A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different
更新时间:2023-08-09 04:29:01 阅读量: 综合文库 文档下载
- a站推荐度:
- 相关推荐
Available online at
SeparationandPuri cationTechnology
59 (2008) 91–100
Acomprehensivestudyonmembranefoulinginsubmergedmembrane
bioreactorsoperatedunderdifferentaerationintensities
FangangMeng ,FenglinYang,BaoqiangShi,HanminZhang
KeyLaboratoryofIndustrialEcologyandEnvironmentalEngineering,MOE,SchoolofEnvironmentalandBiologicalScienceandTechnology,
DalianUniversityofTechnology,Dalian116024,PRChina
Received8December2006;receivedinrevisedform22May2007;accepted29May2007
Abstract
Inthispaper,membranefoulinginthreeparallelMBRsoperatedunderdifferentaerationintensities(150,400and800L/h)wasstudiedtohaveabetterunderstandingofthemembranefoulingmechanism.Theimpactofaerationonmembranefoulingwasinterpretedfromtwoaspects:evolutionofbiomasscharacteristicsandformationmechanismofthecakelayer.Theresultsshowedthateithersmallorlargeaerationintensityhadanegativein uenceonmembranepermeability.Thelargeaerationintensityresultedinaseverebreakupofsludge ocs,andpromotedthereleaseofcolloidsandsolutesfromthemicrobial ocstothebulksolution.Thesludgesupernatantwouldbecomeheterogeneousastheaerationintensityincreased.AstheMBRoperatedunderhighaerationintensityof800L/h,colloidsandsolutesbecamethemajorfoulants.Inaddition,thebacktransportmechanismofmembranefoulantsinthethreeMBRswasdifferentfromeachother.Aerationhadapositiveeffectoncakelayerremoval,butporeblockingbecamesevereasaerationintensityincreasedto800L/h.Themaincomponentsoforganicmattersinthemembranefoulantswereidenti edasproteins,polysaccharidematerialsandlipidsbytheFouriertransforminfraredspectroscopy(FTIR).© 2007 Published by Elsevier B.V.
Keywords:Membranebioreactor;Membranefouling;Aeration;Sludgecharacteristics;Cakelayer
1.Introduction
Membranebioreactorisabiologicalwastewatertreatmentprocessthatusesmembranetoreplacethegravitationalsettlingoftheconventionalactivatedsludgeprocessforthesolid–liquidseparationofsludgesuspension[1].MBRs,inwhichbiomassisstrictlyseparatedbyamembrane,offerseveraladvantagesovertheconventionalactivatedsludgeprocess,includingahigherbiomassconcentration,reducedfootprint,lowsludgeproduc-tionandbetterpermeatequality[2].AmajorobstaclefortheapplicationofMBRsistherapiddeclineofthepermeation uxasaresultofmembranefouling[3–8].
The rstgenerationofMBRswassidestreamorcross- owsystemswiththemembranemoduleplacesinarecirculationloopexternaltothebioreactor.Theuseofrecirculationloopsleadstoincreasedenergycosts.Inaddition,thehighshearstressesinthetubesandrecirculationpumpscancontributetothedestructionofbio ocsandthishasbeenlinkedtoaloss
Correspondingauthor.
E-mailaddress:fgmeng80@(F.Meng).
ofbiologicalactivity[9].Toovercometheselimits,thesub-mergedMBRsweredevelopedandpopularlyusedinwastewatertreatment[10].InasubmergedMBR,shearstressiscreatedbyaeration,whichnotonlyprovidesoxygentothebiomass,butalsomaintainsthesolidsinsuspensionandscoursthemembranesurfacetoalleviatemembranefouling.Thenormalprocessofaerationcanbeusedtogenerateashearstressonthemem-branesurfacewithoutrequiringarecirculationpump.But,ithasbeenfoundthatmorethan80%energyconsumptionwasforaeration[11].Uedaetal.[12,13]examinedtheeffectofaera-tiononcakeremovalandsuctionpressureusingapilot-scalesubmergedMBRandconcludedthataerationwasasigni -cantfactorgoverningthe ltrationconditions.Previousworks[14,15]alsoshowedthatthecake-removingef ciencyofaera-tiondidnotincreaseproportionallywiththeincreaseintheair owrateandthattheair owratehadanoptimumvaluefromthecake-removingpointofview.
Ahighaerationratecertainlycanreducesludgeattachmenttothemembrane,butitalsohassigni cantin uenceonthebiomasscharacteristics.Mostofthepreviousliteraturesfocusedoninvestigatingthein uenceofaerationintensitiesonmem-branepermeabilityandbiomasscharacteristics,butthereislittle
1383-5866/$–seefrontmatter© 2007 Published by Elsevier B.V.doi:10.1016/j.seppur.2007.05.040
92F.Mengetal./SeparationandPuri cationTechnology 59 (2008) 91–100
informationonhowtospecifytheimpactsofaerationintensityontheformationofmembranefoulants.Infact,thereshouldbeadirectrelationbetweenaerationintensitiesandtheformationofmembranefoulants.Theaerationintensityisexpectedtohaveaverycomplexin uenceonMBRperformance.
Inthispaper,threesubmergedMBRsunderdifferentaera-tionintensitieswereoperatedforabout50daystoinvestigatethein uencemechanismofaerationintensityonmembranefouling.Inthewholetests,themembranepermeate uxwasmeasuredtostudythemembranefoulingbehaviorunderdiffer-entaerationintensities.Thesludgeparticlesizedistributionsofsludgesuspensionandsludgesupernatant,solubleCOD,col-loidalCODandEPSwereanalyzedtocharacterizetheeffectofaerationintensitiesonbiomasscharacteristics.Thefoulinglayerformationmechanismwasexaminedtodescribethedepo-sition/adsorptionmechanismofmembranefoulants.Thefoulingcakelayeronthemembranesurfacewasanalyzedbasedonresistanceanalysis.Thedepositionofbiopolymersonthemem-branesurfacewascharacterizedbyFouriertransforminfraredspectroscopy(FTIR).2.Materialsandmethods2.1.OperationofMBRs
AsshowninFig.1,theexperimentalsystembasicallycon-sistedofthreeactivatedsludgebioreactor(MBR-A,MBR-BandMBR-C).Ineachbioreactoramembranemodulewassub-merged.Theeffectivevolumeofthebioreactorwas12L.EachMBRwasasubmergedhollow bermembranemodulemadeofpolyethylenethathadatotalareaof0.1m2andanormalporesizeof0.1 m(DAIKI,Japan).PriortotheMBRsoperation,thesludgewasacclimatizedbyotherMBRs.TheMLSSconcentra-tionofeachactivatedsludgesuspensionwasadjustedtoabout6000mg/Lwithwaterpriortothemembrane ltration.Thecom-positionofthefeedwaterwasasfollows:sucrose(300mg/L),urea(78mg/L)anddipotassiumhydrogenphosphate(38mg/L)wereusedasthemainfeedforactivatedsludge,andcalciumchloridewasappliedasmineral.SodiumbicarbonatewasusedasabuffertoadjustthemixedliquorpHtoabout7.0.Thetemper-atureofthemixedliquorwascontrolledat25.0 Cwithelectricheaters.Thehydraulicretentiontime(HRT)rangedfrom10to12h,thesludgeretentiontime(SRT)wassetat30days.The
aerationintensitiesforMBR-A,MBR-BandMBR-Cwere150,400and800L/h,respectively.Theaveragedissolvedoxygenconcentrationsofthesethreeaerationintensitieswere3.21,4.76and6.50mg/L,respectively.
