Anti-de Sitter space, squashed and stretched
更新时间:2023-08-09 04:11:01 阅读量: 综合文库 文档下载
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
5
2
v
No
2
2
v
67
9
5
/
c
q
-
r
:gv
i
X
r
aStockholmUSITP05-4September2005RevisedNovember2005ANTIDESITTERSPACE,SQUASHEDANDSTRETCHEDIngemarBengtsson1PatrikSandinStockholmUniversity,AlbaNovaFysikumS-10691Stockholm,SwedenAbstractWestudytheLorentziananaloguesofthesquashed3-sphere,namely2+1
dimensionalanti-deSitterspacesquashedorstretchedalong bresthatareeitherspacelikeortimelike.Thecausalstructure,andthepropertyofbeinganEinstein–Weylspace,dependcriticallyonwhetherwesquashorstretch.Wearguethatsquashing,andstretching,completelydestroystheconformalboundaryoftheunsquashedspacetime.AsaphysicalapplicationweobservethatthenearhorizongeometryoftheextremalKerrblackhole,atconstantBoyer–Lindquistlatitude,isanti-deSitterspacesquashedalongcompacti edspacelike bres.
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
1.Introduction
TheHopf brationofthe3-sphereappearsthroughoutmathematicalphysicsinmanyguises;itisusedtodescribequbits,magneticmonopoles,Taub-NUTuniverses,andwhatnot.Thereisabeautifulpicturebehindit:theHopf bresformaspace- llingcongruenceoflinkedgeodesiccirclesinthe3-sphere.IntheTaub-NUTcosmologiesthe3-sphereissquashedalongtheHopf bres.SuchspheresareknownasBergerspheresbymathematicians.TheyaresolutionstotheconformallyinvariantEinstein–Weylequations.Thesquashed3-spherehasaLorentziananalogue.InfactithastwoLorentziananalogues,since3dimensionalanti-deSitterspaceadS3canbesquashed(orstretched)alongHopf bresthatareeitherspacelikeortime-like.Thisconstructionwasbrie ydiscussedbyJones,TodandPedersen
[1][2],becausesuchspacetimesadmitatwistorialdescription(withatwodimensionalfamilyoftotallygeodesicnullhypersurfacesservingastwistorspace[3]).Fromthispointofviewsquashedanti-deSitterspacebecomesinterestingasasimplebutnon-trivialexampleintwistortheory.Ithasalsobeenstudiedasanasymmetricdeformationoftheconformal eldtheorythatdescribesthepropagationofstringsonthegroupmanifoldofSL(2,R)—alsoknownasadS3[4,5].Butthereareotherusesofsuchanaturalconstruc-tion,inparticularthenearhorizongeometryoftheextremalKerrblackhole
[6]canbeunderstoodusingit.Forthisreasonwehavestudiedsquashedanti-deSitterspaceinsomedetail.Wealsouseittopointamoral:wewillarguethatthesquashingcompletelydestroystheconformalboundaryoftheunsquashedspacetime.Thistellsusthatconformalcompacti cation[7]de-pendsmuchmoreonthedetailedstructureofEinstein’sequationsthanonemightperhapsthinkitwould.
Thecontentsofthispaper:Wedescribesomerelevantfeaturesof2+1dimensionalanti-deSitterspaceinsection2,butsincethishasbeendescribedatlengthelsewhere—werecommendref.[8]andreferencestherein—somedetailsarerelegatedtoanAppendix.Insection2weconcentrateonthetwogeodeticcongruences,onetimelikeandonespacelike,thatwillplaytherolethattheHopfcirclesplayforthe3-sphere.Insection3wesquashandstretchourspacetimealongthese bres,discussthesymmetriesoftheresultingspacetimes,and ndtheKillinghorizonsthattheycontain.Section4makessomeobservationsonnullgeodesics;thedistinctionbetweensquashingandstretchingnowbeginstobecomeapparent.Fortimelikestretchingdetailed
2
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
resultsareavailablealready—weareine ectstudyingtheG¨odelspacetime
[9].Insection5weestablishwhenourspacetimessolvetheconformallyinvariantEinstein–Weylequations.Insection6weattempttoconformallycompactifyourspacetimes,andarguethattheboundaryisdestroyedbysquashing(andstretching).Section7applieswhatwehavelearnedtoadiscussionoftheextremalKerrblackhole.Conclusionsandopenquestionsarebrie ylistedinsection8.
