基于HFSS的圆锥喇叭天线设计

更新时间:2024-06-13 16:21:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

本科生科研训练结题报告

——基于HFSS的圆锥喇叭天线设计

学院(系):电子工程与光电技术学院 姓名、学号:郝晓辉 1104330111

席家祯 1104330126 白剑斌 1104330105

指导老师:钱嵩松

摘要

天线是对任何无线电通信系统都很重要的器件,其本身的质量直接影响着无线电系统的整体性能。天线可分为简单线天线,行波天线,非频变天线,缝隙天线与微带天线,面天线和智能天线等。圆锥喇叭天线属于面天线。

本文首先介绍了天线的基础知识和基本参数,其中着重介绍了喇叭天线及其设计,接着介绍了网络S参数及软件HFSS。在此基础上,进行了圆锥喇叭天线的设计,最后在软件HFSS中进行了仿真。

本文对圆锥喇叭天线的设计提供了一定的参考作用。

关键词:圆锥喇叭天线;仿真

Abstract

Antenna is an important part in any radio communication systems.The quality of antenna can affect the performance of whole systems.Antenna can be divided into simple Wire Antenna,Traveling-Wave Antenna,Frequence-Independent Antenna,Slot Antenna and Microstrip Antenna,Aperture Antenna,Smart Antenna and so on.Cone horn antenna is one of the Aperture Antenna.

In this paper,basic knowledge and basic parameters of antenna are presented

firstly ,especially the horn antenna and its design be emphasized.Then S-parameter and HFSS software are briefly introduced. In the base of above ,the cone horn antenna is designed.At last ,the antenna is simulated in HFSS.

This paper provides the reference to cone horn antenna.

Keywords:conic horn antenna;simulation

目录

第1章 概述 ........................................................................................................................................... 5

1.1 天线的应用背景 ..................................................................................................................... 5

1.1.1天线的发展与应用 ...................................................................................................... 5 1.1.2喇叭天线的发展和应用 .............................................................................................. 6 1.2天线的基础知识 ...................................................................................................................... 6

1.2.1天线的原理 .................................................................................................................. 6 1.2.2天线的辐射 .................................................................................................................. 7 1.2.3方向系数 ...................................................................................................................... 8 1.2.4天线效率 ...................................................................................................................... 9 1.2.5增益系数 .................................................................................................................... 10 1.2.6输入阻抗 .................................................................................................................... 10 1.2.7微波网络S参数 ........................................................................................................ 11 1.3喇叭天线基础知识 ................................................................................................................ 13

1.3.1喇叭天线参数 ............................................................................................................ 14 1.3.2给定增益设计喇叭 .................................................................................................... 15 1.3.3根据参数要求计算尺寸参数 .................................................................................... 17

第二章 HFSS仿真喇叭天线 ................................................................................................................ 18

2.1 HFSS简介 .............................................................................................................................. 18 2.2 圆锥喇叭天线的仿真 ........................................................................................................... 18

2.2.1仿真步骤 .................................................................................................................... 18 2.2.2仿真结果分析 ............................................................................................................ 24

第三章 结论与展望 ............................................................................................................................. 25

引言

天线是一种换能器,它将传输线上传播的导行波,变换为在无界媒质(通常是自由空间)中传播的电磁波,或者进行相反的变换。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。根据无线电系统对波段的要求,天线的设计也不同。长中短波段,常用T形、环形、菱形等不同形状的导线构成天线;而在微波波段,常用金属板或网制成喇叭天线,抛物面天线,金属面上开槽的裂缝天线,金属或介质条排成的透镜天线等。

喇叭天线是一种广泛使用的微波天线,其优点是结构简单,频带宽,功率容量大,调整与使用方便,合理的选择喇叭尺寸可以获得良好的辐射特性,相当尖锐的主瓣和较高的增益。因此,喇叭天线在无线通信,雷达等领域得到广泛的应用。喇叭既可以做各种复杂天线的馈源,也能够直接作天线使用。喇叭天线就外形特性来说,有方形口径喇叭和圆形口径喇叭。方形口径喇叭天线辐射椭圆波束,从辐射方向图的圆对称性和圆极化工作性能方面都不如圆形口径喇叭天线。圆形口径喇叭有单模喇叭,多模喇叭和平衡混合模喇叭。单模喇叭的典型代表就是光壁圆锥喇叭天线,光壁圆锥喇叭结构简单且具有良好的辐射特性,因此在大型阵列天线中使用非常广泛。近年来圆锥喇叭天线的理论和实验研究发展比较迅速,出现了多种改进形式:包括多模圆锥喇叭、波纹喇叭、变张角喇叭和介质加载喇叭等。

