Genetic algorithms using multi-objectives
更新时间:2023-06-05 09:06:01 阅读量: 实用文档 文档下载
- genetic推荐度:
- 相关推荐
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
RoboticsandAutonomousSystems33(2000)
179–190
Geneticalgorithmsusingmulti-objectives
inamulti-agentsystem
AlainCardona,ThierryGalinhob,Jean-PhilippeVacherc,
b
LIP6ParisVI,UPMC,Case69,4,PlaceJussieu,75252ParisVI,France
LIH,InstitutSupérieurd’EtudesLogistiques,QuaiFrissard,BP1137,76063LeHavreCedex,FrancecLIH,InstitutUniversitairedeTechnologie,PlaceRobertSchuman,BP4006,76610LeHavre,France
Received1January1999;receivedinrevisedform1May1999;accepted1December1999
a
Abstract
Weareinterestedinajob-shopschedulingproblemcorrespondingtoanindustrialproblem.Ganttdiagram’soptimizationcanbeconsideredasanNP-dif cultproblem.Determininganoptimalsolutionisalmostimpossible,buttryingtoimprovethecurrentsolutionisawayofleadingtoabetterallocation.Thegoalistoreducethedelayinanexistingsolutionandtoobtainbetterschedulingattheendoftheplanning.
Weproposeanoriginalsolutionbasedongeneticalgorithmswhichallowstodetermineasetofgoodheuristicsforagivenbenchmark.Fromtheseresults,weproposeadynamicmodelbasedonthecontract-netprotocol.Thismodeldescribesawaytoobtainnewschedulingswithagentnegotiations.Weimplementtheagentparadigmonparallelmachines.
Afteradescriptionoftheproblemandthegeneticmethodweused,wepresentthebenchmarkcalculationsthathavebeenperformedonanSGIOrigin2000.Theinterpretationoftheseisawaytore neheuristicsgivenbyourevolutionprocessandawaytoconstrainouragentsbasedonthecontract-netprotocol.ThisdynamicmodelusingagentsisawaytosimulatethebehaviorofentitiesthataregoingtocollaboratetoimprovetheGanttdiagram.©2000ElsevierScienceB.V.Allrightsreserved.
Keywords:Job-shopschedulingproblem;Multi-objectivegeneticalgorithm;Multi-agentsystem;Contract-netprotocol
1.Introduction
Inthejob-shopschedulingproblem(JSSP),Ganttdiagram’soptimizationcanbeconsideredasanNP-dif cultproblem[10].Determininganoptimalsolutionisalmostimpossible,buttryingtoimprovethecurrentsolutionisawayofleadingtoabetterallocation.Multi-agentsystems[15]areoftenused
ExpandedversionofatalkpresentedattheSecondInterna-tionalSymposiumonIntelligentManufacturingSystems,IMS’98,SakaryaUniversity,Turkey,6–7August1998. Correspondingauthor.
E-mailaddresses:alain.cardon@lip6.fr(A.Cardon),thierry.galinho@univ-lehavre.fr(T.Galinho),jean-philippe.vacher@poleia.lip6.fr(J.-P.Vacher).
forsuchproblems,whereasolutionexistsbutisnoteasilycalculable[52–55].Weexpectsomesolutiontoemergefromsuchsituations,thatisthereasonwhyweusethem.Weusethemtosimulatethebehaviorofentitiesthataregoingtocollaboratetoaccom-plishactionsontheGanttdiagramsoastosolveagiveneconomicfunction.Theidealsolutiontosuchaproblemisapointwhereeachobjectivefunctioncorrespondstothebest(minimum)possiblevalue.WepresentourJSSP,whichisasimpli edversionofFISIAS[41].Wepresentsomeresultsbasedonge-neticalgorithms[50],thenwepresentanagentmodelbasedonthecontract-netprotocoltoimproveasolu-tioncorrespondingtoaGanttdiagram.
0921-8890/00/$–seefrontmatter©2000ElsevierScienceB.V.Allrightsreserved.PII:S0921-8890(00)00088-9
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
180A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190
1.1.Job-shopschedulingproblem
Schedulingisanessentialfunctioninproductionmanagement.Itisadif cultproblemdependingonthenumberofcalculationsrequiredtoobtainaschedul-ingthatoptimizesthechosencriterion[37].Inaddi-tion,therearemanyschedulingproblemsandvariousapproachmethodshavebeenproposedtosolvesomepartsofthem.Wearegoingtode neourschedulingproblemanddescribesomeexistingproblemsaswellastheconstraintsthatweconsidered.
Amongvariousde nitionsoftheschedulingprob-lem,wecanhighlightacommondenominator:itisthetaskallocationwithaminimumcostandinareason-abletime.Weareinthe eldofdiscontinuousproduc-tionwiththeprocessingofsmallandaverageseries.Aschedulingproblemexists:
whenasetoftasks(jobs)istobeprocessed;
whenthisproblemcanbebrokenupintotasks(operations);
whentheproblemconsistsinthede nitionofthetemporaltasklocationand/orthemannertoallocatethemtothenecessaryresources.
Lamy[34]de nestheschedulingproblemofdiscon-tinuousproduction:“Theschedulingproblemoftheproductionconsistsinmanufacturingatthesametime,withthesameresources,asetofdifferentproducts.”Schedulingdetermineswhatisgoingtobemade,when,whereandwithwhatresources;givenaset
of
taskstoaccomplish,theschedulingproblemconsistsindeterminingwhatoperationshavetobeexecutedandingivingdatesandresourcesfortheseoperations.1.2.Ourjob-shopschedulingproblem
Schedulingandplanningaredif cultproblems[34,37]withalongandvariedhistoryintheareasofoperationalresearchandarti cialintelligence,andtheycontinuetobeactiveresearchareas.Theschedulingproblem,whichissubjecttoprecedenceandresourceconstraints,isanNP-dif cultproblem[13].Itisthusimpossibletoobtainanoptimalsolu-tionsatisfyingtherealtimeconstraint.