2.Geodeticcongruencesinanti-deSitterspace
Anti-deSitterspaceisde nedasaquadricsurfaceembeddedina atspaceofsignature(+...+ ).Thus2+1dimensionalanti-deSitterspaceisde nedasthehypersurface
X2+Y2 U2 V2= 1(1)
embeddedina4dimensional atspacewiththemetric
ds2=dX2+dY2 dU2 dV2.(2)
TheKillingvectorsaredenotedJXY=X Y Y X,JXU=X U+U X,andsoon.ThetopologyisnowR2×S1,andonemaywishtogotothecoveringspaceinordertoremovetheclosedtimelikecurves.Ourargumentswillmostlynotdependonwhetherthis nalstepistaken.
Forthe2+1dimensionalcasethede nitioncanbereformulatedinaninterestingway.Anti-deSitterspacecanberegardedasthegroupmanifoldofSL(2,R),thatisasthesetofmatrices
g=V+XY+U
Y UV X ,detg=U2+V2 X2 Y2=1.(3)Thegroupmanifoldisequippedwithitsnaturalmetric,whichisinvariant 1undertransformationsg→g1gg2,g1,g2∈SL(2,R).TheKillingvectorscannowbeorganizedintotwoorthonormalandmutuallycommutingsets,
J1= JXU JYV
3 1= JXU+JYVJ(4)
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
J2= JXV+JYU
J0= JXY JUV
Theyobey 2= JXV JYUJ 0=JXY JUV.J(5)(6)
1||2=||J 2||2= ||J 0||2=1.||J1||2=||J2||2= ||J0||2=1,||J(7)
LocallySL(2,R)isisomorphicwiththeLorentzgroupSO(2,1).Theisom-etrygroupSO(2,2)isthereforelocallyisomorphictoSO(2,1)×SO(2,1).Thesemattersarediscussedmorefullyinref.[8].Verysimilarthingscanbesaidaboutthe3-sphere.
Herewewouldliketodescribeacoordinatesystem(τ,ω,σ)[10],analo-goustotheEuleranglesthatareusedtodescribethe3-sphere.TothisendweparametrizeanarbitrarySL(2,R)matrixas
g(τ,ω,σ)=cos
sinττ2
2(8)
StraightforwardcalculationsshowthattheKillingvectorsinthe rstSO(2,1)factorare
2sinhσ sinh coshωω22 exp σ2 .J1=
coshω τ+2sinhσ ω 2tanhωcoshσ σ.(11)
ThesecondSO(2,1)factorisspannedby
1=2sinτtanhω τ 2cosτ ω+2sinτJ
0=2 τ.J
4coshω σ(13)(14)
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
0,towhichWewillfocusonthemutuallycommutingKillingvectorsJ2andJ
ourcoordinatesystemisadapted.Theyformtwonowherevanishingvector eldsinadS3.Inanyodddimensionalanti-deSitterspacewecanconstruct 0,whilethereisnoanowherevanishingtimelikevector eldanalogoustoJ
similarhigherdimensionalanalogueforJ2.Butindimension3wehavethesetwoeverywherevanishingvector eldstoplaywith.Eachofthemde nesaninterestingcongruenceinanti-deSitterspace,andtheir owlinesaretheHopf bresalongwhichwewillsquashandstretchourspacetime.Themetriconanti-deSitterspacetakestheform
ds2=1
4
=1 (dτ sinhωdσ)+dω+coshωdσ2222(16)
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
Figure1:ThispictureisdrawnusingthesausagecoordinatesfromtheAp-pendix.Itshowsanti-deSitterspaceasacylinder(withaconformalbound-ary).Thetimelikecongruenceconsistsoftimelikespiralsrulingasetofhelicoids.Totherightweshowthatthe owbecomesnullontheboundary.horizonsinadS3occurforconjugacyclasseswherethetransformationstaketheform(hyperbolic)×(hyperbolic);theyarenumerousenoughsothateveryspacelikegeodesicisthebifurcationlineofsuchaKillinghorizon.De-generateKillinghorizonsoccurfortransformationsoftheform(parabolic)×(parabolic).Theyformatwoparameterfamilyoftotallygeodesicnullsurfaces,andcanberegardedaslightconeswithverticesontheconformalboundaryJ
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
Figure2:AgainusingsausagecoordinatesweshowthenullsurfaceX=V,andhowitisruledbythespacelikecongruence.Totherightweshowthatthe owbecomesnullontheboundary,andwhereithas xedpoints.Thereisaspecialpointactingasasinkforallthosemembersofthecongruencethatbelongtothenullsurfaceshown.