第1章 概述

1.1 天线的应用背景

天线是任何无线电通信系统都离不开的重要前端器件。尽管设备的任务并不相同,但天线在其中所起的作用基本上是相同的。在图1-1所示的通信系统示意图中,天线的任务是将发射机输出的高频电流能量(导波)转换成电磁波辐射出去,或将空间电波信号转换成高频电流能量送给接收机。为了能良好地实现上述目的,要求天线具有一定的方向特性,较高的转换效率,能满足系统正常工作的频带宽度。天线作为无线电系统中不可缺少且非常重要的部件,其本身的质量直接影响着无线电系统的整体性能。

发射机馈线馈线接收机 图1–1 通信系统示意图

无线通信的技术及业务的迅速发展既对天线提出许多新的研究方向,同时也促使了许多新型天线的诞生。例如多频多极化的微带天线,电扫描和多波束天线,自适应天线和智能天线。

天线按照用途的不同,可将天线分为通信天线,广播和电视天线,雷达天线,导航和测向天线等;按照工作波长,可将天线分为长波天线,中波天线,短波天线以及微波天线等为了理论分析的方便,通常将天线按照其结构分成两大类:一类是由导线或金属棒构成的线天线,主要用于长波,短波和超短波;另一类是由金属面或介质面构成的面天线,主要用于微波波段。

面天线的种类很多,常见的有喇叭天线,抛物面天线,卡塞格伦天线。这类天线所载的电流是分布在金属面上的,而金属面的口径尺寸远大于工作波长。面天线在雷达,导航,卫星通信以及射电天文和气象等无线电技术设备中获得了广泛的应用。喇叭天线是最广泛使用的微波天线之一。

1.1.1天线的发展与应用

自赫兹和马可尼发明了天线以来,天线在社会生活中的重要性与日俱增,如今成为人们不可或缺之物。赫兹在 1886年建立了第一个天线系统,他当时装配的设备如今可描述为工作在米波波长的完整无线电系统,采用终端加载的偶极子作为发射天线,谐振环作为接收天线。1895年5月7日俄罗斯科学家亚历山大利用电磁波送出第一个信号到 30英里外的海军舰艇上。1901年12月中旬,马可尼在赫兹的系统上添加了调谐电路,为较长的波长配置了大的天线和接地系统,并在纽芬兰的圣约翰斯接收到发自英格兰波尔多的无线电信号。一年后,马可尼便开始了正规的无线电通信服务。在 20世纪初叶,由于“共和国号”和“泰坦尼克号”海难事件,马可尼的发明戏剧性地表现出在海事上的价值。因为

在无线电问世之前,船舶在海上是完全孤立的,当灾难来袭时,即使是岸上或邻近船舶上的人也无法给予提醒。随着第二次世界大战期间雷达的出现,厘米波得以普及,无线电频谱才得到了更为充分地利用。

如今,数以千计的通信卫星正负载着天线运行于不同的轨道中,犹如土星的光环围绕土星那样围绕着地球;手持的全球定位卫星接收机能够为任何地面或空中的用户不分昼夜晴雨地提供经度、纬度和高度信息,其精确程度达到厘米级;载有天线阵的探测器在地面系统的指挥下已经访问了太阳系的其他行星;飞机和船舶随身携带的天线为其提供了必不可少的通信系统;移动电话借助于天线为人们提供任何地点和任何人的通信。随着人类活动向太空扩展,对天线的需求也将增长到史无前例的程度,天线将在未来的生活中担任着越来越重要的角色。

1.1.2喇叭天线的发展和应用

在微波波段,采用各种波导传输电磁波能量,常用的波导是矩形和圆形截面波导,也有用椭圆形截面波导的。随后人们发现终端开口的波导也可以向外辐射电磁波,于是就有了波导终端开口构成的波导辐射器,这种馈源是传输线波导的自然发展。后来为了改善方向性,压窄方向图和获得较高的增益,需要增大波导辐射器的口径面积。将波导终端做成逐渐张开的形状,这就是喇叭天线。普通喇叭的方向图在各个平面内是不相同的,两个主平面内相位中心也不重合。喇叭作为反射面天线馈源时,要求它有确定的相位中心和接近圆对称的初级方向图,这样,旋转对称的反射面天线,可以获得接近圆对称的次级方向图,具有良好的电性能。而利用高次模和主模相结合的多模喇叭和在喇叭内壁开槽的波纹喇叭,辐射方向图可以做到圆对称,且工作频带宽。这两种形式的喇叭,副瓣电平低,交叉极化分量小,相位特性良好。用它们作馈源,可使反射面天线效率提高到75%~80%。