So,heuristicalgorithmsareusuallyimplementedtoobtaina“good”solutioninsteadofanoptimalone[34,50].Duetothenumberofvarietiesofproductionprocessesandtheincreasingrateofchangeinoper-ationalparameterscharacterizingthedatatobepro-cessed(capacitiesoftheresources,demands,etc.),itisbecomingmoreandmoredif cultformanagementboardstomakedecisions.
ThereasonthatwehavechosentheJSSPwithMmachinesandNjobsisbecauseitisthemostcom-plexandthemostoftenconsidered[10].Todeterminethequalityofthesolution,agraphicalinterfacehasbeendeveloped(Fig.1).Forourproblem,thegoalistheminimizationofdelaysandadvancesforalljobsaccordingtothe“duedates”givenbythemanager
Fig.1.GraphicalinterfaceusedforourJSSP.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190181
accordingtotheirobjectives.Thisobjectivehasbeenchosentoobtainsolutionsveryrapidlybecausecal-culationsareverynumerouswithgeneticalgorithms.Alsobecauseitissuf cienttocomparethesealgo-rithmswithothermethodssuchasthegradient,thesimulatedannealing,etc.Geneticalgorithmsenableustoobtainagoodqualitysolutionquicklyandeasilycomparedtootherresearchtechniques[20,26].2.Theselectionfunction
Wecannotusetheclassicselectionfunctionlikeamethodoftheroulettewheel,foritisproportional.Indeed,wewouldtakeanagentasaspeci centitybutwithouttakingintoaccountsomeexteriorpres-suresontheagent:itsenvironmentandthesystem’semergencephenomena.Therefore,theselectionfunc-tionshouldnotonlyconsidertheactionsoftheagent,whethertheseactionsaregoodorbad,butalsothecommunicationsbetweenagents.Wetalkaboutsenses(semanticorlink).Bysenses,wemean:
thesenseofcommunicationwiththeotheragents(networklinks);
thesemanticsofthecommunicationbetweentwoindividuals.
Therefore,ourcrossoverprocesshastotakeintoaccountthesemanticsofcommunication.Butanagent,seenasastructureisacompoundentitymadeofthefollowingelements:functionsofcommunica-tion,functionsofaction,functionsofbehavioralongwithalocalgeneticpatrimony.JustasevolutionaryalgorithmssimulateaDarwinianprocess,MAScansimulatetheevolutionofanucleusoragroupandbyextensionofanorganization.Asocialorganizationmaynotdiversifyandevolvebycloning:inallsocialorganizations(humanoranimal),wehaveacrossoverprocessthattendstopreservethenaturalinheritancebutalsotomakeitmorepowerful.Therefore,ourmulti-agentsystem,byintegratingthisnewconceptofreproductionwithcrossing,willhavetotakeintoaccounttheseparameters.Toachievethis,wecanuseageneticalgorithmswitchboard,asde nedbyHolland[26]oranevolutionarystrategyasde nedbyBäck[2].Bydoingthat,eachagent(individual)willbecharacterizedbyachainofbitswhoselengthwillcorrespondtoamultipleofthenumberofparam-eters.Thischainwillcorrespondtoachromosome
[54]thatwillrepresentthestructureoftheagent.Eachcharacter(action,behaviorandcommunication)composingtheagentwillcorrespondtonumericaldatareferringtorulesdatabase.Atoanaddressdatabase.Sincei,BknowledgejandCkwillreferisan“in nitedimension”,duetothefactthatanagentonlyhaslimitedknowledgeofitsenvironment,theformeronlyhas,apriori, niteknowledge.By niteknowledge,wesupposethatithasa nishednumberofactionsorknowledgeavailable.Especially,atthelevelofrulesofaction,ifonetakesthesetofplace-mentrulesdescribedbyPécuchetetal.[41],wehaveatmostnrules,thereforebyusingassignmenttech-niquescommonlyusedinelectronicandespeciallyintheassignmentmemory,wecanreserveacertainnumberofaddressescorrespondingtorules.There-fore,forabinaryrulecoding,wecanuseacodingon10bits;inthisway,itisalwayspossibletoincreasetheknowledgetothelevelofourdatabase.Neverthe-less,thesizeofourchromosomeisimportantinordertoreducethememoryspace.WeusethecodingofGray.Thus,wecanusegeneticalgorithmsonMAS.3.Themutationfunction
Themutationwillcorrespondtothechangeofabit,thus,wecanuseswitchboardoperators[17,22].Ourconstraintatthemutationlevel,consistsinhav-ingacorrespondencebetweenthebitsstringandthedatabase.Thus,bychangingthevalueofonebit,wecanintroduceanewcharacter.Thiswillhavearepercussionontheenvironment,butespeciallyonitsmembershiptoagroup.Thecommunicationsithasbeenabletohavewithotherelementsofthegroupwill,incontestably,bechanged.Forexample,considerthatthemutationintroducesacertainag-gressivenessattheagentlevel,thencommunicationswiththegrouparegoingtochangeandthegroupconsequently,willprobablylosesomeofitssocialcohesion.Thereforeinordertoavoidthetooabruptupsetofthesocialbalancethatcanexistbetweenin-dividualscomposingagroupandtheorganizationit-self,themutationinterventionsbygeneticalgorithmswillneedtobeweak.Nevertheless,wecanconsiderthatatthebeginningofthesimulationoftheorgani-zation,asatthebeginningofacivilization,progresswasrapidenough.Therefore,atthebeginning,wecanintroduceanimportantnumberofmutations.We
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
182A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190
willuseasdistributionforthenumberofmutationbygeneration,acurveofparameters(α,β)
f:x→β
withβ∈R+andα∈R+ .