TheMBRcanbeoperatedintwomodes[16]:constant uxandconstanttransmembranepressure(TMP).WithrespecttotherealoperationofMBRsforwastewatertreatment,constant uxispreferabletoconstantTMP.ThemodeofconstantTMPissuitableforthestudyofmembranefoulingbecauseitcanprovidemoreinformationonmembranefouling.EventhoughconstantTMPisnotpreferable,therearestillmanyreportsabouttheapplicationofconstantTMPforlong-termwastewatertreatment[17–20].Inalltheseliteratures,theMBRswereoperatedwithagravitational ltrationmode,whichgeneratedaconstantTMP.Thegravitational ltrationmodehadlowenergyconsumptionandwascost-effectivetobuild[18].Themajorobjectiveofourworkistoanalyzethemembranefoulingbehavior,butnotthetreatmentperformanceofMBRsystems.Therefore,thethreeparallelMBRswerealsooperatedwithgravitational ltrationmodeorconstantTMPmode.
ThroughouttheoperationofthethreeMBRs,themembranemodulewasdrivencontinuouslywithaconstantlow-pressure,TMP=3.97kPa,whichwasinducedbyawaterheaddrop( Z=40cm).InconstantTMPmode,themembrane uxwilldeclineduringmembrane ltrationasaresultofmembranefoul-ing.Whenthe uxwassmallerthan6L/m2h,themembranemodulesweretakenoutandcleanedby ushingwithtapwatertoremovethefoulingcakeonthemembranesurface.Thus,theextentofmembranefoulingdegreecouldbeexpressedbythefrequencyof ushing.2.2.EPSanalysis
TheextractionofboundEPSwasbasedonacationionexchangeresin(CER,Dowex-Naform)method[21]:300mLsludgesuspensionwastakenandcentrifugedat2000×gfor15minat4 C.Thesludgepelletswereresuspendedtotheiroriginalvolumeusingabufferconsistingof2mMNa3PO4,4mMNaH2PO4,9mMNaCland1mMKClatpH7.Then,thesludgewastransferredtoanextractionbeakerwithbaf esandtheCER(80g/g-MLSS)added.Thesuspensionwasstirredfortheselectedstirringintensity(900rpm)andextractiontime(1.5h)at4 C.TheselectedEPSwasharvestedby
centrifu-
Fig.1.Schematicofthesubmergedmembranebioreactors:1,feedtank;2,balancebox;3,bioreactor;4,membranemodule;5,electricheater;6,airpump;7,air owmeter.
F.Mengetal./SeparationandPuri cationTechnology 59 (2008) 91–10093
gationofasampleoftheCER/sludgesuspensionfor1minat12,000×ginordertoremovetheCER.Thesupernatantwascentrifugedtwicefor15minat12,000×gat4 Cinordertoremoveremaining occomponents.BoundEPSwasobtainedafter lteringthesupernatantthrougha0.22 mmembrane lter.TheboundEPSwasnormalizedasthesumofcarbohydrateandprotein,whichwereanalyzedusingphenol/sulfuric-acidmethodandfolinmethod[22],respectively.
2.3.SolubleCODandcolloidalCODanalysis
SolubleCODandcolloidalCODweremeasuredinordertodeterminewhichcomponentsinthesludgesuspensionweremainlyresponsibleforthe uxreduction[23].SupernatantCODwasdeterminedaftercentrifugingthemixedliquorfor2minat3000×g.SolubleCODwasobtainedafter lteringthesuper-natantthrougha0.22 mmembrane lter.ThecolloidalCODwasobtainedbysubtractingthesolubleCODfromthesuper-natantCOD.2.4.FTIRanalysis
Thefouledmembranemodulewastakenoutfromthebiore-actorand ushedwithpurewaterastheoperationoftheMBRswasterminated.About200mLwashedliquidwastakenandplacedinadryerat105 Cfor24htoobtaindryfoulants.AFTIRspectrometer(EQUINOX55,Bruker,Germany)wasusedtocharacterizethemajorfunctionalgroupsoforganicmattersinmembranefoulants.KBrpelletscontaining0.50%(drypowder)ofthesamplewaspreparedandexaminedintheFTIRspec-trophotometer.Thespectrumwascalculatedfromtheaverage of256scansoverthewavenumberrangingfrom4000to400cm1ataresolutionof4cm 1.2.5.Particlesizeanalysis
Thesludgeparticlesizedistributionsofsludgesuspensionweredeterminedbyfocusedbeamre ectancemeasurement(FBRM)(ModelM400L,Lasentec,Redmond,USA).Thepar-ticlesizedistributionofthesludgesupernatantwasmeasuredusingaMarlverncounter(Zeta100,UK).2.6.Evaluationof ltrationresistance
Membraneresistancewasevaluatedbytheresistance-in-seriesmodelasfollows:Rt=Rm+Rp+Rc=
TMP(1)
Theexperimentalproceduretogeteachresistancevaluewasasfollows[24–26]:(1)theresistanceofmembrane(Rm)wasesti-matedbymeasuringthewater uxofde-ionized(DI)water;(2)thetotalresistance(Rt)wasevaluatedbythe nal uxofsludgewastewatermicro ltration;(3)themembranesurfacewasthen ushedwithwaterandcleanedwithaspongetoremovethefoulingcakelayer.Afterthat,theDIwater uxwasmeasured
againtogettheresistanceofRm+Rp.Theporeblockingresis-tance(Rp)wascalculatedfromsteps(1)and(3),andthecakeresistance(Rc)obtainedfrom(2)and(3).