喇叭天线的出现与早期应用可追溯到十九世纪后期,到了二十世纪三十年代,由于第二次世界大战期间对微波和波导传输线的兴趣,喇叭天线便开始发展起来。20 世纪 90 年代,随着军事斗争对毫米波制导需求的增长,以及在研制毫米波发射机和接收机方面的需求,喇叭天线获得了广泛的研究。目前,喇叭天线已大量用作遍及全世界安装的大型射电望远镜,以及卫星跟踪和通信反射面天线的馈电单元。除此之外,它也是相控阵的常用单元,并用作对其它天线进行校准和增益测试的标准天线。

喇叭天线由一段均匀波导和一段喇叭组成,可以看成是由横截面逐渐扩展而形成的一种天线,一般分为矩形喇叭和圆锥喇叭两类。矩形喇叭天线又有 H 面扇形喇叭、E 面扇形喇叭和角锥喇叭之分。 由于上述普通矩形和圆锥喇叭天线具有结构简单,功率容量大和高增益的优点,所以在微波测量系统中被大量的用作标准测量天线。

1.2天线的基础知识

描述天线工作特性的参数称为天线电参数,又称电指标。他们是定量衡量天线性能的尺度。我们需要了解天线电参数。

大多数天线电参数是针对发射状态规定的,以衡量天线把高频电流能量转变成空间电波能量以及定向辐射的能力。

1.2.1天线的原理

当导体上通以高频电流时,在其周围空间会产生电场与磁场。按电磁场在空间的分布特性,可分为近区,中间区,远区。设R为空间一点距导体的距离,在R《λ/2π时的区

域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。在R》λ/2π的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流,电压有直接的联系了,这区域的电磁场称为辐射场。发射天线正是利用辐射场的这种性质,使传送的信号经过发射天线后能够充分地向空间辐射。

在平行双线的传输线上为了使只有能量的传输而没有辐射,必须保证两线结构对称,线上对应点电流大小和方向相反,且两线间的距离《π。要使电磁场能有效地辐射出去,就必须破坏传输线的这种对称性,如采用把二导体成一定的角度分开,或是将其中一边去掉等方法,都能使导体对称性破坏而产生辐射。如图1-2,图中将开路传输或距离终端π/4处的导体成直状分开,此时终端导体上的电流已不是反相而是同相了,从而使该段导体在空间点的辐射场同相迭加,构成一个有效的辐射系统。这就是最简单,最基本的单元天线,称为半波对称振子天线,其特性阻抗为75Ω。电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配。

图1–2 半波对称阵子天线

1.2.2天线的辐射

天线辐射球面波在以天线为核心的坐标系统的径向方向上传播。在大的距离上,球面波可以近似平面波。平面波是有用的,因为他们把问题简化了。他们不是自然的,然而,因为它们需要无限的功率。

该玻印廷矢量描述两个方向的传播和功率密度的电磁波。这是从矢量穿过产生的电场和磁场中发现的,并标注为S:

S = E ×H* W/m2

(1–1)

均方根(RMS)值是用来表达场的重要性。H*是复杂的共轭的磁场相。磁场在远区场上是与电场成正比的。比例常数是η,自由空间中的阻抗(η = 376.73Ω):

S?S?E2? W/m2

(1–2)

因为玻印廷矢量是两个场的矢量的产物,这是正交的两个场以及三重定义了一个右手坐标系统:(E, H, S)。

考虑一对以天线为核心的同心球形。靠近天线的场减少为1/R, 1/R2,1/R3等等。恒指定的条件将要求功率辐射与辐距离和将不会被保存的功率一起增长。场方面的比例1/R2,1/R3更高,功率密度随距离减少,比面积增加的速度快。在球形里面的能源大于

在球形外部的能量。这些能量不辐射,但是代替集中在天线周围,它们是近区场的条件。只有1/R2条件的玻印廷矢量(1/R场条件)所代表的辐射功率,因为该球形的面积的增长为R2,并给出了一个常数的积。所有辐射功率流经内部球体将传播到球形的外部。符号的输入抗依赖于近区场的场类型的优势:电气(电容式)或磁场(电感)。在共振(零抗)上储存的能量是平等的,因为是近区场。存储场的增多增加了电路的Q和缩小阻抗带宽。

从天线到目前为止,我们只考虑辐射的场和功率密度。功率流是相同的通过同心的球形:

224?R1S1,avg?4?R2S2,avg

2(1–3)

平均功率密度是成正比于1/R的。考虑在同一坐标的角度上的两个球形的面积的差异。天线的辐射,只有在径向方向;因此,没有功率可能在θ或φ方向上游走的。功率在

面积中的通量管上游走,并如下,不仅平均坡印亭矢量,而且功率密度的每个部分都是与1/R2成正比的:

2S1R12sin?d?d??S2R2sin?d?d?