(1)Thus,byusingthistypeofdistribution,weintroducealotofmutationsatthebeginningofthesimulationandfewattheendinordertoavoiddisruptingtheprocessofevolutionbydeeplymodifyingcharacteristicsofchromosomes,andthereforeofindividuals.Toomanymutationsinthesystemswouldinexorablysowtheseedsofchaos.Wehavepreviouslyseenapossibledistribution.Nevertheless,byusingaGaussiandistri-butiontodeterminetheprobabilityofmutation,wekeeptheswitchboardofthegeneticalgorithm[39].4.Thecrossoveroperator
Fromanhistoricalpointofview,geneticalgorithms[27]correspondtoarandomphenomenon,butthemaindifferencecomparedtoaclassicrandommethodisthathere,weconverge,stepbysteptoanoptimum(localorglobal)inthespaceofsolutions[3].Thus,wearenotsubjecttochanceasweareintheformer,totallyrandommethod.A rstcrossingapproachwouldbetoconsideranagentasa“piechart”whereeachslicecorrespondstoacharacter.Byrandomlychoosingtwocutpointsinouragentcomparedtoareferential,wewouldexchangetwopartstoformnewindividuals.However,aproblemarises,astohowdowesetourreferential?Wecannotsetapermanentreferential,be-causeinthiscase,itsupposestoconsideranadjustableindividual.So,anagentisanentitythathasnofacets.Anagentiscomparabletoanindividualpartofanor-ganization.Nevertheless,itisnotpossibletodescribeitasaphysicalindividual(aman).Thereforethis rstapproachisinterestingbutdoesnotgivesatisfaction.Knowingthatnotallagentshavethesamegeneticpatrimony,thatistosaythattheyhavenoequalchro-mosomelengths,andknowingthatanagenthasnofacets,wecanrepresentitasatoroïdalchainofbits: Thisrepresentationdoesnotsupposetheinterven-tionofthenotionoffacetsofanagent.
Wecancrossindividualsofdifferentlengths[20].Itisalwaysnecessarytode neastartingpointforourchromosomeinordertocorrectlyexchangephe-notypes.Whichonedowechoose?Inoursystem,anagentiscomposedoffunctionsofaction,knowledge
andbehavior,thatmakeacertainnumberofpossi-blereferentials.Therefore,thechoiceofareferentialwouldbeaproblem,exceptbyrandomlychoosingit.Amongpossiblefunctions,whatdistributionwemustuse?Intheory,nodistributionisideal,nevertheless,tocontinuewiththiscirclescheme,wewilluseacir-cledistributionorGaussianmethodaccordingtotheprobability.Thus,itispossibletosetareferentialforthecrossing.However,theuseofasimplecrossingdoesnotalwaysgivegoodresults.Consequently,theuseofmultiplecrossingsallowsustomakeabiggermix.Wewillusetheuniformcrossovertoalwayshaveviableindividualsforourrepresentation.However,itisalwayspossibletousethecrossoversde nedbyGoldberg[20]suchastheCX,OXandthePMX[38],thatalwaysgiveviableindividuals.5.The tnessfunction
Inourcase,itisnecessaryforustooptimizeaGanttdiagram[43].Therefore,thelastoperationtoundertakewillhavetocorrespondtotheduedatemi-nuscompletiontime.Itisnecessary,thereforetomin-imizethedelayandtheadvanceofthesetofjobs.Theobjectivewithanadvanceandanulldelayisnearlyimpossible.Inageneralmanner,weallowacertaindelayoradvance.Whenwecalculatethe tnessofanagent,wedetermineitsimpactontheGantt[46].Ofcourseforthesetofjobs,wecanhaveadelayoraweakadvance.Consequently,wenolongerhaveasin-gle tnessfunctionbutmany.Wehaveasmanyobjec-tivesaswehavejobs.Consequently,wehaveacaseof“multi-objectivegeneticalgorithms”[44,45].Forthistypeofproblem,wewillusethebasicconceptsofthemulti-objectiveoptimizationproblem(MOP)[42].5.1.Basicconceptsandde nitions
Thefundamentaldifferencebetweenanoptimiza-tionhavingsimpleormultipleobjectivesisintheideaofthede nitionofanoptimalsolution.Theideaofoptimalityinthemulti-objectivecaseisanaturalex-tensionofwhatwehaveduringanoptimizationforauniqueobjective.
AnMOPcanbede nedasfollows:MOP:minx∈X
f(x),
wheref(x)=(f1(x),...,fn(x))(2)
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190183
isavectorofnrealvaluescomingfromobjectivefunctions,xisavectorofnvariablesofdecisionandX={x|x∈Rm,gk(x) 0,
k=1,...,m,andx∈S}
(3)
isasetofpossiblesolutions.gkisarealfunctionvaluerepresentingmthekthconstraintandSisasubsetofRrepresentingalltheotherformsofconstraints.Theidealsolutiontosuchaproblemisapointwhereeachobjectivefunctioncorrespondstothebest(minimum)possiblevalue.Theidealsolutioninmostcases,doesnotexistinviewofcontradictoryobjectivefunctionsandhencecompromiseshavetobemade.Adiffer-entconceptofoptimalityhastobeintroduced.Solv-inganMOPgenerallyrequirestheidenti cationofParetooptimalsolutions[33],aconceptintroducedbyV.Pareto,aprominentItalianeconomistattheendofthelastcentury.AsolutionissaidtobeParetoopti-mal,ornondominated,ifstartingfromthatpointinthedesignspace,thevalueofanyoftheobjectivefunctionscannotbeimprovedwithoutdeterioratingatleastoneoftheothers.AllpotentialsolutionstotheMOPcanthusbeclassi edintodominatedandnon-dominated(Paretooptimal)solutions,andthesetofnondominatedsolutionstoanMOPiscalledParetofront.The rstandmostimportantstepinsolvinganMOPisto ndthissetorarepresentativesubset.Af-terwardsthedecisionmaker’spreferencemaybeap-pliedtochoosethebestcompromisesolutionfromthegeneratedset.Thenaturalorderingofvectorval-uedquantitiesisbasicforParetooptimality.Tode nethenotionofdomination,letf=(fg=(g)betworeal-valuedvectors1,...,offnn)and1,...,gmele-ments:fispartiallysmallerthangif: i∈1,...,nand k∈1,...,m,fg,wei≤saygkand i|fthatfdominatesi≤gk,wenotef<pg.Iff<pg.Con-sequently,afeasiblesolutionx issaidtobeaParetooptimaloftheproblemifandonlyifanotherx∈Xdoesnotexistsuchthatf(x)<pf(x ).6.DevelopmentofParetooptimalsolutionsTwodifferentstrategiesareeffectiveingeneratingParetooptimalsolutions[12,16].Inthe rststrategy,anappropriatescalaroptimizationproblem(SOP)[42]isset-upinparametricform,sothatthesolutiontothe
SOPwithgivenvaluesoftheparameters,undercer-tainconditions,belongstotheParetofront;changingtheparametersoftheSOPleadsthesolutiontomoveonthefront.Inthesecondone,theMOPissolvedwithadirectapproachusingthedominancecriteria,sothatasetofParetooptimalsolutionsisdevelopedsimultaneously.Themainadvantageofthe rststrat-egyisthatSOPsaregenerally,verywell-studiedprob-lemsandmanyef cientmethodsareavailabletosolvethem.