thesurface
XV VY=0 σ=0(19)
is atandminimal.WedrawitinFig.1,usingthesausagecoordinatesfrom 0= t+ φ,theAppendix.InsausagecoordinatestheKillingvectorbecomesJ
thecongruenceconsistsasetofhelices,andthesurfaceσ=0isknownasthehelicoid.(Itisaminimalsurfaceincoordinatespacetoo.)NotethatthegeodesicsbecomenullontheconformalboundaryJ
,althoughinthiscasetherearetwolinesof xed
points;therearesourcesatt φ=π/2andsinksatt φ= π/2.Insideanti-deSitterspacethecongruenceiseverywherespacelike,andeveryPoincar´ediskde nedbyt=constantcontainsonememberofthecongruence.Surfacesofconstantτ,whichare atandminimal,areruledbythesegeodesicsbutareratherhardtodraw.Anothersurfacethatisruledbythesegeodesicsisthetotallygeodesicnullsurface
7
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
X=V.(20)
InfactthissurfacecontainseveryJ2geodesicthatgoestoaparticularsinkonJ
oncewedecidetosquash
ourspacetimealongthese bres(keepingalldistancesorthogonaltothe bresconstant).Ontheboundarythe bresarechangingcharacter,fromtimelike/spaceliketonull.ThereforesquashingJ
consistingoftwodisconnectedcomponents.Somewherealongtheway,somethinghastobreak.
3.Squashing,stretching,andsymmetries
ItistimetointroducethespacetimeanaloguesoftheBergersphere.WeobtainthembysquashingadS3alongoneofthetwocongruencesdescribedintheprevioussection.Theresultingspacetimeswillbehomogeneousbutanisotropic,andwewillstudytheirsymmetriesinsomedetail.
Letusconsiderthespacelikecase rst;ithassomespecialfeaturesthat,intheend,makethiscasetheeasiesttounderstand—especiallyifFig.2iskept rmlyinmind.ThemetriconsquashedadS3is
ds2λ=1
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
howeverthat—unlikeitsanalogueforthe3-sphere—thisparticularresultdoesnothaveanystraightforwardhigherdimensionalanalogue.
Becauseofthesquashingtheisometrygroupisnowfourdimensional.TheLiealgebrachangesfromSO(2,1)×SO(2,1)fortheunsquashedspacetimetoR×SO(2,1)forthesquashedone;theleftfactorheregivestransforma-tionsbelongingtoahyperbolicconjugacyclassofSO(2,1).ThequestionweaskiswhetheranyKillinghorizonssurvive.Theanswerisyes.TherewillbebifurcateKillinghorizonscomingfromtransformationsofthetype(hyper-bolic)×(hyperbolic),althoughtheywillbelessnumerousthantheywereinanti-deSitterspace.ThedegenerateKillinghorizonsthatwerepresentintheunsquashedcasearenolongerwithus,sincetheycamefromtransforma-tionsofthetype(parabolic)×(parabolic).ButtherewerealsototallynullKillingvector eldsinanti-deSitterspace,comingfromtransformationsofthetype(identity)×(parabolic).OncewehavedonethesquashingthiswillgiveusasupplyofdegenerateKillinghorizons,asareplacementforthosethatwerelost.