2(1–4)

自从在一个辐射波S是成正比于1/R的之后,E是成正比于1/R。界定辐射强度以此来消除1/R的依赖是很方便的:

U(θ, φ) = S(R, θ, φ) f W/solid angle (1–5)

辐射强度,只取决于辐射的方向和在所有的距离上保持不变。一探针天线测量相对辐射强度(方向图)是通过在天线的周围移动轨迹在一个圆圈(常数 R)上。当然很多时候天线在旋转而且探头是固定的。

方向图随着球面坐标系的常数角度就叫做锥形(常数θ)或大圈(常数φ)。大圈削减当φ=0°或φ= 90°是主要的平面方向图。其他命名削减也使用,但他们的名字取决于特定的测量定位,而且它是必要的注释,这些方向图小心地在人们对不同定位器的测量方式之间去避免造成混乱。方向图通过采用3个规模来衡量的:线性(功率),平方根(磁场强度),及分贝(dB)。该分贝的规模是最常用的,因为它揭示了更多的低层次的反应(旁瓣)。

1.2.3方向系数

方向系数是能定量的表示天线定向辐射能力的电参数。它的定义为:在同一距离及相同辐射功率的条件下,某天线在最大辐射方向上的辐射功率密度Smax和无方向性天线的辐射功率密度So之比,记为D。

在最大辐射方向上

SmaxD??So2EmaxEo22 (1–6)

Emax=

60PrD r(1–7)

上式表明,天线的辐射场与PrD的平方根成正比,所以对于不同的天线,若它们的辐射功率相同,则在同是最大辐射方向且同一r处的观察点,辐射场之比为

D1Emax1=

Emax2D2(1–8)

若要求他们在同一r处观察点辐射场相等,则要求 Pr1D2 ?Pr2D1即所需要的辐射功率与方向系数成反比。 方向系数的最终计算公式为

4?(1–9)

D=

?2?0 (1–10) ???,?Sin?d?d??0F?2显然,方向系数与辐射功率在全空间的分布状态有关,要使天线的方向系数大,不仅

要求主瓣窄,而且要求全空间的副瓣电平小。

1.2.4天线效率

一般来说,载有高频电流的天线导体及其绝缘介质都会产生损耗,因此输入天线的实功率并不能全部转换成电磁波能量。可以用天线效率来表示这种能量转换的有效程度。天线效率定义为天线辐射功率Pr与输入功率Pin之比,记为ηA,即

Pr ??APin (1–11)

辐射功率与辐射电阻之间的联系公式为Pr= I2Rr, 依据电场强度与方向函数的联系公式

60I (1–12) E(?,?,?)?f(?,?)

r则辐射电阻的一般表达式为

302?Rr???0?f0?2(?,?)sin?d?d?

2max(1–13)

则方向系数与辐射电阻之间的联系为:

D?120fRr (1–14)

类似于辐射功率和辐射电阻之间的关系,也可将损耗功率Pl与损耗电阻Rl联系起来,即

Pl=

Rl是归算于电流I的损耗电阻,这样

1I2Rl 2(1–15)

PrRr (1–16) ?APr?PlRr?Rl注意,上式中Rr,Rl应归算于同一电流。

一般来讲,损耗电阻的计算是比较困难的,由上式可以看出,若要提高天线效率,必须尽可能的减小损耗电阻和提高辐射电阻。

1.2.5增益系数

方向系数只是衡量天线定向辐射特性的参数,它只决定于方向图;天线效率则表示了天线在能量上的转换效能;而增益系数则表示了天线的定向收益程度。

增益系数的定义是:在同一距离及相同输入功率的条件下,某天线在最大辐射方向上的辐射功率密度Smax和理想无方向性天线的辐射功率密度So之比,记为G。用公式表示如下:

??

SmaxG??SoEE2max2o (1–17)

在有效情况下,功率密度为无耗时的ηA倍。由此可见,增益系数是综合衡量天线能量转换效率和方向特性的参数,它是方向系数与天线效率的乘积。

由于发射机的输出功率是有限的,因此在通信系统的设计中,对提高天线的增益常常抱有很大希望。频率越高的天线越容易得到很高的增益。

1.2.6输入阻抗

天线和馈线的连接处称为天线的输入端或馈电点。对于线天线来说,天线输入端的电压与电流的比值称为天线的输入阻抗。对于口面型天线,则常用馈线上电压驻波比来表示天线的阻抗特性。一般,天线的输入阻抗是复数,实部称为输入电阻,以Ri表示;虚部称为输入电抗,以Xi表示。