6.1.EquivalentSOP1:TheweightingapproachFollowingtheweightingapproach[16],theMOP[42]ismadetocorrespondtothefollowingparametrizedSOP:P(w):minwT
f nx∈X
(x)=
wjfj(x),(4)
j=1
where
w∈W=
w|w∈Rn,wj(x) 0,
n j=1,...,nand
w
j=1j=1
,
(5)
thecorrespondencebetweentheMOPandtheSOPissubjecttosomerules.Ifx0isanoptimalsolutionofP(w0),thenitisalsoParetooptimalifoneofthetwofollowing0conditionsisveri ed:
xistheuniqueoptimalsolutiontoP(w0w0);isstrictlypositive.
ThisimpliesthatatleastsomeParetooptimalso-lutionscanbegeneratedbysolvingP(w)forsomeproperlychosenw,withoutanyhypothesisonthecon-vexityofXandf(X).Instead,someconvexityhy-pothesesareanecessitycondition.Therefore,ifbothXandf(X)areconvex,thenforanygivenParetoop-timalsolution,x ,itispossibleto ndaweightvectorw,notnecessarilyunique,suchthatx isasolutiontoP(w).Therefore,whentheseconvexityassumptionsareveri ed,allParetooptimalsolutionscan,inthe-ory,befoundbyvaryingwandsolvingP(w),whileiftheyarenotveri ed,someParetooptimalsolutionsmayneverbediscoveredbythisprocedure.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
184A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190
6.2.EquivalentSOP2:TheconstraintapproachTheconstraintapproach[16,19]isbasedonthefol-lowingparametrizedminimumproblem:Pk( ):minx∈X
fk(x),
(6)
subjecttofj(x)≤ j,j=1,...,nandj=k,where =( 1,..., n)T∈Rnisthevectorofparameters.Themainadvantageofthisapproachisthatconvex-ityassumptionsarenotrequired.ThereforeallParetooptimalsolutionscanalwaysbediscoveredbysolv-ingtheconstraintproblemPtheMOPk( )foranyk.Thecorre-spondencebetweenandtheSOPissubjecttothe0followingrules.
IfxisanoptimalsolutionofPfeasible,thenk( 0x)0with 0avec-torforwhichPk( 0)isisanondomi-natedsolutionoftheMOP,ifoneofthetwofollowingconditionsoccurs:
x0isauniquesolutionofPk( 0)forsomegivenkbetween01andn.
xisnotunique,butsolvesP,n.
k( 0)foreachandeveryk=1,...Onthecontrary,ifx isanondominatedsolutionoftheMOP,an canalwaysbefoundsuchthatx istheoptimalsolutionofPkk( )for =1,...,nfor.Inallfact,i=this1,...condition,nwithiseachi=veri edandeveryk.wheni=fi(x )6.3.Resultsfromthegeneticalgorithm
Fromourobjectmodelization,ageneticalgorithmusingtheplacingmethodhasbeendeveloped[24,47].ThisprogramusestheC++languageinordertouseitonanSGIOrigin2000.Herearesomebenchmarks(seeTable1).
Asthecomputationaltimedependsonthecom-puterloading,thisrealtimedoesnotcorrespondto
Table1
BenchmarkresultsNumberofNumberofNumberofCalculationjobsoperationsmachinestime
1010450s
50549min,53s5010414min,27s100101040min,58s500
100
50
2h,24min,7
s
Fig.2.Dataextraction
software.
Fig.3.Tardinessasafunctionofthenumberofgenerations.
theCPUtime(Fig.2).Wecanthendetermineheuris-tics[8,9,24],tousewithourdynamicmodelbasedonthecontract-netprotocol[40,48].Anotherresultcomingfromthesimulationprocessisasetofgraphsgivingthetardinessandtheadvanceasafunctionofthenumberofgenerations.Wecanseethatthedelaydecreasesrapidly.Butitisnotnecessarytoincreasethenumberofgenerationstoobtainabetterresult(Fig.3).
6.4.Problemsencountered
Inourproblem,the rstlevelofmodelizationwasastaticmodel.Itdoesnottakeintoaccountthefactthatwehaveinteractionsbetweenmachinesandjobs.Ajobcanbedoneonlyiftheresourceisfree.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190185
Ontheotherhand,thestaticmodeldoesnotin-cludethepossibleinteractionbetweentheworkshopandtheenvironmentsuchasastrike,amachinefailure,etc.
Inthestaticmodel,theplacingobtainedgivesasolutioncorrespondingtothescheduleofalljobs.But,bynegotiations,theschedulecanbebuiltstepbystep.Forexample,ifajobarrivestoosoon,thedelaycorrespondingtothetardinessincreases.Therefore,ifwecanchangethescheduleduringthecalculationprocess,wecanimprovethetardiness.Itisoneofoureconomicfunctions.