Butwedonothavetorelyonanypreviousresultshere.Ashortcalcu-lationveri esthatthemostgeneralKillingvector eldthathasaspacelikecurveof xedpointsis(uptoscale)
1+bJ 2+cJ 0,ξ=J2+aJ
wheretherealnumbersa,b,cobey
a2+b2 c2=1.(24)(23)
ThisisatimelikesurfaceinthegroupmanifoldofSO(2,1).The xedpointsoccurat
ba.(25)sinτ= 2222a+ba+b
Thesecurvesarepreciselythe bresalongwhichwearesquashing.TheyarealsobifurcationcurvesforbifurcateKillinghorizons.Hencesquashedanti-deSitterspacecontainsatwoparameterfamilyofbifurcateKillinghorizons.Theunsquashedspacetimehasmore:inanti-deSitterspaceitselfeveryspacelikegeodesicisabifurcationlineforsomeKillinghorizon.
Ifwepickanexampleinthisclass,we ndthatsinhω=c,cosτ=
9
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
2||=(1 cosτcoshω)λ+1 (λ 1)cosτcoshω||J2+J222
Thesurfacegravityκisgivenby|κ|=2.Afeaturethatarisesonlyinthesquashedcaseisthatthereareactuallytwosurfaceswherethenormvanishes,butonlyoneofthemisaKillinghorizon—theotherisatimelikesurface.
AoneparameterfamilyofdegenerateKillinghorizonsarisefromtheKillingvectors
(α)=cosαJ 1+sinαJ 2+J 0.ξ
Thistimethenormis
(α)||2=(λ2 1)(sinhω+sin(τ α)coshω)2.||ξ(28)(27) .(26)
InadS3theseKillingvectorsareeverywherenull.Inthesquashedcase(λ2<1)theyaretimelikeexceptforadegenerateKillinghorizonwherethenormvanishes,andinthestretchedcase(λ2>1)theyarespacelikeagainexceptforadegenerateKillinghorizon.Inanti-deSitterspaceitselfthisfamilyofnullsurfacesisidenticaltothefamilygivenineq.(21),ifwesetα=2β+π.Intheanti-deSittercasethereareadditionaldegenerateKillinghorizonsthatdisappearwhenwesquashorstretch.
SinceweareprimarilyinterestedinKillinghorizonsbecausetheyaretotallygeodesicnullsurfaces,itisenoughtoconsiderdegeneratehorizons—thebifurcateonesdonotcontributeanythingnewinthisway.
Nextwesquashorstretchalongthetimelikecongruence.Thenthemetricis
ds2λ=1
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
whichiseverywherenullinanti-deSitterspace.After(timelike)squashingweobtain
||ξ||2= (λ2 1)(coshωcoshσ sinhω)2.(31)
Thisistimelikeorspacelike,dependingonwhetherwesquashorstretch.
4.Nullgeodesics
Ourspacetimeshaveenoughsymmetriestoensurethatthegeodesicequationcanbeseparated.Itisparticularlyinterestingtotakealookattheequationsfornullgeodesics,becausethereisasurprisewaiting.Wewilldiscussthecaseofspacelikesquashinginsomedetail,andcommentbrie yontimelikesquashingattheend.Forarelateddiscussion,includingsomeinterestingobservationsontimelikegeodesics,seeBardeenandHorowitz[6].Webeginbyintroducingtheconvenientcoordinate
w=sinhω.(32)
Usingit,itisstraightforwardtobringtheequationsforanullgeodesicwithrespecttothemetric(22)totheform
τ˙=
1+λwsinφw
λ
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
tothisdirection.Notealsothatwehavecomeacrossnullgeodesicsorthog-onaltothesquashingdirectiononcebefore—theyruletheKillinghorizonsdepictedinFig.2.
Letusnowassumethatsinφ=0.Asymptotically,thatistosayforlargevaluesofw,weobtain
τ˙~λsinφ
λ
w˙2~(λ2 1)w2sin2φ.(37)(38)
Evidentlyitispossibletoreacharbitrarilylargevaluesofwonlyifλ2≥1,thatistosayonlyforstretching,notforsquashing.Thisisthesurprisethatwewerereferringto.