Cakeresistanceisrelatedsigni cantlytocakespeci cresis-tanceandcakemass:Rc=αmc
(2)
wheremcisthedrycakemassandαisthespeci cresistanceperunitcakemass,whichvarieswiththebulkmatrixpropertiesandTMP.2.7.Others
Dissolvedoxygenconcentration(DO)wasmeasuredbyaDOmeter(55/12FT,YSICorporation,USA).Themixedliquidofsuspendedsolids(MLSS)concentrationwasevaluatedbyStandardMethods[27].3.Resultsanddiscussion
3.1.Behaviorofmembranepermeation
Theevolutionofpermeate uxduringthemembrane ltra-tionofactivatedsludgeispresentedinFig.2a.Itisimportanttonotethathigheraerationintensityresultedinalowerfoulingrateintheinitial ltrationtime.Itiswellknownthatcakelayeronthemembranesurfaceisthemainfactorthatresultsinmem-branefouling,andtherearetwooppositeactionsthatregulatetherateofcakelayerformation:permeationdrag,whichisgen-eratedbypermeate ux,increasedwithoperationTMP,andbacktransport,consistedofBrowniandiffusion,inertialliftandshear-induceddiffusion[28].Thehigheraerationintensityinducedahighershearforce,andremovedthefoulingcakelayerfromthemembranesurface.Therefore,thefoulingratedecreasedwithincreasingaerationintensitiesintheinitial ltrationtime.Obvi-ously,thecurveofFig.2acanberoughlyseparatedintotwophases:from0thto400thhourasphaseI,from400thto1100thhourasphaseII.InphaseI,themembranefoulinginMBR-AandMBR-Bwasmoresevere,indicatingthattheaerationintensitymayhavesomenegativeimpactsonbiomasscharacteristics.InphaseII,themembranepermeationofthethreeMBRsreachedarelativelysteadyvalue,suggestingthatthesludgesuspensionineachMBRhadbeenacclimatized.
Itcanbeseenthatthepermeate uxofMBR-AandMBR-Cdeclinedrapidlyafter10h ltration.ForMBR-A,itmayberesultedfromtheformationoffoulingcakelayerduetotheloweraerationintensity.TherewasahigheraerationintensityinMBR-C,butthepermeate uxalsodeclinedrapidly.Thepermeate uxofMBR-Breachedasteadyvalueafter100h ltration,suggestingthattheformationofafoulinglayerthatisactingasa“dynamicmembrane”withlowerpermeabilitythantheoriginal ltrationmembrane[29].Itshowsthattherateofparticleconvectiontowardsthemembranesurfaceisbalancedbytherateofbacktransport.Therefore,forMBR-B,severemembranefoulingshouldnotoccurwithrespecttotime.Assoonasadynamicmembraneformed,themembranefoulantssuch
94F.Mengetal./SeparationandPuri cationTechnology
59 (2008) 91–100
InthewholeoperationofthethreeMBRs,thefoulingdegreeofthethreemembranemodulesmainlyresultedfromtwofactors:differenceofshearforceandchangeofbiomasscharac-teristics.Intheinitial4h,thechangeofbiomasscharacteristicscouldbeignored,andthemembranepermeate uxwasbasi-callyin uencedbytheshearforce.Therefore,thedirectimpactofaerationintensitiesonmembranefoulingcouldbeobtainedbycomparingthepermeate uxofthethreeMBRsintheinitial4h,thedataareshowninFig.2b.Theaerationintensityhasapositiveeffectonmembranepermeability,suggestingthattheshearforcegeneratedbyairbubblescaneffectivelyremovethefoulantsdepositedonthemembranesurface.
Besidestheaerationintensityeffectonmembranefoulants,itmayhavesomeeffectonbiomasscharacteristicsalsosinceMBRsystemincludeslivingmicroorganismsandtheirmetabo-lites.Thebiomasscharacteristicswouldinturnhavesigni cantimpactsonmembranefoulingduringmembrane ltrationofsludgesuspension[31–34].Inordertoinvestigatethein u-enceofbiomasscharacteristicsonmembranefouling,short-termmembrane ltrationtestswereperformedassoonasthelong-termexperimentwasterminated.Intheshort-term ltrationtests,thesameaerationintensity,150L/h,wasadoptedforMBR-A,MBR-BandMBR-Cinordertoexcludetheeffectofshearforceonmembrane ux.Thepermeate uxofMBR-AandMBR-Bdecreasedslowlyandhadasimilardecreasetendency,Fig.2c.FromFig.2c,itcanbeseenthatMBR-Chadadramaticmembranefoulingproblem.Theseresultsshowedthattoohighaerationintensityaffectedthebiomasscharacteristicsde nitely,whichmayleadtotoomuchreleaseofEPSandthebreakageofsludge ocs.
3.2.Evolutionofbiomasscharacteristics
3.2.1.Particlesizedistributionsofsludgesuspension
Thesludgeparticlesizewasmeasuredafterthesludgesus-pensionhadbeenacclimatized.TheparticlesizedistributionsmeasuredbytheFBRMsystemcouldrevealthesizedistribu-tionsofthesludgesuspensionparticlesintheMBRs.StatisticresultsofthesludgeparticledistributionaresummarizedinTable1.Itcanbeeasilyseenthatthesizeofthesludgepar-ticlesvariedinarangeof3–450 m,andmorethan70%ofthesludgeparticleshadasizerangingfrom10to100 m.Thepeakpoints,indicatingthelargestparticlesizedistribution,andthemeansizeinthepro lesweregivenintheorderofMBR-A>MBR-B>MBR-C.Themeanparticlesizewascalculatedonthebasisofnumberofparticles.
Itwasreportedthatthesludgeparticlesthathaveasizesmallerthan50 mwouldaffectthemembranepermeationsig-
parisonofmembranepermeate ux:(a)evolutionofthemembranepermeate uxinthelong-term ltrationtests,(b)evolutionofmembraneper-meate uxintheinitial4hshort-term ltrationand(c)short-termmembrane ltrationtestsunderthesameaerationintensity(150L/h)afterthelong-termtests.
asEPS,solubleorganics,colloidalparticlesandsoon,couldberejectedorbiodegradedbythedynamicmembranecomposedoflivingmicroorganisms[30].Thus,thefoulantshavefewerchancestodepositonthemembranesurface.