7.ActionsontheGanttdiagram
TheJSSPdoesnotadmitacomputablesolution,sotheuseofmulti-agentsystemsforthesolvingofsuchaproblemseemsreasonable[23].Multi-agentsystemresearchisconcernedwiththebehaviorofasetofagentsthatcooperateinordertosolveaproblem[31].Inamulti-agentsystem(MAS)[11],theagentsareseenaslittleproblemsolversthatcooperativelyworkinordertosolveaproblem[58]farbeyondtheirin-dividualabilities[13].Here,weconsideranagentasanentitywithgoals,actionstoaccomplishandareasofknowledge,whichissituatedinitsenvironment[56].Therefore,becauseoftheknowledgeofagents,rulesofactions,etc.,theMASwillhave,forprinci-palobjective,togroupagentshavingsimilarbehavior[49]toelaboratestrategiestothejobslevel,jobsofjobs,machines,machinesofmachines,etc.Indeed,theproblemofcon ictsbetweenagentsisamajorconcerninMASresearch[4,30–32].TheobjectiveoftheMASistoimprovetheGanttdiagram[35,36],thereforeitleadsustoestablishthenotionofgroupcorrespondingtoelementaryentitieshavingcom-mongrindsandphysicalsameness(samecapacityofmachine,etc.)orinterdependence.
WewillusethenotionofzonefortheroundupofentitiesontheGanttdiagram,whilewewillspeakaboutthenotionofgroupfortheroundupofentitiesofsimilarorclosenature.Sinceagentshavetoin-terveneongroupsandelementaryentities,theMASwillthenbecomposedofmicro-andmeta-agents.Itisthereforeimportantforthisevolution,tointroduceagentshavinganevolvingcharacter:themeta-agentsofevolution.Thesemeta-agents’functionwillbetomakethisorganizationevolvebymeansofa
geneticalgorithmestablishingasexualreproductionofagents.Itisinterestingtonotethat,traditionally,agentsonlyclonethemselves.Buthere,weuseage-neticalgorithmforthephysicalevolutionoftheagents[28,29].Inthecourseoftheevolution,differentagentgranularitiesappear.Wehavethereforemicroandmeta-agentsthataregoingtointervene,accordingtotheirgranularity,onanentityoragroup,bypassingthroughintermediatelevels.Thus,agentshavingameta-knowledgearegoingtobeabletointerveneonthemacro-entities(groups)aswellasonsomezonesoftheGanttdiagram.Thus,thereisadistributedagentsystembeingabletomutateandhostingagentsabletoachieveacrossoverbasedreproductionbetweenthem.
8.Acontractnetbasedapproach
Thecontractnetisaprotocolfortheresolutionofdistributedproblem,de nedbySmith[48].Themainobjectiveofthisprotocolbeingthenegotiation,itpro-ceedsbyallocationoftaskstoasetofproblemsolversandusestheconceptofnegotiationtograntcontracts.Thebasicarchitecturecontainsnodeshavingachiefandcarryingroles[7].8.1.Thecontract-netprocotol
Contract-netbasedsystemsrepresentaconceptthatcanbeusedtoestablishmechanismsofcooper-ationbetweenagents[6].Acontractnetconsistsofanumberofnodesthatarerepresentedbyindivid-ualagents.Byanalogytoasalesession,suspendedsub-tasksareopenlyproposedtoauctionstowhicheachnodecanreplyaccordingtotheinterestthatithasforthissub-task.Thestageoftaskattributionrep-resentsaprocessinwhichallthenodes(agents)areassociated.Theideaistousetheavailableresourcesandtheexistingknowledgeofagentsasef cientlyaspossible[51];thatistosaybyallocationofonesub-tasktotheagentwhichisthemostapttooperateatagivenmoment.Thecontract-netprotocolformstheskeletonofoursystem.Itisde nedbyalan-guagebetweenthenodesthatcanbeunderstoodbythesetofagents.Thecommunicationbetweenagentsisalwaysbasedonthenotionofan“acceptancemessage”.Thisspeci cityde nestheexactroleofanagent.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
186A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190
8.2.Thedifferenttypesofagents
Thelocaldatabasecontainsthebasicknowledgeoftheassociatednodesandalsoinformationonthepro-gressionstateofthecooperativenegotiationaswellasthestateoftheresolutionprocess[57].Thetaskofthecommunicationmanageristoestablishcommu-nicationswithotheragents.Itistheuniquecompo-nentofanodethatisindirectrelationshipwiththesystem.Especially,itensuresthereceptionandsendsmessages.
Thecontractmanager’sjobistoexaminethe“auctioned”task,thecompliancewiththecontractanditsending.Inotherwords,thecontractmanagerensuresthecoordinationofallagents[14].Thetaskadministratorisresponsiblefortheprogressmadeinaprocessandtheresultsofataskassignedtoagivenagent.Itreceivestheproblemthatneedstobesolvedfromthecontractmanager.Itusesthelocaldatabaseinorderto ndasolutionandgivesitbacktothecontractmanager.
Thejobofacontract-netbasedsystemoftenbeginswithaproblemdivisionstage[15].Afterthat,theprob-lemtobesolvedisdividedintoasetofsub-problems[25].Aspecialagent,themanager,assignstaskstoasub-problem.Themanagerissuesapublicoffer,calledacontractforeachsub-problemtobesolvedaccord-ingtotheschemede nedbySmith[48].
Becauseofthedistributednatureoftheproblem,wechoseanagentbasedmodelization,asimpli edversionofFISIAS[41].Thedifferentelementsoftheenvironment(theuniverse)canbethemachines(andgroupsofmachines),thejobs(andgroupsofjobs),theGanttdiagram(anattribute)anddistributoragentofjobs(DAJ)(Fig.4).Universeelementsarethe“objects”thatcanreceiveorsenddatatoagents.Machinescanbeseenasagentswhosetaskistoperformthejoboperationatagiventime.However,themachinecanalsobeseenasapurelyreactiveagent,which,accordingtothejob,canreply:“Icandoitornot”(Fig.5).
Then,wecanusethecontractnet(Fig.6)de nedbySmith[48],whosemanager,theDAJ,willproposetheallocationofajobtoamachinethroughtheuseofanegotiationagentdelegatedforthisjob(NA).Ac-cordingtotheinformationgivenbyamachine,theNAwillestablishacontractbetweenamachineMiandtheDAJ[5].ButtheDAJcanalwaysproposeajob
to
Fig.4.Representationoftheuniverse.
severalmachinestocreatesomecompetitionbetweenmachineagents.However,theDAJcanbreakthiscon-tractatanytimeiftheagentisunabletocomplywiththe
contract.
Fig.5.Firstrepresentationofthecontractnet.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190
187
Fig.6.Representationofthecontract-netprotocolinanagent.