Theexplicitsolutionforw(s)canbewrittendown,butisnotveryilluminating—wegettheexpectedoscillatorybehaviourforsquashing,whilestretchinggivesanexponentiallygrowingfunction.Togoon,whenλ2>1weseethat
w→∞ σ→±∞.(39)
Thisisaverydi erentkindofbehaviourfromthatoccurringintheun-stretchedanti-deSittercase.Ine ect,asymptoticallythenullgeodesicsareliningupwiththenullgeodesicsthatruletheKillinghorizonsdescribedintheprevioussection.Theimplicationsofthiswillbediscussedinsection6.Forthecaseoftimelikesquashing bresdetailedresultsareavailableintheliteraturealready.Thisisbecause,byaddinganextra atdirection,andspecializingthestretchingparametertoλ2=2[9],theresulting3+1dimensionalspacetimeisthefamousG¨odelsolution.AnelegantreviewofitsnullgeodesicshasbeengivenbyOstv´athandSchucking[13];tofollowthemweusethecoordinatesystemgivenjustbeforeeq.(91)intheAppendix,andperformthefurthercoordinatechanges
1
1 R22RT=,sinhθ=
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
Thisbringsthemetrictotheform
ds2=1
sin(φ+φ0).(42)λ
Settingφ0=0andtradingRandφforCartesiancoordinatesonthePoincar´ediskgives
λyx2+y2 x+y 2 1
2λ 2.(43)
Thisisacircle.Thefamilyofnullgeodesicsthroughtheorigin,projecteddowntothePoincar´edisk,arecircleswhoseenvelopeisacirclewithradius1/λ.
Thuswhenλ2>1allnullgeodesicsarecon nedtotheinteriorofstretchedanti-deSitterspace.WhenR=1theconformalfactorinfrontofthemetricdiverges,sothatwhathappenswhenλ=1isthatthenullgeodesicstouchJ
(1 R2)2(1 λ2R2).(44)
Henceλ2>1impliesthatthereareclosedtimelikecurvesbeyondtheenve-lopeofthenullgeodesics;this,ofcourse,wasoneofG¨odel’smainpoints.Inthesquashedcasenosuchthinghappens.Indeed
13
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
dT=02 ds=21
(48)2
′′GivenaWeylspace,thepair(gab,ωc)=(e gab,ωc+ c )de nesaWeyl
spacetoo.
TheWeylconnectionhasacurvaturetensorde nedby
[Da,Db]Vc=WabcdVd.
14(49)bb(δaωc+δcωa gacgbdωd).
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
Wealsode ne
Wab=WacbcandW=gabWab.(50)
NotethatWabisnotsymmetricingeneral.Acalculationshowsthat
W(ab)=Rab+
W[ab]=3
214Fab,ωaωb+gab 14ω2 (51)(52)
wheresquareandroundbracketsdenoteanti-symmetrizationandsymmetriza-tion,respectively.Noticethede nitionofFab.Itiseasytoseethat
Wabcd=Wab
[cd]+Fabgcd,(53)
andmoreover—becausewearein3dimensions—
Wabcd= abe cdf1
Wgab.3
FortheordinaryRiccitensorthisimpliesthat
Rab+1
4ωaωb=gab (55)12 cω+c1
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
wheretheone-formξaistheKillingvector eldthatde nesthesquashing,
ξa= aσ+sinhω aτ (aξb)=0.(58)Rab+λ2(λ2 1)ξaξb=2(λ2 2)gab,(57)
ThereforeweobtainasolutionoftheEinstein–Weylequationifweperformtherescaling
1λ2(λ2 1)ξa.(59)
Curiouslyarealsolutionisobtainedonlyforλ2≥1,thatistosayifwestretchanti-deSitterspace,butnotifwesquashit.Fortimelikesquashing,weobtainarealsolutionwhenwesquashbutnotwhenwestretch;thisisalsotruefortheRiemannianBergersphere[2].Wedonotfullyunderstandwhythisshouldbeso.Weobservethat,inanti-deSitterspace,spacelikegeodesicstendtodiverge,andtimelikegeodesicstendtoconverge.Geodesicsonthe3-spheretendtoconvergeaswell.Perhapsmoretothepoint,intheprevioussectionwenotedthatnullgeodesicsbehaveverydi erentlydependingonwhetherthespacetimeissquashedorstreched.