Table1
StatisticresultsofsludgeparticlesizedistributionsinMBR-A(150L/h),MBR-B(400L/h)andMBR-C(800L/h)
Sludgeparticlesize( m)Mean
MBR-AMBR-BMBR-C
484130
Range3–4643–3983–398
Peak937454
Particlesizedistribution(%)<10 m0.1260.2260.826
10–50 m19.50426.68947.258
50–100 m49.60049.73639.531
100–200 m29.31622.11910.373
>200 m1.4561.2032.001
F.Mengetal./SeparationandPuri cationTechnology 59 (2008) 91–10095
ni cantly[35].Wenotedthatonly20%ofthesludgeparticleshaveasizesmallerthan50 minMBR-A,whereasmorethan48%ofthesludgeparticlesdistributedasizerangefrom0to50 minMBR-C(Table1).InMBR-C,thehighaerationinten-sitywasthemainfactorcausingtheformationofsmallparticles.FromTable1,italsocanbeseenthattherewere0.826%parti-clesthathaveasizesmallerthan10 minMBR-C.However,therewereonly0.126%and0.226%particlesthathaveasizesmallerthan10 minMBR-AandMBR-B.Althoughthehigheraerationintensitycouldinduceaneffectivebacktransport,thesmallparticlesinsludgesuspensionhadastrongtendencytodepositonthemembranesurface.Thehigheraerationintensitygeneratedastrongershearstress,andthenresultedinasevere ocbreakage.Thebreakageofthesludge ocscertainlyduetoerosionstrengthsortoaruptureofthenetworkofpolysaccha-ride brilswhichisthesupportofthedifferentcompoundsandparticularlythecells[36].
3.2.2.Particlesizedistributionsofsludgesupernatant
After30minsettlement,thesupernatantinthesludgesus-pensionwassampledanditsparticlesizedistributionwasmeasured.WithrespecttothesupernatantinMBR-A,therewasasharppeakat60nm(Fig.3a),suggestingthatmost
ofthesmallparticlesorsolutesinthesupernatantdistributedinthesizeof60nm.Thisresultalsoindicatesthatitwasarelativehomogeneoussystem.Withrespecttothesludgesuper-natantinMBR-B,thereweretwosigni cantpeaks:200and800nm,suggestingthereweretwoclassesofparticlesormacro-moleculesolutesinthissupernatant.InFig.3c,therewerethreesigni cantpeakswhichdistributedat:150,700and6000nm,respectively.ThisresultsuggeststhatthesupernatantinMBR-CwasmoreheterogeneousthanthoseinMBR-AandMBR-B.Theheterogeneoussystemcanresultinacomplexmembranefoulingduetothecomplexinteractionbetweentheseparticlesandsolutes.Asynergisticfoulingbehaviorwasfoundduringmembrane ltrationofcolloidalmaterialsanddissolvedmat-ters[37].Thesynergisticfoulingbehaviorisattributedtothehinderedbackdiffusionoffoulantscausedbytheinteractionsbetweenorganicandcolloidalfoulants,whichresultinfasterandmoresubstantialfoulantdepositiononthemembranesurface[37].
Thepeaksat60–800nmwereduetothepresenceofcol-loidsandsolutes,whichcausedbythereleaseofboundEPSfromsludge octosludgesuspension.But,thepeakat6000nmindicatedthepresenceofnon-settleablecellsor ocfragmentsinthesludgesuspension,whichfurthersuggeststhatthe
high
Fig.3.ParticlesizedistributionsofthesludgesupernatantinthethreeMBRs:(a)MBR-Awithanaerationintensityof150L/h,(b)MBR-Bwithanaerationintensityof400L/hand(c)MBR-Cwithanaerationintensityof800L/h.
96F.Mengetal./SeparationandPuri cationTechnology
59 (2008) 91–100
Fig.4.Evolutionof(a)EPSconcentration,(b)colloidalCODand(c)solubleCODduringlong-termmembrane ltrationtests.
aerationintensitycouldleadtoseverebreakageofthesludge ocs.
3.2.3.ChangeofEPS,colloidalCODandsolubleCOD
Inthiswork,thesumoftotalproteinsandcarbohydrateswasconsideredtorepresentthetotalamountofEPSbecausethesearethedominantcomponentstypicallyfoundinextractedEPS[38].ResultsfromsomerecentstudiesindicatethatmainlyproteinandcarbohydrateintheEPScontributetothedeclineofthepermeate ux[39,40].ItwasthusexpectedthatthequantityofEPSwouldcorrelatetomembranefouling.TheEPSconcentrationofMBR-AwassmallerthanthatofMBR-BandMBR-C,indicatingthatthehigheraerationintensitycausedthereleaseoftoomuchEPS(Fig.4a).Duringthewholeexperiment,theEPSconcentrationsofMBR-BandMBR-C
increaseddramatically,thendecreasedandreachedsteadyval-ues.
Ithasbeenobservedthatcolloidalparticlesinthesludgesus-pensionhaveparticularimpactonmembranefouling[41,42].Thesolubleproductscanbereadilydepositedontothemem-branesurfacesbypermeationdrag,andnotreadilydetachedbyshearforceduetoitslowbacktransportvelocity[43].Theevo-lutionofthecolloidalCODofsludgesuspensionisgiveninFig.4b.Wenotethatatthebeginningofthetest,thecolloidalCODofthethreeMBRsincreaseddramatically,andhadhighvaluesfrom100to300h.EventhoughthecolloidalCODofthethreeMBRsdecreasedslowlyandreachedasteadyvalueafterabout400h,thecolloidalCODofMBR-CandMBR-BhavehighervaluesthanthatofMBR-A.Inaddition,asitcanbeseenfromFig.4c,thereisasimilarchangingtendencyofsolubleCODforMBR-A,MBR-BandMBR-C.
Theseresultsindicatethattheintensiveshearstressledto ocbreakageandcausedanincreaseofcolloidalparticlesandsolutesinsludgesuspension.Becausethecolloidalparticleandsoluteshavesmallersize,theycouldresultinaseveremembranefouling.FromFigs.2aand4,wecanseethatEPS,colloidalCODandsolubleCODmayhavesigni cantrelationwithmembranepermeation,thatiswhythepermeatebehaviorofthethreeMBRscouldbeseparatedintotwophases(Fig.2a).