Amachinecanacceptmanycontractscorrespond-ingtothesamejob,butnegotiatedbydifferentNAswhichhavedifferentstrategies.Then,thecontractideologyis“thestrongestwins”sinceacontractcanbebrokenbybothpartners[21].However,wecanproposetwotypesofagents:aforwardplacingandabackwardplacingagent.Moreover,therearesomeworkshopconstraintssince,wehavegenericma-chines,groupsofmachinesandspecializedmachines.Wecanconsiderthatwehave“groupofmachines”agentswhichwillproposethedifferentjobsto
themachinestheyrepresent.Atthislevel,wecanoperateaparallelcomputationonthemachinesandso,ontheGanttdiagram(Fig.7).Nevertheless,forthemoment,weconsiderthattheDAJcanonlyprocessonejob.Anintermediateagentinchargeofchoosingthenum-berofjobscanbeproposed.Resultscorrespondingtothisapproacharegiveninthefollowingdiagram(Fig.8)whichgivesthevalueoftheeconomicfunc-tion(minimizationofthetardinessandtheadvance)accordingtothenumberofagentsandthenumberofgeneticoperationsusedbyagents.
9.GoingdeeplyintotherelationshipsofGAandMAS
TheuseofGAinMASisthebeginningofwhatcanbeaninterestingresearcharea.Thereareclearlytwokindsofapproaches,the rstiscentralized,inotherwords,someofthegeneticisoutsidetheagent.Thefunctionofselectionisagoodexampleofsuchfeatureout-of-the-agent[18,55].
However,webelievethatifonewantstocompletelymergetheGAandMAS(Fig.9),wemustmaketheagentacompletelyautonomousgeneticentity.Bythis,wemeanthatnotonlythegeneticpatrimonymustbe“onboard”butalsothefunctionsofselectionandcrossing.Anagentmustchoosewhichotheragentitwantstoreproducewith[55].Thelocationofthefunctionofmutationisnotclearlyknownsinceitis
Fig.7.Contract-netstructurebetweenthedifferentlevelrepresen-tations.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
188A.Cardonetal./RoboticsandAutonomousSystems33(2000)
179–190
Fig.8.Evolutionoftheeconomicfunctionaccordingtothenumberofagentsandthenumberofgenetic
operations.
causedbythepossibleexposuretoexternaleventsoriginatingintheenvironmentandduringthegeneticcodereplicationphase.
Ifwealsointroducethenotionofmotivatedbe-haviorforagents[5],wegodeeplyintoarti ciallifeproblematics.Thegeneticautonomyandthenotionofmotivationforanagentmayleadtoadrasticallynewkindofemergencephenomenon[1](differentso-cialbehavior,auto-referringevaluationprocess,etc.)inself-organizingMASs.Itiscertainlyadif culttaskbutitmaysowtheseedsofaproli capproachcon-cerningarti ciallife.10.Conclusion
Determininganoptimalsolutionisalmostimpos-sible,buttryingtoimproveanexistingsolutionisthewaytoimprovetaskallocation.Duringthesimulationprocess,agentsgranularityappearswiththemutationbehaviorintroducedbyGA[38].Attheendofthesimulation,communicationsbetweenglobalandlocal
Fig.9.MASandGAintheenvironment.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190189
agents,duetotheiractions,leadtotheappearanceofagentsofintermediategranularityandgeneralopti-mizationinproductionscheduling.Thiscommunica-tionre ectsthegeneticintegrationinanMAS.Thedistributedvisionofaschedulingproblemofjob-shopenablesustoreachamorerealisticvisionbecauseeachagenthasavisionofitsenvironment.Thatistosaythateachiscapableofreactingtoaparticularproblemjustlikeaforemaninhisworkshop.Heisgoingtoreactimmediatelyfollowingthebreakdownofamachine.Similarly,heisgoingtotakedecisions,asagents,thataregoingtohavearepercussionontheenvironment.Consequently,therepresentationbyanMASusingacontractnetisaclosevisionofre-alitythatcanbeeasilytransferredtoanindustrialorganization.
Researchcorrespondingtoouroriginaldynamicap-proachisinprogress.References
[1]W.R.Ashby,DesignforaBrain:TheOriginofAdaptive
Behavior,Chapman&Hall,London,1960.
[2]T.Bäck,Self-adaptationingeneticalgorithms,in:Proceedings
oftheFirstEuropeanConferenceonArti cialLife,MITPress,Cambridge,MA,1992,pp.263–271.
[3]R.K.Belew,L.B.Booker,in:ProceedingsoftheFourth
InternationalConferenceonGeneticAlgorithms,MorganKaufmann,SanMateo,CA,1991.
[4]A.H.Bond,L.Gasser,ReadingsinDistributedArti cial
Intelligence,MorganKaufman,SanMateo,CA,1988.
[5]A.Cardon,F.Lesage,Towardadaptiveinformationsystems:
consideringconcernandintentionality,in:ProceedingsoftheKAW’98,1998.
[6]A.Cardon,F.Lesage,Aninterpretationprocessof
communicationbetweenactorsinadistributedsystemforcrisismanagement,in:ProceedingsoftheSymposiumonInformaticsEconomics,1997.
[7]A.Cardon,S.Durand,Amodelofcrisismanagement
systemincludingmentalrepresentations,in:AAAISpringSymposium,StanfordUniversity,CA,1997.
[8]A.Cardon,J.-P.Vacher,RapportTechniquepourOuverture
deCompteauCrihansurMachineParallèleIlliac8,Crihan,1998,http://www.crihan.fr.
[9]A.Cardon,J.-P.Vacher,AlgorithmesGénétiquesdansun
SystèmeMulti-Agentspourl’Ordonnancement,Crihan,1998.[10]J.Carlier,P.Chretienne,Problèmesd’Ordonnancement
Modélisation/Complexité/Algorithmes,Masson,Paris,1988.[11]W.Chainbi,M.Jmaiel,B.Abdelmajid,Conception,
behaviouralsemanticsandformalspeci cationonmulti-agentsystems,in:ChengqiZhang,D.Lukose(Eds.),Multi-AgentSystems:Theories,LanguagesandApplications,Lecture
NotesinArti cialIntelligence,Vol.1544,ProceedingsoftheFourthAustralianWorkshoponDistributedArti cialIntelligence,Springer,Berlin,1998,pp.16–28.
