金融数学引论答案第一章 - - 北京大学出版

更新时间:2023-11-23 15:45:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章习题答案

1.解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t2 + 2t + 3)/3 In = A(n) ? A(n ? 1)

= (n2 + 2n + 3) ? ((n ? 1)2 + 2(n ? 1) + 3)) = 2n + 1

2. 解:?1?I?A(n)?A(t)?In?In-1?????It?1?n(n? 1)/2?t(t? 1)/2 (2)I?A(n)?A(t)?k?t?1?Ink? 2n?1?2t?1

3.解: 由题意得

a(0) = 1, a(3) =A(3)/A(0)= 1.72? a = 0.08, b = 1 ∴ A(5) = 100

A(10) = A(0) ? a(10) = A(5) ? a(10)/ a(5)= 100 × 3 = 300.

4. 解:(1)i5 =(A(5) ? A(4))/A(4)=5120≈ 4.17% i10 =(A(10) ? A(9))/A(9)=5145≈ 3.45% (2)i5 =(A(5) ? A(4))/A(4)

100(1 ? 0.1)5?100(1 ? 0.1)4?? 100(1 ? 0.1)4i10?(A?10??A?9?)/A?9??100(1 ? 0.1)?100(1 ? 0.1)? 100(1 ? 0.1)9109

5.解:A(7) = A(4)(1 + i5)(1 + i6)(1 + i7) = 1000 × 1.05 × 1.06 × 1.07 = 1190.91

6.解: 设年单利率为i 500(1 + 2.5i) = 615 解得i = 9.2%

设500 元需要累积t 年 500(1 + t × 7.8%) = 630 解得t = 3 年4 个月

7.解: 设经过t 年后,年利率达到2.5%

1 ? 4%?t? (1 ? 2.5%)t t ≈ 36.367 8. 解:(1 + i)11 = (1 + i)5+2*3 = XY 3 9. 解: 设实利率为i 600[(1 + i)2 ? 1] = 264 解得i = 20%

∴ A(3) = 2000(1 + i)3 = 3456 元 10.解: 设实利率为i

11??1 n2n(1?i)(1?i)解得(1 + i)-n =

5?1

2

5?1?23?5 )?22所以(1 + i)2n = (11.解:由500×(1 + i)30 = 4000 ? (1 + i)30 = 8 于是PV =

100001000010000 ??204060 (1 ?i)(1 ?i)(1 ?i)?23?43 = 1000 × (8?8?8?2)

= 3281.25

12解:(1 + i)a = 2 (1)

3(1 + i)b = (2)

2c

(1 + i) = 5 (3)

3(1 + i)n = (4)

2(4) ? n ? ln (1 + i) = ln 5 ? ln 3 (3) ? ln 5 = c × ln (1 + i)

(1) × (2) ? ln 3 = (a + b) ? ln (1 + i) 故n = c ? (a + b)

13.解:???A ? i = 336 A ? d = 300 i ? d = i ? d ? A = 2800 14.解: (1) d5 ==

a?5??a?4?

a?5?10%

1 ? 5?10%= 6.67%

(2)a-1(t) = 1 ? 0.1t ? a(t) =

1= 1?0.1ta?5??a?4?? d5 =

a?5?= 16.67% 15.解:由

i(3)3d(4)(?4)(1?)?(1?)34 3(3)i??d(4)?4?[1?(1?)4]3由

i(6)6d(12)(?12)(1?)?(1?)612 (12)d?i(6)?6?[(1?)?2?1]1216.解: (1) 终值为100 × (1 + i(4)/ 4*2

4 ) = 112.65元

(2) 终值为100 × [(1 ? 4d( 1/4 ))1/4 ]-2 = 114.71元 17.解: 利用1/d(m)? 1/i(m) = 1/m? m = 8 18. 解:aA(t) = 1 + 0.1t ? δA(t)

?