Moreover,theDOconcentrationinducedbyaerationwouldhavesomeeffectonbiomasscharacteristics.Inactivatedsludgeprocess,iftheDOconcentrationistoolow(<2.0mg/L),itcanresultinsludgebulkingbecauseoftheovergrowthof lamen-tousbacteria.But,theDOconcentrationsofthethreeMBRswerechangedfrom3.2to4.76mg/L,andto6.50mg/L,respec-tively.ItindicatesthattherewereenoughDOinthethreeMBRs;therefore,thein uenceofDOconcentrationonsludgepropertycanbeignored.Additionally,theMLSSconcentrations(datawasnotshown)ofthethreeMBRshadlittlechangeinthewholelong-term ltrationtests,sotheimpactofMLSSconcentrationonmembranefoulingalsocanbeignored.3.3.Analysisofmembranefoulants
3.3.1.Deposition/adsorptionmechanismofmembranefoulants
Asthelong-termoperationwasterminated,thethreemem-branemodulesweretakenoutfromthebioreactorsand ushedbypurewater.Thesuspendedsolids(SS),colloidalCOD(CODc)andsolubleCOD(CODs)ofthewashedliquidwereevaluatedtoquantifythefoulantsthataccumulatedonthemem-branesurface(Table2).Atthesametime,thecomponentsofthesludgesuspensionineachMBRweremeasuredtointer-pretthedeposition/adsorptionmechanismofmembranefoulants(Table2).Evidently,themembranefoulantsandsludgesuspen-sionconsistedofsludgeparticles,colloidalparticlesandsolutes.ItcanbeseenthattheSS,whichmainlyconsistedofsludge ocs,decreasedsigni cantlywithincreasingaerationintensity,indi-catingthattheshearstressinducedbyaerationhasgreateffectonthedepositionoflargeparticles.Astheaerationintensityincreasedfrom150to400L/h,therelativecontentofcolloidalparticlesdecreasedfrom8.05%to5.38%,however,therelative
F.Mengetal./SeparationandPuri cationTechnology 59 (2008) 91–100
Table2
Analysisresultsofthemembranefoulants
Componentsofmembranefoulants(%)SS(g/m2)
MBR-AMBR-BMBR-C
34.6(87.31)22.6(88.11)7.9(69.66)
CODc(g/m2)3.19(8.05)1.38(5.38)1.11(9.79)
CODs(g/m2)1.84(4.64)1.67(6.51)2.33(20.55)
Totalfoulants(g/m2)39.6325.6511.34
Componentsofsludgesuspension(%)SS(g/L)6.24(99.54)6.43(99.44)6.59(99.23)
CODc(g/L)0.015(0.24)0.019(0.29)0.027(0.41)
CODs(g/L)0.014(0.22)0.017(0.26)0.024(0.36)
97
Total(g/L)6.276.476.64
contentofsolubleproductsincreasedfrom4.64%to6.51%.Italsocanbeseenthattherelativecontentofcolloidalparti-clesandsolutesonmembranesurfaceweremuchhigherthantheirrelativecontentinthesludgesuspension,con rmingthatthecolloidsandsoluteshaveastrongertendencytodepositontothemembranesurfacethanthesludge ocs.Table2alsodepictsthatinMBR-CthecontributionofcolloidalparticlesandsolutestothetotalfoulantswaslargerthanthatinMBR-AandMBR-B,implyingthatastheMBRoperatedunderhighaera-tionintensity,colloidalparticlesandsolubleproductsmaybethemajorfoulantstomembranefouling.Accordingtoprevi-ousliteratures[43–45],ithasbeenshownthatthecolloidsanddissolvedorganicmatterareresponsibleformembranefoul-ingduringmembrane ltrationofsludgesuspension.Therefore,thecolloidsandsolutesinsludgesuspensionshouldbecon-trolledduringthelong-termoperationofMBRsinordertoobtainpreferablemembranepermeation.
Inthemembrane ltrationprocessunderaconstantTMP,the ltrationprocesscanbedividedintothefollowingtwostages:accumulationstageofundetachablecakelayer,andasecondstagewhereaccumulationanddetachmentofcakelayerreachequilibriumstage[46].InertialliftisthedominantmechanismforlargeparticlesandhighshearrateswhereasBrowniandif-fusionisthedominantforsmallparticlesandlowshearrates[47,48].However,shear-induceddiffusionseemstobethemostimportantoneforintermediateparticlesizesandshearrates[47,48].FromTable2,itcanbeseenthatastheaerationintensityincreasedfrom150to400L/h,thedepositionofcolloidsonthemembranesurfacedecreasedfrom3.19to1.3g/m2,however,thedepositionofsoluteshadlittlevariation.ItisclearthattheBrowniandiffusionwasthemainbacktransportmechanismforMBR-A,butBrowniandiffusionandshear-induceddiffusioncoexistedinMBR-B.Astheaerationintensityincreasedfrom400to800L/hinMBR-C,theconcentrationofthelargeparti-clesdecreaseddramatically.Thedataobtainedfromthecurrentinvestigation,togetherwithpreviousworkintheliterature,con- rmthatthebacktransportmechanismforMBR-CconsistedofBrowniandiffusion,shear-induceddiffusionandinertiallift.
Table3
Analysisresultsof ltrationresistance
Items(%)Rm(1011m 1)
MBR-AMBR-BMBR-C
1.05(6.02)1.05(10.76)1.05(9.44)
Rp(1011m 1)2.45(14.06)2.71(27.77)4.18(37.59)
FromTable2,itcanbeseenthatthesolubleproductsandcolloidalparticleshadagreatcontributiontothecakelayerastheMBRoperatedunderhighshearforcecondition.Itindicatesthatlargeaerationintensitycaninducetheformationofanon-porouscakelayer.Thisisthereasonwhythepermeate uxofMBR-CdecreasedmoreabruptlythanthatofMBR-AandMBR-B.InMBR-A,thelowershearforcecouldnotremovethefoulinglayereffectively,andhenceresultedintheformationofathickerfoulinglayer(seeTable3)onthemembranesurfacewhichwouldincreasethemembrane ltrationresistancestrongly.
3.3.2.Evaluationof ltrationresistance
Toexaminethefoulingtendencies,cakemass,speci ccakeresistanceandeachresistancetermwereanalyzed(Table3).DuringtheoperationofMBRs,sludge ocs,colloidsandsolutesdepositedonthemembranesurface,thecakeresistancebecamethedominantresistance.Thecontributionofcakeresistancetototalresistancehadarangefrom52.97%to79.40%.Table3alsoshowsthatthecakeresistanceinMBR-AwasmorethantwotimesofthoseinMBR-BandMBR-C,indicatingthataera-tionhadgreatimpactsontheremovalofcakelayer.Furthermore,theporeblockingresistanceincreasedwithincreasingaerationintensity,especiallyforMBR-C.ThisresultsuggeststhatthereoccurredasevereirreversiblefoulinginMBR-C.Thisresult,togetherwithTable2,showsthatunderhighaerationinten-sitythedepositionandadsorptionofcolloidsandsolutesonmembranewouldresultinsevereporeblockingorirreversiblefouling.