[12]
V.Chankong,Y.Y.Haines,Multiobjectivedecisionmaking:theoryandmethodology,North-HollandSeriesinSystemScienceandEngineering,Vol.8,North-Holland,Amsterdam,1983.
[13]
E.H.Durfee,V.R.Lesser,Negotiatingtaskdecompositionandallocationusingpartialglobalplanning,in:L.Gasser,M.N.Huhns(Eds.),DistributedArti cialIntelligence,ResearchNotesinArti cialIntelligence,Pitman,London,1989,pp.229–243.
[14]D.McFarland,T.Bosser,IntelligentBehaviorinAnimalsandRobots,MITPress,Cambridge,MA,1993.
[15]J.Ferber,LesSystèmesMulti-agents,versuneIntelligenceCollective,InterEditions,Paris,1995.
[16]
C.M.Fonseca,P.J.Fleming,Geneticalgorithmsformultiobjectiveoptimization:Formulation,discussionandgeneralization,in:ProceedingsoftheFifthInternationalConferenceonGeneticAlgorithms,MorganKaufmann,SanMateo,CA,1993,pp.416–423.
[17]
S.Forrest,ProceedingsoftheFifthInternationalConferenceonGeneticAlgorithms,MorganKaufmann,SanMateo,CA,1993.
[18]
T.Galinho,A.Cardon,J.-P.Vacher,Geneticintegrationinamultiagentsystemforjob-shopscheduling,in:H.Coelho(Ed.),ProgressinArti cialIntelligence—IBERAMIA’98,LectureNotesinArti cialIntelligence,Vol.484,Springer,Berlin,1998,pp.76–87.
[19]
S.Gass,T.Saaty,Thecomputationalalgorithmfortheparametricobjectivefunction,NavalResearchLogisticsQuarterly2(1955)39–65.
[20]D.E.Goldberg,GeneticAlgorithmsinSearch,Optimization,andMachineLearning,Addison-Wesley,Reading,MA,1989.[21]
J.J.Grefenstette,LamarckianLearninginMulti-agentEnvironments,in:ProceedingsoftheFourthInternationalConferenceonGeneticAlgorithms,MorganKaufmann,SanMateo,CA,1991,pp.303–310.
[22]
J.J.Grefenstette,InternationalConferenceonGeneticAlgorithmsandTheirApplications,LawrenceErlbaumAssociates,Hillsdale,NJ,1985.
[23]
B.Hayes-Roth,A.Collinot,Asatisfyingcycleforreal-timereasoninginintelligentagents,in:ExpertSystemswithApplications,Hermes,Paris,1993,pp.31–42.
[24]
T.Haynes,Onlineadaptationofsearchviaknowledgereuse,in:J.R.Koza,K.Deb,M.Dorigo,D.B.Fogel,M.Garzon,H.Iba,R.L.Riolo(Eds.),GeneticProgramming,ProceedingsoftheSecondAnnualConference,MorganKaufmann,LosAltos,CA,1997,pp.156–161.
[25]T.D.Haynes,CollectiveAdaptation:TheSharingofBuildingBlocks,UniversityofTulsa,Tulsa,1998.
[26]J.H.Holland,AdaptationinNaturalandArti cialSystems,UniversityofMichiganPress,AnnArbor,MI,1975.
[27]
J.H.Holland,Adaptationinnaturalandarti cialsystems:Anintroductoryanalysiswithapplicationsinbiology,controlandarti cialintelligence,ComplexAdaptiveSystems,MITPress,Cambridge,MA,1992.
We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s
190A.Cardonetal./RoboticsandAutonomousSystems33(2000)179–190
[28]IBMCorporation,IBMAgentBuildingEnvironment
Developer’sToolkit:User’sGuide,IBMIntelligentAgentCenterofCompetence,1997,/iag/iaghome.html.
[29]IBMCorporation,IBMAgentBuildingEnvironment
Developer’sToolkit:ComponentsandAdapterReference,IBMIntelligentAgentCenterofCompetence,1997.
[30]R.Jackendoff,SemanticsandCognition,MITPress,
Cambridge,MA,1983.
[31]N.R.Jennings,K.Sycara,M.Wooldridge,ARoadmap
ofAgentResearchandDevelopment,KluwerAcademicPublishers,Dordrecht,1998.
[32]P.Jorion,PrincipesdesSystèmesIntelligents,Masson,Paris,
1989.
[33]J.Koza,GeneticProgramming,MITPress,Cambridge,MA,
1992,pp.329–355.
[34]my,OrdonnancementetGestiondeProduction,Hermes,
Paris,1987.
[35]ngton,Arti cialLife,Proceedingsofan
InterdisciplinaryWorkshopontheSynthesisandSimulationofLivingSystems,LosAlamos,NM,September,1987,Addison-Wesley,RedwoodCity,CA,1989.
[36]J.LeMoigne,LaModélisationdesSystèmesComplexes,
Dunod,Paris,1990.
[37]K.Mesghouni,S.Hammadi,P.Borne,Productionjob-shop
schedulingusinggeneticalgorithms,in:ProceedingsoftheIEEE/SMC,Information,IntelligenceandSystems,Vol.2,1996,pp.1519–1524.
[38]Z.Michalewicz,GeneticAlgorithms+DataStructures=
EvolutionPrograms,Springer,Berlin,1992.
[39]H.Mühlenbein,Evolutionintimeandspace—theparallel
geneticalgorithm,in:G.Rawlins(Ed.),FoundationsofGeneticAlgorithms,MorganKaufmann,SanMateo,CA,1990,pp.316–338.
[40]N.Muscettola,S.Smith,Aprobabilisticframeworkfor
resource-constrainedmulti-agentplanning,in:ProceedingsoftheIJCAI-87,Milan,Italy,1987,pp.1063–1066.
