基于Labview的图像采集与处理

更新时间:2023-09-09 10:41:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

目前工作成果: 一、USB图像获取

USB设备在正常工作以前,第一件要做的事就是枚举,所以在USB摄像头进行初始化之前,需要先枚举系统中的USB设备。 (1)基于USB的Snap采集图像

程序运行结果:

此程序只能采集一帧图像,不能连续采集。将采集图像函数放入循环中就可连续采集。

循环中的可以计算循环一次所用的时间,运行发现用Snap采集图像时它的采集速率比较低。

运行程序时移动摄像头可以清楚的看到所采集的图像有时比较模糊。

(2)基于USB的Grab采集图像

运行程序之后发现摄像头采集图像的速率明显提高。

二、图像处理

1、 图像灰度处理 (1)基本原理

将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。

第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。

第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。

(2)labview中图像灰度处理程序框图

处理结果:

2、 图像二值化处理 (1)基本原理

图像的二值化处理就是讲图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于再对图像做进一步处

理时,图像的集合性质只与像素值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。为了得到理想的二值图像,一般采用封闭、连通的边界定义不交叠的区域。所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。如果某特定物体在内部有均匀一致的灰度值,并且其处在一个具有其他等级灰度值的均匀背景下,使用阀值法就可以得到比较的分割效果。如果物体同背景的差别表现不在灰度值上(比如纹理不同),可以将这个差别特征转换为灰度的差别,然后利用阀值选取技术来分割该图像。动态调节阀值实现图像的二值化可动态观察其分割图像的具体结果。

(2)程序框图

(a)

处理结果:

(b)

处理结果:

3、 图像反色处理 (1)反色原理

对于彩色图像的R、G、B各彩色分量取反的技术就是图像的反色处理,这在处理二值化图像的连通区域选取的时候非常重要。如物体连通域用黑色表示,而二值化后的物体连通域图像可那是白色的,而背景是黑色的,这时应手动选取图像的反色处理或有程序根据背景和物体连通域两种颜色的数量所占比例而自动选择是否选择选取图像的反色处理。

(2)程序框图

处理结果:

4、 图像增强 (1)基本原理

图像增强指按特定的需要突出一幅图像的某些信息,同时削弱或去除某些不需要的信息的处理方法,是图像处理的最基本手段,它往往是各种图像分析与处理时的预处理过程.图像增强的目的,是通过对图像灰度作修正,改善图像的视觉效果,提供直观、清晰、适合于分析的图像.

(2)程序框图

处理结果:

附:图像采集与处理函数说明(注:有些函数说明还没有整理完)

本文来源:https://www.bwwdw.com/article/vknh.html

Top