Theeffectofaerationoncakemassandspeci cresistanceisshowninTable3.Thecakemassdecreaseddramaticallyasaer-ationintensityincreased,however,thespeci ccakeresistanceincreasedde nitelyastheaerationintensityincreasedfrom400to800L/h.Itindicatesthatthedepositionofcolloidsandsolutesonmembranesurfacewouldformadensecakelayer.AccordingtoCarmanKozenyequation,thespeci cresistanceissigni -cantlyin uencedbysludgeparticlesizeandcakeporosity.InMBR-C,thecolloidsandsolutesweresigni cantcontributorstothefoulantsthatdepositedonthemembranesurface,soitcouldformadensecakelayer.
Rc(1011m 1)13.84(79.40)6.00(61.48)5.89(52.97)
Rt(1011m 1)17.439.7611.12
mc(g/m2)39.6325.6511.34
α(1010m/g)3.492.345.19
98F.Mengetal./SeparationandPuri cationTechnology
59 (2008) 91–100
Fig.5.FTIRspectraofthemembranefoulants:(a)MBR-A,(b)MBR-Band(c)MBR-C.
F.Mengetal./SeparationandPuri cationTechnology 59 (2008) 91–10099
3.3.3.FTIRanalysisofmembranefoulants
Ingeneral,theFTIRtechniquecanprovidemoredetailedinformationaboutthedepositionofbiopolymersonthemem-branesurface.TheFTIRspectraofmembranefoulantsinthethreeMBRsarepresentedinFig.5.Theyaresimilarinthepro- lebutsigni cantlydifferentintheadsorptionintensity.Thespectrumshowsabroadregionofabsorptionat3400cm 1,whichisduetothestretchingoftheO–Hbondinhydroxylfunc-tionalgroups[49].Therewasabroadpeakat1100cm 1,whichisduetoC–Obondsandisassociatedwithalcohols,ethersandpolysaccharides.InMBRs,thispeakisusuallyattributedtothepresenceofpolysaccharidesorpolysaccharide-likesub-stances.Choetal.[50]attributedthispeaktopolysaccharidesorpolysaccharide-likemembranefoulants;whereasThurman[51]attributedthispeaktosilicateimpuritiesinhumicsamples.AsshowninFig.5,therearetwopeaks(1640and1550cm 1)inthespectrumwhichareuniquetotheproteinsecondarystructure,calledamidesIandII[52].TheamideIisthestretchingvibrationbandsassociatedprimarilywiththepeptidecarbonyls(CO),andtheamideIIbandsat1550cm 1isduetotheinteractionbetweentheN–HbondingandtheC–NstretchingoftheC–N–Hgroup[53].Thisresultindicatesthepresenceofproteinsinmem-branefoulants.Basedonthepeakat1380cm 1,themembranefoulantscontainedamediumamountoflipids[54].Jarusutthiraketal.observedasigni cantpeakat1720cm 1duringmembrane ltrationofwastewatertreatmentplantef uent[55].Thispeakisassociatedwithcarboxylicgroups,representingatypicalchar-acteristicsofhumicandfulvicacids.Inourwork,thispeakwasabsentindicatingthattherewasnohumicorfulvicacidsinthemembranefoulantsortheamountofhumicandfulvicacidsinthemembranefoulantscouldbeignored.Thepresenceofproteins,polysaccharidesandlipidsinmembranefoulantssug-gestsasigni cantorganicfoulingwhichmainlyresultedfromEPS.
FromFig.5,italsocanbeseenthattheabsorptioninten-sityofFTIRspectrumsinthethreeMBRswasdifferentfromeachother.Theintensitywasgivenintheorderof:MBR-C>MBR-B>MBR-A.Theabsorptionintensityre ectedtherelativeamountofbiopolymersinthetotalfoulants.Therefore,theabove-mentionedresultindicatesthattherelativeamountofbiopolymersorEPSinthetotalfoulantsalsofollowedtheorder:MBR-C>MBR-B>MBR-A.ThisresultcoincidedwiththeresultsobtainedfromSection3.3.1.4.Summary
Thispaperpresentsacomparativeandcorrelativestudyofaerationintensitiesonmembraneperformance.ThemembranefoulingmechanismsofthreeparallelMBRswereinvestigatedfromtwoaspects:analysisofsludgecharacteristicsandevalua-tionofmembranefoulants.Fromtheresultsreportedhere,thefollowingconclusionscanbedrawn:
Aerationintensityhadsigni cantimpactsonmembraneper-meation.Smallorlargeaerationintensityhadanegativein uenceonmembranepermeability.Lowaerationcouldnotremovethemembranefoulantsfrommembranesurfaceeffec-
tively.However,highaerationcouldinduceaseverebreakageofsludge ocs.
Thehighaerationintensitygeneratedastrongershearstress,andthenresultedinasevere ocbreakage.Thesmallsizeofsludgeparticlesgeneratedatthehighershearstresswasincloseassociationwiththedramaticmembranefouling.Furthermore,thehighshearconditioncouldgenerateahet-erogeneoussludgesupernatant,andresultedinacomplexmembranefouling.Thehighshearconditionscouldpromotethereleaseofcolloidalandsolublecomponentsfromthemicrobial ocstothebulksolutionduetomicrobial ocbreakageandthuscausearapidlossinmembraneperme-ability.
Themembranefoulantsconsistedofsludge ocs,colloidalparticlesandsolutes.ThecontributionofcolloidalparticlesandsolutestothemembranefoulantsbecamemoreimportantastheMBRoperatedunderlargeaerationintensity.ThethreeMBRshaddifferentbacktransportmechanismoffoulantsdeposition.Underaerationintensityof150L/h,Browniandif-fusionwasthemainbacktransportmechanismformembranefoulants,whichcouldnotremovalthecakelayereffectively.ThecakeresistanceofMBR-A(150L/h)wasmorethantwotimesofMBR-B(400L/h)andMBR-C(800L/h),indicatingthataerationhasgreatimpactsontheremovalofcakelayer.Thehighaerationintensity(800L/h)couldresultinseveremembraneporeblocking.WiththehelpofFTIRtechnique,themajorcomponentsoforganicmattersinthemembranefoulantswereidenti edasproteins,polysaccharidemattersandlipids.Acknowledgement
TheprojectsupportedbyNationalNaturalScienceFounda-tionofChina,GrantNo.50578024.References
[1]H.Y.Ng,T.W.Tan,S.L.Ong,Membranefoulingofsubmergedmembrane
bioreactors:impactofmeancellresidencetimeandthecontributingfactors,Environ.Sci.Technol.40(2006)2706–2713.