[41]J.-P.Pécuchet,etal.,FISIAS,fastinteractivesystemfor
intelligentautomatedscheduling,RevueAutomatiqueetProductiqueAppliquées2(4)(1989)23–38.
[42]C.Poloni,HybridGAformultiobjectiveaerodynamicshape
optimisation,in:G.Winter,J.Périaux,M.Gálan,P.Cuesta(Eds.),GeneticAlgorithmsinEngineeringandComputerScience,Wiley,Chichester,UK,1995,pp.397–416.
[43]M.C.Portmann,Méthodesdedécompositionspatialeet
temporelleenordonnancementdeproduction,Doctoratd’Etat,Vol.1,UniversitédeNancy,1987.
[44]G.Rawlins,FoundationsofGeneticAlgorithms,Morgan
Kaufmann,SanMateo,CA,1991.
[45]J.D.Schaffer,Multipleobjectiveoptimizationwithvector
evaluatedgeneticalgorithm,in:ProceedingsoftheInternationalConferenceonGeneticAlgorithmsandtheirApplications,LawrenceErlbaumAssociates,Hillsdale,NJ,1985,pp.93–100.
[46]J.R.Searle,SpeechActs,CambridgeUniversityPress,
Cambridge,1969.
[47]G.Seront,Externalconceptsreuseingeneticprogramming,
in:E.V.Siegel,J.R.Koza(Eds.),WorkingNotesfortheAAAISymposiumonGeneticProgramming,AAAIPress,MenloPark,CA,1995,pp.94–98.
[48]R.G.Smith,Thecontractnetprotocol:High-level
communicationandcontrolinadistributedproblemsolver,IEEETransactionsonComputersC-2912(1980)1104–1113.[49]S.P.Stafford,Caringaboutknowledge:Theimportanceof
thelinkbetweenknowledgeandvalues,in:ProceedingsoftheAAAISpringSymposium,1997.
[50]J.Stender,E.Hillebrand,J.Kingdon,Geneticalgorithms
inoptimisation,simulationandmodelling,in:FrontiersinArti cialIntelligenceandApplications,Vol.23,IOSPress,Amsterdam,1994.
[51]E.Tzafestas,Versunesystémiquedesagentsautonomes:
Descellules,desmotivationsetdesperturbations,Thèsede
Doctorat,UniversiteParis´VI,1995.
[52]J.-P.Vacher,T.Galinho,Z.Mammeri,Uneapplicationdes
algorithmesgénétiquesàl’ordonnancementd’atelier,in:M.Itmi,J.-P.Pécuchet,H.Pierreval(Eds.),MOSIM’97,ActesdelaPremièreConférenceFrancophone,ModélisationetSimulationdesSystèmesdeProductionetdeLogistique,Hermes,Paris,1997,pp.43–50.
[53]J.-P.Vacher,A.Cardon,T.Galinho,Geneticalgorithmsin
amulti-agentsystem,in:ProceedingsoftheEUROGEN’97Conference,Trieste,Italy,1997,http://eurogen.cira.it.
[54]J.-P.Vacher,A.Cardon,T.Galinho,Heuristicsgranularityin
amulti-agentssystem(MAS):Applicationtotheproductionmanagement,in:ProceedingsoftheYOR10Conference,1998.
[55]J.-P.Vacher,A.Cardon,F.Lesage,T.Galinho,Genetic
algorithminamulti-agentsystem,in:ProceedingsoftheIEEEInternationalJointSymposiumonIntelligenceandSystems,IEEEPress,NewYork,1998.
[56]F.J.Varela,P.Bourgine,TowardsaPracticeofAutonomous
Systems,ProceedingsoftheFirstEuropeanConferenceonArti cialLife,MITPress,Cambridge,MA,1992.
[57]F.J.Varela,Organism,ameshworkofsel essselves,in:
ProceedingsoftheEast–WestSymposiumontheOriginsofLanguage,1996.
[58]R.Weyrauch,Buildingconsciousartifact,in:Consciousness,
DistinctionandRe exion,Bibliopolis,Napels,1995.
正在阅读:
Genetic algorithms using multi-objectives06-05
测验1、2参考答案08-22
免疫学习题-全01-02
2021年作风建设和营商环境提升工作方案08-17
地形图测量规范12-24
MACD顺势操作,如何识别有效的金叉死叉 - 图文10-30
公安局书记党建工作述职报告02-25
教师队伍建设年工作开展情况12-22
消防指战员在灭火抢险救援中的自我防护11-25
- 1From Sequential Programs to Multi-Tier Applications by Progr
- 2advantage and disadvantage to using science techonology for
- 3Multi-Robot Project_Final_v2
- 4Using Prosody in Automatic Segmentation of Speech
- 5Management of a WWW Server using SNMP
- 6Photocatalysis. A multi-faceted concept for green chemistry
- 7Multi-Robot Project_Final_v2
- 8Fitness inheritance for noisy evolutionary multi-objective optimization
- 9A formal model for information selection in multi-sentence text extraction
- 10lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- algorithms
- objectives
- Genetic
- using
- multi
- 试验室内部管理制度
- 幼儿园中班安全活动教案《紧急电话的用途》
- 广东省惠州市惠阳市第一中学实验学校人教版英语学案《B5 U2-5 writing》
- 高考成语误用的八个类型
- 汉语语料库分词类词频表 高频词汇
- 融租之家汇总版融资租赁标的物的范围
- 史上最全菲罗多刹车片型号对照表
- -合肥市51中高一物理第一学期期终考试试卷
- 用替代法测电阻的误差分析
- 2011年会计继续教育之准则12债务重组
- 大学生职业生涯规划书范文(临床医学)
- 大学生计算机基础期末复习题 - 1 - 第一章选择题
- 小学2019-2020学年度第二学期数学教研组工作计划
- 论我国法律关系的分类
- 实验二__质粒DNA的限制性内切酶酶切
- 法制晚报广告部资料
- 2016年大庆市中考数学模拟试卷1
- 2010年宿迁市教师职称考试试题及含答案
- linux下的一些常用命令
- 第七届中日肝胆胰疾病研讨会暨2008中国国际肝胆外科论坛会议及征文通知