a'A(t)0.1?aA(t)1?0.1t(aa?1B?1Ba?1A(t)?1?0.05t??B?(t))'0.05?(t)1?0.05t

由δA(t) = δB(t)得

t = 5

19.解: 依题意,累积函数为a(t) = at2 + bt + 1?? a(0.5) = 0.25a + 0.5b + 1 = 1.025 a(1) = a + b + 1 = 1.07 ?a = 0.04 b = 0.03 于是δ0.5 =

a'(0.5)? 0.068 a(0.5)2t2?(t) ?, B1?t21?t20.解: 依题意,δA(t) =由?A(t)??B(t)

2t2? 21 ?t1 ?t? t > 1

?

d??? 8%,设复利下月实贴现率为d,单利下实利率为d0。 21.解: 4__________全部采用复利: 8%(1?d)3? 1?

2PV? 5000(1?d)25? 4225.25前两年用复利:

1?3d0? 1?8% 2PV? 5000(1?d)24(1?d0) ? 4225.46

6%4)?1 ? 6.14% 4设第3年初投入X,以第3年初为比较日,列价值方程

4 22.解: i??? 6%,则i? (1 ?2000(1 ?i)2? 2000(1 ?i) ?X? 2000v2? 5000v8解得X = 504.67 元 23.解: 对两种付款方式,以第5年为比较日,列价值方程:

200 ? 500v5? 400.94解得v5? 0.40188 所以

P? 100(1 ?i)10? 120(1 ?i)5? 917.762

24.解:1000?1 ? 6%?? 2?1000?1 ? 4%?解得: t = 36 年 25.解: 列价值方程为100vn? 100v2n? 100解得n = 6.25 26.解:?t?t0tt1,得基金B的积累函数为 6tt2aB(t) ?exp(??sds) ?exp()欲使aA(t) ?aB(t)则

121?12?12tt2(1 ?i)?exp()

1212解得t = 1.4

27解: 1000(1 + i)15 = 3000

12则i??? ((1 ?i)?1)?2 ? 7.46%

228.解: 列价值方程为

300(1 ?i)2? 200(1 ?i) ? 100 ? 700解得i = 11.96% 29.解: ?t?kt则积累函数为

ka(t) ?exp?t0ksds?exp(t2)

2由a(10) = 2 得e50k? 2

解得k = 0.0139

30.解:(1 + i)3 + (1 ? i)3 = 2.0096 解得i = 0.04

31.解: 一个货币单位在第一个计息期内的利息收入j,第二个计息期内的利息

收入j + j2,故差为j2,即第一期利息产生的利息。 32.解: 设半年实利率为i',则有:

15(1 ?i') ? 13.65 ? 28(1 ?i')

i'? 0.05故:i? (1 ?i')2?1 ? 0.1025 解得: 33.解: 价值方程:

正常: 1000 ? 100(1 ?j)-1? 100(1 ?j)?2? 1000(1 ?j)?3 转让: 960 ? 100(1 ?k)?1? 1000(1 ?k)?2 解得:j = 6.98%, k = 7.4% 从而:j < k

34.解: 和δ等价的年利率i?e??1,年利率变化:

e2??e??e?和δ等价的年贴现率1?e-??d, 年贴现率变化: ?e?1e-??e-2?-??e -?1?e35.证明:

??di??1lim2? lim2?证: d?0?i?0?2??d??1?e??1?e??e??1lim2? lim? lim? lim? 2d?0???0??0??0?2?22limd?0i???2? lim??0???1?e??2?1?e?e?1? lim? lim? ??0??022?2

36.解: 设货款为S,半年实利率为i',则有:0.7S(1 ?i') ? 0.75S 解得:1 ?i'? 1.0714 故i? (1 ?i')2?1 ? 14.80%

37.解: 1)单利方式:X1(1 + (1 ? t)i) = 1

2)复利方式:X2(1 + i)1-t = 1

(1?ti)3)单利方式:X3?

1?i由Taylor展开易证:(1 ?i)1-t?1 ? (1?t)i (1 ?i)t?1 ?it故X1? X2? X3 38.解: 设基金A,B的本金为A,B

本文来源:https://www.bwwdw.com/article/vfct.html

Top