[2]K.Kimura,N.Yamato,H.Yamamura,Y.Watanabe,Membranefoulingin
pilot-scalemembranebioreactors(MBRs)treatingmunicipalwastewater,Environ.Sci.Technol.39(2005)6293–6299.
[3]H.Choi,K.Zhang,D.D.Dionysiou,D.B.Oerther,G.A.Sorial,Effectof
permeate uxandtangential owonmembranefoulingforwastewatertreatment,Sep.Purif.Technol.45(2005)68–78.
[4]X.-M.Wang,X.-Y.Li,X.Huang,Membranefoulinginasubmergedmem-branebioreactor(SMBR):characterisationofthesludgecakeanditshigh ltrationresistance,Sep.Purif.Technol.52(2007)439–445.
[5]S.Ognier,C.Wisniewski,A.Grasmick,Membranebioreactorfoulingin
sub-critical ltrationconditions:alocalcritical uxconcept,J.Membr.Sci.229(2004)171–177.
[6]J.Orantes,C.Wisniewski,M.Heran,A.Grasmick,Thein uenceof
operatingconditionsonpermeabilitychangesinasubmergedmembranebioreactor,Sep.Purif.Technol.52(2006)60–66.
[7]L.Chu,S.Li,Filtrationcapabilityandoperationalcharacteristicsof
dynamicmembranebioreactorformunicipalwastewatertreatment,Sep.Purif.Technol.51(2006)173–179.
[8]W.Khongnakorn,C.Wisniewski,L.Pottier,L.Vachoud,Physicalproper-tiesofactivatedsludgeinasubmergedmembranebioreactorandrelationwithmembranefouling,Sep.Purif.Technol.55(2007)125–131.
100F.Mengetal./SeparationandPuri cationTechnology 59 (2008) 91–100
[9]M.Brockmann,C.F.Seyfried,Sludgeactivityundertheconditionsof
cross owmicro ltration,WaterSci.Technol.35(1997)173–181.
[10]K.Yamamoto,M.Hiasa,T.Mahmood,T.Matsuo,Directsolid–liquidsep-arationusinghollow bermembraneinanactivatedsludgeaerationtank,WaterSci.Technol.21(1989)43–54.
[11]S.Churchouse,Membranebioreactors:goingfromlaboratorytolarge
scale-problemstoclearsolutions,in:ProceedinginMembranesandtheEnvironment,UniversityofOxford,2002.
[12]T.Ueda,K.Hata,Y.Kikuoka,O.Seino,Effectsofaerationonsuctionpres-sureinasubmergedmembranebioreactor,WaterRes.31(1997)489–494.[13]S.P.Hong,T.H.Bae,T.M.Tak,S.Hong,A.Randall,Foulingcontrolinacti-vatedsludgesubmergedhollow bermembranebioreactors,Desalination143(2002)219–228.
[14]S.-S.Han,T.-H.Bae,G.-G.Jang,T.-M.Tak,In uenceofsludgereten-tiontimeonmembranefoulingandbioactivitiesinmembranebioreactorsystem,Proc.Biochem.40(2005)2393–2400.
[15]T.-H.Bae,S.-S.Han,T.-M.Tak,Membranesequencingbatchreactorsys-temforthetreatmentofdairyindustrywastewater,Proc.Biochem.39(2003)221–231.
[16]L.Defrance,M.Y.Jaffrin,Comparisonbetween ltrationsat xedtrans-membranepressureand xedpermeate ux:applicationtoamembranebioreactorusedforwastewatertreatment,J.Membr.Sci.152(1999)203–210.
[17]T.Ueda,K.Hata,Domesticwastewatertreatmentbyasubmerged
membranebioreactorwithgravitational ltration,WaterRes.33(1999)2888–2892.
[18]X.Zheng,J.Liu,Dyeingandprintingwastewatertreatmentusingamem-branebioreactorwithagravitydrain,Desalination190(2006)277–286.[19]X.Zheng,J.X.Liu,Optimizingofoperationalfactorsofamembrance
bioreactorwithgravitydrain,WaterSci.Technol.52(2005)409–416.[20]B.Fan,X.Huang,Characteristicsofaself-formingdynamicmembrane
coupledwithabioreactorformunicipalwastewatertreatment,Environ.Sci.Technol.36(2002)5245–5251.
[21]B.Fround,R.Palmgren,K.Keiding,P.H.Nielsen,Extractionofextracel-lularpolymersfromactivatedsludgeusingacationexchangeresin,WaterRes.30(1996)1749–1758.
[22]O.H.Lowery,N.J.Rosebrough,A.L.Farr,R.J.Randall,Proteinmeasure-mentwiththefolinphenolreagent,J.Biol.Chem.193(1951)265–275.[23]J.-S.Park,K.-M.Yeon,C.-H.Lee,Hydrodynamicsandmicrobial
physiologyaffectingperformanceofanewMBR,membrane-coupledhigh-performancecompactreactor,Desalination172(2005)181–188.
[24]J.Lee,W.Y.Ahn,C.H.Lee,Comparisonofthe ltrationcharacteristics
betweenattachedandsuspendedgrowthmicroorganismsinsubmergedmembranebioreactor,WaterRes.35(2001)2435–2445.
[25]F.G.Meng,H.M.Zhang,Y.S.Li,X.W.Zhang,F.L.Yang,J.N.Xiao,Cake
layermorphologyinmicro ltrationofactivatedsludgewastewaterbasedonfractalanalysis,Sep.Purif.Technol.44(2005)250–257.
[26]F.G.Meng,H.M.Zhang,Y.S.Li,X.W.Zhang,F.L.Yang,Applicationof
fractalpermeationmodeltoinvestigatemembranefoulinginmembranebioreactor,J.Membr.Sci.262(2005)107–116.
[27]APHA,StandardMethodsForTheExaminationofWaterandWastewater,
19thed.,AmericanPublicHealthAssociation,Baltimore,MD,1995.[28]G.Belfort,R.H.Davis,A.L.Zydney,Thebehaviorofsuspensionsand
macromolecularsolutionsincross owmicro ltration,J.Membr.Sci.96(1994)1–58.
[29]B.J.James,Y.Jing,X.DongChen,Membranefoulingduring ltrationof
milk—amicrostructuralstudy,J.FoodEng.60(2003)431–437.
[30]K.Yamagiwa,Y.Oohira,A.Ohkawa,Performanceevaluationofaplunging
liquidjetbioreactorwithcross ow ltrationforsmall-scaletreatmentofdomesticwastewater,Bioresour.Technol.50(1994)131–138.