天线的输入电抗表征储藏在天线近区场中的功率。电尺寸远小于工作波长的天线,其输入电抗很大,例如短偶极天线具有很大的容抗;电小环天线具有很大的感抗;直径很细的半波振子输入阻抗约为73.1+j42.5欧。在实际应用中,为了便于匹配,一般希望对称振子的输入电抗为零,这时的振子长度称为谐振长度。谐振半波振子的长度比自由空间中的半个波长略短一些,工程上一般估计缩短5%。谐振半波振子的输入阻抗约为70欧。 天线的输入阻抗与天线的几何形状、尺寸、馈电点位置、工作波长和周围环境等因素有关。线天线的直径较粗时,输入阻抗随频率的变化较平缓,天线的阻抗带宽较宽。 研究天线阻抗的主要目的是为实现天线和馈线间的匹配。欲使发射天线与馈线相匹配,天线的输入阻抗应该等于馈线的特性阻抗。欲使接收天线与接收机相匹配,天线的输入阻抗应该等于负载阻抗的共轭复数。通常接收机具有实数的阻抗。当天线的阻抗为复数时,需要用匹配网络来除去天线的电抗部分并使它们的电阻部分相等。 当天线与馈线匹配时,由发射机向天线或由天线向接收机传输的功率最大,这时在馈线上不会出现反射波,反射系数等于零,驻波系数等于1。天线与馈线匹配的好坏程度用天线输入端的反射系数或驻波比的大小来衡量。对于发射天线来说,如果匹配不好,则天线的辐射功率就会减小,馈线上的损耗会增大,馈线的功率容量也会下降,严重时还会出现发射机频率“牵引”现象,即振荡频率发生变化。

口面型天线的阻抗特性用馈线上某点的电压驻波比或反射系数来表示。当反射系数为零、驻波系数为 1时,称作匹配。对口面型天线来说,为了达到匹配状态,应当在所有产生反射的不连续点附近加上能够产生相反反射的匹配元件,使它们相互抵消。天线的频

带由这些元件的组合频带决定。

1.2.7微波网络S参数

微波网络法广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。微波网络理论在低频网络理论的基础上发展起来,低频电路分析是微波电路分析的一个特殊情况。 微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。

一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集中参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流的困难性,而且在微波频率测量电压和电流也存在实际困难。因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S参数矩阵,它更适合于分布参数电路。 S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。阻抗和导纳矩阵反映了端口的总电压和电流的关系,而散射矩阵是反映端口的入射电压波和反射电压波的关系。散射参量可以直接用网络分析仪测量得到,可以用网络分析技术来计算。只要知道网络的散射参量,就可以将它变换成其它矩阵参量。

图1–9 二端口网络S参数

下面以二端口网络为例说明各个S参数的含义,如图所示。二端口网络有四个S参数,Sij

代表的意思是能量从j口注入,在i口测得的能量,

如S11定义为从 Port1口反射的能量与输入能量比值的平方根,也经常被简化为等效反射电压和等效入射电压的比值,

各参数的物理含义和特殊网络的特性如下: S11:端口2匹配时,端口1的反射系数; S22:端口1匹配时,端口2的反射系数;

S12:端口1匹配时,端口2到端口1的反向传输系数; S21:端口2匹配时,端口1到端口2的正向传输系数; 对于互易网络,有:S12=S21;

对于对称网络,有:S11=S22 对于无耗网络,有:(S11)^2+(S12)^2=1 ; S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,S21越大传输的效率越高,一般建议S21>0.7,即-3dB。

我们经常用到的单根传输线,或一个过孔,就可以等效成一个二端口网络,一端接输入信号,另一端接输出信号,如果以Port1作为信号的输入端口, Port2作为信号的输出端口,那么S11表示的就是回波损耗,即有多少能量被反射回源端(Port1),这个值越小越好,一般建议S11< 0.1,即-20dB。

S参数是从微波网络分析的角度定义的网络参数,而电压驻波比则是从波的特性的角度定义的参量,两者是有关系的。

我们先来了解一下什么叫驻波。当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻抗。而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量。入射波的一部分能量反射回来形成反射波。在不匹配的情况下,馈线上同时存在入射波和反射波。两者叠加,在入射波和反射波相位相同的地方振幅相加最大,形成波腹;而在入射波和反射波相位相反的地方振幅相减为最小,形成波节。其它各点的振幅则介于波幅与波节之间。这种合成波称为驻波。反射波和入射波幅度之比叫作反射系数。

电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。

要使天线辐射效率高,就必须使天线与馈线良好的匹配,也就是天线的输入阻抗等于传输线的特性阻抗,才能使天线获得最大功率,如图1-3所示

馈线ZoZin 图1–3 天线与馈线的匹配

设天线输入端的反射系数为?,则天线的电压驻波比为

回波损耗为

输入阻抗为

Lr??20lg?

