3s末的速度为:
v3=v0+at=6m/s+(1.5×3)m/s=10.5m/s
方向与初速相同.
BC段(4~6s)质点以4s末的速度(v4=12m/s)作匀速直线运动,所以5s末的速度:
v5=12m/s
方向与初速相同.
CD段(6~12s)质点以6s末的速度(即匀速运动的速度)为初速作匀减速运动.由6s内的速度变化得加速度:
因所求的8s末是减速运动开始后经时间t'=2s的时刻,所以8s末的速度为:
其方向也与初速相同.
[说明]匀变速运动速度公式的普遍表达式是:
vt=v0+at
使用中应注意不同运动阶段的初速和对应的时间.在匀减速运动中,写成vt=v0-at后,加速度a只需取绝对值代入.
速度图象的斜率反映了匀变速直线运动的加速度.如图所示,其斜率
式中夹角α从t轴起以逆时针转向为正,顺时针转向为负.如图3中与图线1,2对应的质点作匀加速运动,与图线3对应的质点作匀减速运动.图线越陡,表示加速度越大,故a1>a2.
[分析]这里有两个研究对象:货车与客车.货车始终以v1做匀速直线运动,客车以v2为初速作匀减速运动.不致相撞时,客车和货车应同时满足位移条件(s客≤s货)和速度条件(v客≤v货).如图1.
[解]以车行方向为正方向,设客车制动后的加速度大小为a2.由上述不相撞的条件得
当制动加速度取最小值时,两个不等式可改为等式.由(2)式得客车速度减小到等于货车速度的时间
代入(1)式,得
整理后得
以v1=28.8km/h=8m/s,v2=72km/h=20m/s,s0=600m代入得
[说明]本题也可用v-t图求解.如图2所示,画出两车的速度图线.刚好相遇不相撞时,其中画有斜线的三角形面积数值上应等于s0,即
上面的计算都是以地面为参照物的.如果改以货车为参照物,即站在货车上看后方的客车,客车制动后相对于它以初速(v2-v1)、加速度a2向它驶来,不相撞时,经位移s0后恰好静止(即与货车相对静止).于
必须注意,相遇(追及)和相遇不相撞两者的物理条件不同.相遇时只需满足一个位移条件(例2);相遇不相撞还需同时满足速度条件,即后车的速度应不大于前车的速度,临界情况下两车速度相等.
[例11]如图所示,一小滑块m从静止开始沿光滑斜面由A滑到C,经历的时间为t1,如果改由光滑曲面滑到C,则经历的时间为t2,关于t1和t2的大小
[]
A.t1>t2B.t1=t2
C.t1<t2D.已知条件不足,不能判定
[分析]光滑曲面ADC是任意的曲面,就题目给出的已知条件,是无法利用运动学公式求出t1、t2比较其大小的,但可利用图象法来分析。
滑块从A到C沿光滑斜面下滑,做初速为零的匀加速直线运动,沿光滑曲面ADC下滑时,在AD段加速度大于沿斜面下滑的加速度,在DC段又小于斜面上的加速度,但从A到C,它们的位移大小是相同的,且到C点的速率相等。 做出v-t图来,定性地讨论
[解答]正确答案为A
[说明]本题是一例涉及复杂运动过程的物理量的定性比较,由于物理过程复杂,难以写出其定量表达式,而题目也没有要求一定要写出二者的定量表达式,只要求比较两个物理量的大小,在这种情况下,用几何方法(图象)来定性或半定量分析,往往有奇效。解决物理问题的过程是一种创造性思维过程,如能针对问题特点灵活、巧妙地运用所学知识和技能,创造性地解决问题,方能称得上学习的高境界。
[例12]如图1所示,在平直公路上一汽车的速度为15m/s,从某时刻开始刹车,在阻力作用下,汽车以2m/s2的加速度做匀减速直线运动,问刹车后第10s末车离刹车点多远?
[分析]汽车做匀减速运动的加速度是由于受滑动摩擦力产生的,当汽车刹车,vt=0时,汽车静止,不再受摩擦力,因此a=0,汽车不能反向做加速运动,将一直静止下去。
对于这类汽车刹车问题,解题的关键是要知道汽车刹住所需要的实际时间,在这段时间内汽车做匀减速运动,超过这段时间,汽车已处于静止。
[解]
方法一:根据vt=0计算刹车需要的时间t
vt=v0-at 0=15-2t,t=7.5s
计算表明t<10s因此2.5s车是停着的,所以刹车距离s为
方法二:
作v-t图象(图2所示),可得刹车时间t=7.5s,刹车距离s可用图中三角形面积表述,如图2所示。
[说明]由此可见,要正确地解答物理问题不能乱套公式,必须认真审清题,理解题目中真实物理图景,在此基础上选择合适的物理公式才行。
[例13]A、B两车在一条水平直线上同向匀速行驶,B车在前,车速v2=10m/s;A车在后,车速72km/h,当A和B相距100m时,A车用恒定的加速度a减速,求:a=?A车与B车相遇时不相撞。
[分析]A车追上B车,相遇而不相撞的条件是A、B两车速度相等,从这个条件出发,作物理图景表述运动过程。
[解]
方法一:应用运动学公式求解
方法二:利用平均速度公式
∵s1-s2=100m,∴t=20s v2=v1-at,a=0.5m/s2
方法三:利用图象求解 作v-t图象
图中画阴影线的面积值表示A车车速由20降到10m/s时,A比B多走的位移,即s1-s2=100m
正在阅读:
加速度及匀变速直线运动典型例题10-01
孟店小学数学二年级下册期中练习题 (2)05-17
本人总结的romax 12.3安装方法(经验证可行)07-03
三正丙胺08-21
话题作文800字万物之美11-14
名词解释30个简答50个法律法规05-07
2016-2021年电源开关电源行业深度调查及发展前景研究报告03-18
大英综合教程3第四单元课后答案04-22
我的本领作文450字06-30
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 例题
- 加速度
- 变速
- 直线
- 典型
- 运动
- 世毕盟留学申请经验分享:跨越五个国家地区的经济学方向的申请总结
- 公共场所卫生制度及应急预案
- 推荐信
- 土建工程专业技术人员继续教育报名及培训流程 - 图文
- 2016中考数学试卷锐角三角函数与特殊角分类汇编解析
- EPON数据配置模板
- 有关对角矩阵的证明与应用 - 本科生毕业论文设计
- 某教学楼施工组织设计
- 被害人国家补偿论文
- 《实验七 固定资产管理》指导(1)(1)
- 幼儿园心理案例:这样的孩子更需要帮助
- 时代光华如何处理团队冲突课后
- 水电厂监控系统画面制作规范
- 5行政诉讼法基本知识测试题库
- 离散数学期末复习总要
- 财政学第二版 刘怡 课后习题解答
- 课堂教学中的激趣艺术
- 烟草行业营销知识
- 江苏高院《关于审理劳动争议案件的指导意见》(苏高法审委200947号)
- 广西土地估价师考试知识点:土地的分类考试试卷