WiththeWeylconnectioninhandwecande neanewnotionofgeodesiccurves.Wewillcontinuetorefertogeodesicswithrespecttoourchosenmetricsas“geodesics”,whilegeodesicswithrespecttotheWeylconnec-tionwillbecalled“Weylgeodesics”.Cartanprovedthat—atleastaftercomplexi cation—athreedimensionalEinstein–Weylspaceadmitsatwopa-rameterfamilyofnullhypersurfacesthataretotallygeodesicwithrespecttotheWeylconnection.Itisthistwodimensionalspacethatisusedasamini-twistorspacebyJonesandTod[1].Intheanti-deSittercasethemini-twistorspacecanbeidenti edwithJ
can
beregardedasthevertexofapastlightconewhichistotallygeodesic—thisistrueforthedeSittercaseaswell).Itwouldbeinterestingtoseeexplicitlywhatthesenullsurfacesareinthesquashedcases.Wedonotknow,butwewillshowthatthedegenerateKillinghorizonsthatwefoundforspacelikesquashing,eq.(28),dobelongtothisset.
FollowingPedersenandTod[2],letusanalyzetheWeylgeodesics.Fromeqs.(47–48)itisseenthattheyobey
16
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
x˙bDbx˙a=x˙b bx˙a Ex˙a+1
2x˙2ωa=1
√
ω2.Asymptotically,theseWeylgeodesicslineupwiththesquashingdirection.
ItisbynowevidentthatthedegenerateKillinghorizonsthatwefoundforspacelikesquashingaretotallygeodesicwithrespecttotheWeylconnection.BeingKillinghorizonstheyaretotallygeodesicwithrespecttothemetricconnection.Nullgeodesicscoincideforbothconnections,andthespacelikeWeylgeodesicdeviatefromthespacelikemetricgeodesicsinthedirectionofthesquashing eld—whichasweknowistangentialtotheKillinghorizons.(Thisargumentdependscriticallyonthefactthatthesquashing eldis
17
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
tangentialtotheKillinghorizon.Wewouldnotbesurprisedtolearnthatthesearetheonlynullsurfacesinourspacetimesthataretotallygeodesicintheordinarysense.)
ForanyEinstein–WeylspacewithaspacelikeωaweobservethateverynullgeodesicbelongstosomenullsurfacethatistotallygeodesicwithrespecttotheWeylconnection[2].SinceallspacelikeWeylgeodesicseventuallylineupwithωa,thishasconsequencesforthebehaviourofthenullgeodesics“closetoin nity”—aphrasethatwewillexamineinmoredetailinthenextsection.
6.Conformalcompacti cation?
Wewillnowpointourmoral.ItconcernsthefragilityofJ
.
Thea neparametersonnullgeodesicswillbe nitewhentheyreachJ
isa
nullhypersurfaceifthecosmologicalconstantvanishes,whileitistimelike(spacelike)fornegative(positive)cosmologicalconstant.Buttheargumentthatleadstothisconclusion[7]reliesontheEinsteinequations,andbecomesvoidforthecaseswestudy.
ForourpurposeswewillinsistthatJ
canberegardedasthevertexofapastdirectedlightcone,with
anon-zerofractionofitsgeneratorsbelongingtotheoriginalspacetime.Letus rstrecalltheconformalcompacti cationofordinaryanti-deSitterspace,usingourunusualcoordinates.Astandardchoiceofconformalfactoris[8]
18
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
2=1/(U2+V2)=2/(coshωcoshσ+1).
Usingit,theconformallyrelatedmetricbecomes
ds 2= 2ds2=1(66)
.Actuallythiswill
giveus“onehalf”ofJ
isfoundtobe
ds 2=
coordinatesareuandv,where
tanu= sinhσ
Weseethatσ=±∞isanulllineonJ
is
ds 2= dudv.