VSWR=

1??1?? (1–18)

(1–19)

1?? (1–20) 1??当反射系数?=0时,VSWR=1,此时Zin?Zo,天线与馈线匹配,这意味着输入端功率均被送到天线上,即天线得到最大功率。

我们看到,其实S11与电压驻波比反映的都是天线与馈线的匹配状况。

Zin?Zo1.3喇叭天线基础知识

喇叭天线由逐渐张开的波导构成。如图2-1所示,逐渐张开的过渡段既可以保证波导与空间的良好匹配,又可以获得较大的口径尺寸,以加强辐射的方向性。喇叭天线根据口径的形状可分为矩形喇叭天线和圆形喇叭天线等。图2-1中,图(a)保持了矩形波导的窄边尺寸不变,逐渐展开宽边而得到H面扇形喇叭;图(b)保持了矩形波导的宽边尺寸不变,逐渐展开宽边而得到E面扇形喇叭;图(c)为矩形波导的宽边与窄边同时展开而得到角锥喇叭;图(d)为圆波导逐渐展开形成的圆锥喇叭。由于喇叭天线是反射面天线的常用馈源,它的性能直接影响反射面天线的整体性能,因此喇叭天线还有很多其他的改进型。

图1–4 普通喇叭天线

1.3.1喇叭天线参数

下图显示出喇叭天线的一般几何关系

图1–5 喇叭天线一般几何关系

馈电波导可以是矩形或圆形的。图中w是矩形口径的宽度,a是圆形口径的半径.R称为斜径,从口径中心到波导与喇叭接口处的距离是轴长 L。 由馈电波导中的传输模式可求出喇叭口径面上场的振幅分布,其相位分布近似为平方律相差。设由顶点发出的是球面波,则斜径R与轴长L的差是

??R?R2?a2

2???a????R1?1????R?? ???222???a?aW?R?1??1?2????222R??2R8R??

用波长?去除?,得到平方律相差的无量纲常数S

(1–21)

WaS???

?8?R2?R?22 (1–22)

由于多数实用喇叭天线的半张角?0是小的,所以采用平方律相差近似。

1.3.2给定增益设计喇叭

下表中同时列出了以S作为参变数的圆锥喇叭渐变振幅和相位误差损失值。利用此表容易求得已知喇叭参数的增益,或已知(给定)增益设计喇叭天线。

图1–6 圆锥喇叭的波瓣宽

增益与口径直径关系式

??D?G?20lg???GF (1–23)

???其中

GF

?ATL?PEL dB (1–24)

图1–7 增益与口径半径关系

我们能够获得已知增益使斜径最短的最佳圆锥喇叭。对于一定的斜径,当我们画出增益随口径半径变化的曲线时,会发现使增益最大的口径半径值不是一个固定值,而是一个较宽的范围。用增益为纵坐标,给出一组这样的曲线,由图可以看出,过增益最大值可以搭出一条对应于S=0.39的线。这就是GF=2.85dB(ATL+PEL)的最佳喇叭。

1.3.3根据参数要求计算尺寸参数

尺寸参数:矩形波导尺寸a×b=7.112mm×3.556mm ,波导端口至圆锥顶部长5mm ,天线中心频率f0=35GHz ,圆锥喇叭口径与高度自行设计。

要求:工作频率附近最大辐射方向上增益在20dB以上;S11小于-20dB。

??D?G?20lg???GF代入数据(令增益G=22dB;GF=2.85dB,S=0.39)由关系式,

???求得,喇叭开口直径d=47.68637mm 圆锥高度h=81.62395mm,

至此工程方法设计完成,求得待求圆锥喇叭尺寸参数,由此进入HFSS 15.0 进行仿真进一步分析其性能。

第二章 HFSS仿真喇叭天线

2.1 HFSS简介

经过二十多年的发展,HFSS以其无以伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术使其成为高频结构设计的首选工具和行业标准,已经广泛地应用于航空、航天、电子、半导体、计算机、通信等多个领域,帮助工程师们高效地设计各种高频结构,包括:射频和微波部件、天线和天线阵及天线罩,高速互连结构、电真空器件,研究目标特性和系统/部件的电磁兼容/电磁干扰特性,从而降低设计成本,减少设计周期,增强竞争力。

HFSS – High Frequency Structure Simulator,Ansoft公司推出的三维电磁仿真软件,目前已被ANSYS公司收购;是世界上第一个商业化的三维结构电磁场仿真软件,业界公认的三维电磁场设计和分析的工业标准。HFSS提供了一简洁直观的用户设计界面、精确自适应的场解器、拥有空前电性能分析能力的功能强大后处理器,能计算任意形状三维无源结构的S参数和全波电磁场。HFSS软件拥有强大的天线设计功能,它可以计算天线参量,如增益、方向性、远场方向图剖面、远场3D图和3dB带宽;绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴比。使用HFSS,可以计算:① 基本电磁场数值解和开边界问题,近远场辐射问题;② 端口特征阻抗和传输常数;③ S参数和相应端口阻抗的归一化S参数;④ 结构的本征模或谐振解。而且,由Ansoft HFSS和Ansoft Designer构成的Ansoft高频解决方案,是目前唯一以物理原型为基础的高频设计解决方案,提供了从系统到电路直至部件级的快速而精确的设计手段,覆盖了高频设计的所有环节。