[31]F.S.Fan,H.D.Zhou,H.Husain,Identi cationofwastewatersludgechar-acteristicstopredictcritical uxformembranebioreactorprocesses,WaterRes.40(2006)205–212.
[32]J.Zhang,H.C.Chua,J.Zhou,A.G.Fane,Factorsaffectingthemem-braneperformanceinsubmergedmembranebioreactors,J.Membr.Sci.284(2006)54–66.
[33]A.Drews,M.Vocks,V.Iversen,B.Lesjean,M.Kraume,In uenceof
unsteadymembranebioreactoroperationonEPSformationand ltrationresistance,Desalination192(2006)1–9.
[34]P.Le-Clech,V.Chen,T.A.G.Fane,Foulinginmembranebioreactorsused
inwastewatertreatment,J.Membr.Sci.284(2006)17–53.
[35]R.Bai,H.F.Leow,Micro ltrationofactivatedsludgewastewater—the
effectofsystemoperationparameters,Sep.Purif.Technol.29(2002)189–198.
[36]D.S.Parker,W.J.Kaufman,D.Jenkins,Flocbreakupinturbulent occu-lationprocesses,J.Sanit.Eng.Div.ASCESA1(1972)79–89.
[37]Q.Li,M.Elimelech,Synergisticeffectsincombinedfoulingofaloose
nano ltrationmembranebycolloidalmaterialsandnaturalorganicmatter,J.Membr.Sci.278(2006)72–82.
[38]W.Lee,S.Kang,H.Shin,Sludgecharacteristicsandtheircontributionto
micro ltrationinsubmergedmembranebioreactors,J.Membr.Sci.216(2003)217–227.
[39]Y.Ye,P.L.Clech,V.Chen,A.G.Fane,Evolutionoffoulingduringcross- ow ltrationofmodelEPSsolutions,J.Membr.Sci.264(2005)190–199.
[40]H.Nagaoka,H.Nemoto,In uenceofextracellularpolymericsubstanceon
nitrogenremovalinanintermittently-aeratedmembranebioreactor,WaterSci.Technol.51(2005)151–158.
[41]E.H.Bouhabila,R.BenAim,H.Buisson,Foulingcharacterisation
inmembranebioreactors,Sep.Purif.Technol.22–23(2001)123–132.
[42]L.Defrance,M.Y.Jaffrin,B.Gupta,P.Paullier,V.Geaugey,Contribution
ofvariousconstituentsofactivatedsludgetomembranebioreactorfouling,Bioresour.Technol.73(2000)105–112.
[43]T.H.Bae,T.M.Tak,Interpretationoffoulingcharacteristicsofultra ltration
membranesduringthe ltrationofmembranebioreactormixedliquor,J.Membr.Sci.264(2005)151–160.
[44]S.Rosenberger,abs,B.Lesjean,R.Gnirss,G.Amy,M.Jekel,J.C.
Schrotter,Impactofcolloidalandsolubleorganicmaterialonmembraneperformanceinmembranebioreactorsformunicipalwastewatertreatment,WaterRes.40(2006)710–720.
[45]S.Rosenberger,H.Evenblij,S.tePoele,T.Wintgens,abs,Theimpor-tanceofliquidphaseanalysestounderstandfoulinginmembraneassistedactivatedsludgeprocesses—sixcasestudiesofdifferentEuropeanresearchgroups,J.Membr.Sci.263(2005)113–126.
[46]R.Bian,K.Yamamoto,Y.Watanabe,Theeffectofshearrateoncontrolling
theconcentrationpolarizationandmembranefouling,Desalination131(2000)225–236.
[47]C.Wisniewski,A.Grasmick,A.LeonCruz,Criticalparticlesizeinmem-branebioreactors:caseofadenitrifyingbacterialsuspension,J.Membr.Sci.178(2000)141–150.
[48]R.H.Davis,Modelingoffoulingofcross owmicro ltrationmembranes,
Sep.Purif.Methods21(1992)75–126.
[49]M.Kumar,S.S.Adham,W.R.Pearce,Investigationofseawaterreverse
osmosisfoulinganditsrelationshiptopretreatmenttype,Environ.Sci.Technol.40(2006)2037–2044.
[50]J.Cho,G.Amy,J.Pellegrino,Y.Yoon,Characterizationofcleanandnat-uralorganicmatter(NOM)fouledNFandUFmembranes,andfoulantscharacterization,Desalination118(1998)101–108.
[51]E.M.Thurman,OrganicGeochemistryofNaturalWaters,Martinus
Nijhoff/Dr.W.JunkPublishers,Boston,MA,1985.
[52]T.Maruyama,S.Katoh,M.Nakajima,H.Nabetani,T.P.Abbott,A.Shono,
K.Satoh,FT-IRanalysisofBSAfouledonultra ltrationandmicro ltrationmembranes,J.Membr.Sci.192(2001)201–207.
[53]R.M.Silverstein,F.X.Webster,SpectrometricIdenti cationofOrganic
Compounds,sixthed.,Wiley,NewYork,1998.
[54]A.Ramesh,D.J.Lee,i,Membranebiofoulingbyextracellularpoly-mericsubstancesorsolublemicrobialproductsfrommembranebioreactorsludge,Appl.Microbiol.Biotechnol.74(2007)699–707.
[55]C.Jarusutthirak,G.Amy,J.-P.Croue,Foulingcharacteristicsofwastew-ateref uentorganicmatter(EfOM)isolatesonNFandUFmembranes,Desalination145(2002)247–255.
正在阅读:
A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different08-09
河北省正定中学2019届高三语文上册第四次月考试题12-17
轧管机基础知识 文档03-26
有效教学调查问卷12-31
第三节 日元纸币的防伪特征 - 图文10-05
记一堂难忘的语文课作文450字07-11
夕阳里的等待日记10-29
2014年广东会计基础考试试题(七)05-08
基础公务员入党总结09-08
- 1opensees study
- 2UBM (Under Bump Metallurgy) Systems
- 3Why study in abroad
- 4Accommodating Hybrid Retrieval in a Comprehensive Video Database Management System
- 5选修7 Unit 3 Under the sea
- 6An analytical evaluation of the response of steel joints under
- 7商法导论case study
- 8Study Abroad 英语
- 9Expression analysis of anthocyanin regulatory genes in response to different light qualities in
- 10Buckling Analysis of Debonded Sandwich Panel Under Compressi
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- membrane
- comprehensive
- bioreactors
- submerged
- different
- operated
- fouling
- study
- under