ThespacetimeKillingvectors,restrictedtoJ
isatimelikesurface
ina2+1dimensionalEinsteinuniverse.
Squashedorstretchedanti-deSitterspacecannotworkquitelikethis.Thisactuallyfollowsfromthediscussioninsection4.Forspacelikestretchingthe(ideal)endpointsofthesetofnullgeodesicsformaonedimensionalset,andthereforetheycannotformaJ(70)v=τ.(69)dτdσ.Amoreconvenientchoiceof
atfuturein nity,weexpect
theendpointstoformazerodimensionalset.Fortimelikesquashingthesituationisagainlessclear,butitseemslikelythatthiscaseissimilartothatofspacelikestretching.SoweconcludethattherecanbenoJ
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
Letusnowproceedinadirectmannertoseeifwearriveatthesameconclusion.Alookatthemetricineq.(22)showsthat,assoonasλ=1,theasymptoticdependenceonωchangesdramatically.Togeta niteexpressionwemustchoosesomethinglike
2=4/sinh2ω
(uptosomefactorthatremains niteinthelimit).Then
22ds 2λ= dsλ=(71)1
2
Butweknowfromeq.(57)that
R=2(λ2 4). R 4g a bln 2g aln bln .abab (74) willdivergewhenω→∞,unlesstheasymptoticItisthenclearthatR
behaviourof iscarefullyadjusted.Thechoice ~exp( ω/2)thatwe ,butforallλ>0themadeforanti-deSitterspaceleadstoa niteR
choice ~exp( ω)givesacurvaturesingularityinsteadofawellde nedconformalboundaryatin nity.
Thisargumenthasits aws.Althoughds2isascalar,itdoesnotre-allyhaveaninvariantmeaning.Itissimplythelengthsquaredofavectorthatinaparticularcoordinatesystemhasthe nitecomponentsdτ,dω,dσ.However,sinceourunderstandingofthenullgeodesicsledustothesameconclusion,wedaretoclaimthattheresimplycannotbeanyconfor-malcompacti cationofsquashedorstretchedanti-deSitterspace,inany
20(75)
We study the Lorentzian analogues of the squashed 3-sphere, namely 2+1 dimensional anti-de Sitter space, squashed or stretched along fibres that are either spacelike or timelike. The causal structure, and the property of being an Einstein--Weyl space, depe
conventionalsense.Initselfthisisnotaverysurprisingconclusionsincethereismoretoconformalcompacti cationthanjustLorentziangeometry.ThemoralisthatifwedeviatefromEinstein’sequations,wecourtdis-aster.IntheEinstein–WeylcasesonemightthinkthattheexistenceofatwoparameterfamilyoftotallyWeylgeodesicnullsurfacesshouldsomehowguaranteetheexistenceofJ
+ρdθ+22 sin2θ
( r2+a2)2 a2sinθ2, ≡2Mr ae2ν
正在阅读:
Anti-de Sitter space, squashed and stretched08-09
《观音灵签》百则古人典故简释05-26
java集合-练习题05-02
同事临别赠言02-16
推介部个人年度述职述廉报告09-27
筑炉施工组织设计07-02
特殊的客人作文700字07-06
《机电接口技术》作业答案09-30
XX地块建设项目可行性研究报告01-11
- 1Paging Space的管理机制
- 2Unit 6 Space exploration 课时练
- 3Space-filling bearings in three dimensions
- 4gri-206-anti-competitive-behavior-2016
- 5The Search for the Anti-·aging Pill单词分析
- 6141231102107150DE162011 - 图文
- 7DE2 实验练习解答—lab 1(Digital Logic)(DE2)(Quartus II)
- 8综合英语4 Unit2 Space Invaders
- 9INFINITE INFRARED REGULARIZATION AND A STATE SPACE FOR THE HEISENBERG ALGEBRA
- 10Unit 2 Space Invaders课文翻译综合教程四
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- stretched
- squashed
- Sitter
- space
- Anti
- de