HFSS是当今天线设计最流行的设计软件。

2.2 圆锥喇叭天线的仿真

工程方法设计完成,求得待求圆锥喇叭尺寸参数,由此进入HFSS 15.0 进行仿真进一步分析其性能。

2.2.1仿真步骤

本章利用HFSS软件设计了一个圆锥喇叭天线,此天线中心频率为35GHZ,采用矩形波导馈电结构。本节先介绍了如何在HFSS中实现对圆锥喇叭和矩形波导馈电结构的建模,然后介绍波端口激励源和辐射边界的设置,最后生成的仿真结果。

图 2 - 1 圆锥喇叭天线模型

1.建立新的工程 2.设置求解类型

(1)在菜单栏中点击HFSS>Solution Type。

(2)在弹出的Solution Type窗口中,选择Driven Modal。 3.设置模型单位

(1)在菜单栏中点击Modeler>Units。 (2)设置模型单位为毫米(下拉选择mm)。 4.设置模型的默认材料

在工具栏中设置模型的默认材料为真空(vacuum)。

5.创建喇叭模型 (1)创建圆锥喇叭

(a)在菜单栏中点击Draw>Cone。

(b)在坐标输入栏中输入圆锥中心点的坐标:

X:0.0 ,Y:0.0,Z:86.62395,按回车键结束输入。 (c)在坐标输入栏中输入圆锥下部半径(lower radius): dX:23.84368,dY:0.0,dZ:0.0,按回车键结束输入。 (d)在坐标输入栏中输入圆锥上部半径(upper radius): dX:-23.84368,dY:0.0,dZ:0.0,按回车键结束输入。 (e)在坐标输入栏中输入圆柱的高度:

dX:0.0,dY:0.0,dZ:-81.62395,按回车键结束输入。 (f) 在属性(Property)窗口中选择Attribute标签,将该圆柱的名字修改为Cone1。 (2)创建矩形波导

(a)在菜单栏中点击Draw>Box

(b)在坐标输入栏中输入长方体底面一顶点的坐标: X:1.778 ,Y:3.556,Z:0,按回车键结束输入。

(c)在坐标输入栏中输入长方体底面对角顶点的相对坐标: dX:3.556,dY:-7.112,dZ:0,按回车键结束输入。 (d)在坐标输入栏中输入长方体高度:

dX:0,dY:0,dZ:30,按回车键结束输入。(注:此高度任意,使上底面从喇叭内露出即可)

(e) 在属性(Property)窗口中选择Attribute标签,将该长方体的名字修改为Box1。 (3)组合圆锥以及波导

(a)利用快捷键Ctrl+A将模型全部选中。

(b)在菜单栏中点击Modeler>Boolean>Unite。 (c)命名为Cone1

6.创建辐射边界

(1)设置模型的默认材料

在工具栏中设置模型的下拉菜单中点击Select,在设置材料窗口中选择vacuum,点击OK完成。

(2)创建Air Box

(a)在菜单栏中点击Draw>Box。

(b)在坐标输入栏中输入长方体底面一顶点的坐标: X:30 ,Y:30,Z:0,按回车键结束输入。

(c)在坐标输入栏中输入长方体底面对角顶点的相对坐标: dX:-60,dY:-60,dZ:0,按回车键结束输入。 (d)在坐标输入栏中输入长方体高度: dX:0,dY:0,dZ:100,按回车键结束输入。 (e)命名为Box2 (3)设置边界条件

(a)在菜单栏中点击Edit>Select>Faces

(b)选择圆锥喇叭表面以及矩形波导前后左右四侧面(注:在选面前可右键单击Box2,弹出菜单中选View>Hide in Active View将其隐藏,方便选取)。

(c)在菜单栏中点击HFSS>Boundaries>Assign>Perfect E (d)在设置窗口中,将边界命名为PerfE1,点击OK结束。 (4)设置辐射边界

(a)在菜单栏中点击Edit>Select>By Name。 (b)在对话框中选择Box2,点击OK结束。

(c)在菜单栏中点击HFSS>Boundaries>Assign>Radiation。

(d)在辐射边界窗口中,将辐射边界命名为Rad1,点击OK结束。

7.创建波端口

(a)在菜单栏中点击Edit>Select>Faces。 (b)单击选择矩形波导底面。

(c)在菜单栏中点击HFSS>Excitations>Assign>Wave Port (d)在Wave Port窗口的General标签中,将该窗口命名为1。 (e)其他标签页设置保持默认即可至结束。

8.辐射场角度设置

(1)在菜单栏中点击HFSS>Radiation>Insert Far Field Setup>Infinite Sphere。 (2)在辐射远场对话框中设置。

在Infinite Sphere标签中: Name:Infinite Sphere1

Phi:(Start:0,Stop:360,Step Size:1) Theta:(Start:0,Stop:180,Step Size:1) 其他设置保持默认。 点击OK按钮结束。 9.求解设置

为该问题设置求解频率。 (1)设置求解频率

(a)在菜单栏中点击HFSS>Analysis Setup>Add Solution Setup 。 (b)在求解设置窗口中,设置:

Solution Frequency:35GHz Maximum Number of Passes:8 Maximum Delta S per Pass:0.02 (c)点击OK结束。 10.保存工程

(1)在Ansoft Hfss窗口,选择菜单中的文件(File)>另存为(Save As) (2)在另存为窗口,输入文件名:Horn (3)点击保存(Save)按钮

11.查看求解收敛结果

图 2 - 2 收敛结果

(1)点击菜单栏中HFSS> Result>Solution Data。 (2)点击Convergence标签可以看到求解的收敛结果。 12.后处理操作 (1)2D辐射远场。

在菜单栏中点击HFSS>Results>Create Far Report。 (a)选择:Radiatin Patten。 (b)在Context窗口中,设置:

在Trace窗口中,将Ang这一列中点击第一个变量Phi,在下拉菜单中选择Theta。Meg列选择:Category:Gain;Quantity:GainTotal;Function:dB,点击New Report按钮,得到远场增益。

图 2 - 3 远场增益

(2)驻波比信息曲线

(a)在菜单栏中点击HFSS>Result>Create Modal Solution Data Report。 (b)接着选择:Data Table。 (c)在Context窗口中,设置:

Solution:Setup:LastAadptive

在Trace窗口中,将X这一列中选择第一个变量Freq。选择:Category:VSWR;Quantity:VSWR(1);Function:none,点击New Report按钮,得到驻波比信息栏。

图 2 - 4 VSWR结果

(3)工作频率附近S参数曲线

图2 - 5 S11

(4)远区辐射场3D极坐标图

图 2 - 6远区辐射场3D极坐标

(5)仿真结果的优化 口径半径r=23.3mm~24.3mm

图 2 - 7 优化S11

2.2.2仿真结果分析

工作频段附近S11小于-25dB,满足要求。 最大辐射方向上增益大于20dB。

驻波比接近于1:1,说明天线能获得较大的辐射功率。

第三章 结论与展望

本文首先应用工程方法,在一定增益要求下,求得了喇叭天线的口径参数,而后进入HFSS软件中对所涉及的喇叭天线进行了仿真,结果表明设计的天线各项指标符合设计要求。

在设计过程中,我们碰到了许多问题,设计、软件仿真等等,针对这些问题,我们查阅了相关书籍,在网上搜索资料,询问老师和同学,在解决问题中归纳、总结、学习,最后完成了整个设计。

这次科研训练始于大二上学期,到现在大四,已有一年半的时间,通过这次的科研训练,我学到了很多东西,通过自己的实践,增强了动手能力。通过实际工程的设计也使我了解到书本知识和实际应用的差别。在实际应用中遇到很多的问题,这都需要我对问题进行具体的分析,并一步一步地去解决它。

由于本人水平有限,外加时间有限,本书中难免出现一些缺点不足,希望读者可以原谅。

致谢

在本人设计此圆锥喇叭天线的过程中,我获得了各方面的帮助,有同学的帮助,也有老师的帮助。

我的同学们在我完成论文的过程中,帮助我回忆课堂上曾讲到的相关论文主题的内容,帮我分析公式,他们的帮助是非常重要的。

我的指导老师钱嵩松老师悉心指导着我的论文的完成。对我的论文中存在的不足和错误处给予了指正,对我在论文完成过程中存在的疑惑不解之处一一解答。陈老师平日里工作繁多,但在我做毕业设计的每个阶段,从选题到查阅资料,论文提纲的确定,中期论文的修改,后期论文格式调整等各个环节中都给予了我悉心的指导。在此谨向钱老师致以诚挚的谢意和崇高的敬意。

在此对帮助过我的同学和老师再次表示感谢!

作者:请亲笔签名

[1] [2] [3] [4] [5]

参考文献

林昌禄,天线工程手册 电子工业出版社,2002 林昌禄,近代天线设计 人民邮电出版社,1990

宋铮,张建华,黄治.天线与电波传播 西安电子科技大学出版社,2003 刘学观,郭辉萍.微波技术与天线 西安电子科技大学出版社,2006 马汉炎,天线技术 哈尔滨工业大学出版社,2001

本文来源:https://www.bwwdw.com/article/vg66.html

Top