Generalized Drinfeld realization of quantum superalgebras and U_q(hat {frak osp}(1,2))
更新时间:2023-06-06 08:56:01 阅读量: 实用文档 文档下载
- generalized推荐度:
- 相关推荐
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
10
2
r
a
M
3
1
]
AQ
.
th
a
m
[
3
v
7
8
5
9
9
/
tham:viXraGENERALIZEDDRINFELDREALIZATIONOFQUANTUMSUPERALGEBRASANDUq(osp (1,2))JINTAIDINGANDBORISFEIGINDedicatedtoourfriendMosheFlatoAbstract.Inthispaper,weextendthegeneralizationofDrin-feldrealizationofquantuma nealgebrastoquantuma nesu-peralgebraswithitsDrinfeldcomultiplicationanditsHopfalgebrastructure,whichdependsonafunctiong(z)satisfyingtherelation:g(z)=g(z 1) 1.Inparticular,wepresenttheDrinfeldrealizationofUq(osp (1,2))anditsSerrerelations.1.Introduction.QuantumgroupsasanoncommutativeandnoncocommutativeHopfalgebraswerediscoveredbyandThestandardde nitionofaquantumgroupisgivenasadeformationofuniversalenvelopingalgebraofasimple(super-)Liealgebrabythebasicgenera-torsandtherelationsbasedonthedatacomingfromthecorrespond-ingCartanmatrix.However,forthecaseofquantuma nealgebras,thereisadi erentaspectofthetheory,namelytheirlooprealizations.The rstapproachwasgivenbyFaddeev,ReshetikhinandTakhtajanandReshetikhinandSemenov-Tian-ShanskywhoobtainedarealizationofthequantumloopalgebraUq(g C[t,t ])viaacanon-icalsolutionoftheYang-Baxterequationdependingonaparameterz∈C.Ontheotherhand,Drinfeldgaveanotherrealizationof
thequantuma nealgebraUq( g)anditsspecialdegenerationcalledtheYangian,whichiswidelyusedinconstructionsofspecialrepresentationofa nequantumInDrinfeldonlygavethereal-izationofthequantuma nealgebrasasanalgebra,andasanalgebrathisrealizationisequivalenttotheapproach
tainGaussdecompositionforthecaseofUq(gl abovethroughcer-
(n)).Certainly,themost
importantaspectofthestructuresofthequantumgroupsisitsHopfalgebrastructure,especiallyitscomultiplication.Drinfeldalsocon-structedanewHopfalgebrastructureforthislooprealization.Thenewcomultiplicationinthisformulation,whichwecalltheDrinfeld
1
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
comultiplication,issimpleandhasveryimportantapplications[DM]
[DI2].
In[DI],weobservethatintheDrinfeldrealizationofquantuma ne (n)),thestructureconstantsarecertainrationalfunc-algebrasUq(sl
tionsgij(z),whosefunctionalpropertyofgij(z)decidescompletelythe 2),itsDrin-Hopfalgebrastructure.Inparticular,forthecaseofUq(sl
feldrealizationisgivencompletelyintermsofafunctiong(z),whichhasthefollowingfunctionproperty:
g(z)=g(z 1) 1.
ly,wecansubstitutegij(z)byotherfunctionsthatsatisfythefunctionalpropertyofgij(z),toderivenewHopfalgebras.
Inthispaper,wewillfurtherextendthegeneralizationoftheDrinfeld 2)toderivequantuma nesuperalgebras.Asanex-realizationofUq(sl
(1,2))ample,wewillalsopresentthequantuma nesuperalgebraUq(osp
intermsofthenewformulation,inparticular,wepresenttheSerrere-lationsintermsofthecurrentoperators.
Thepaperisorganizedasthefollowing:inSection2,werecallthemainresultsin[DI]aboutthegeneralizationofDrinfeldrealization (2));inSection3,wepresentthede nitionofthegeneralizedofUq(sl
Drinfeldrealizationofquantumsuperalgebras;inSection4,wepresent (1,2)).theformulationofUq(osp
2.
n).In[DI],wederiveageneralizationofDrinfeldrealizationofUq(sl
ForthecaseofUq(sl2),we rstpresentthecompletede nition.
Letg(z)beananalyticfunctionssatisfyingthefollowingpropertythatg(z)=g(z 1) 1andδ(z)bethedistributionwithsupportat1.De nition2.1.Uq(g,fsl2)isanassociativealgebrawithunit1andthegenerators:x±(z), (z),ψ(z),acentralelementcandanonzerocomplexparameterq,wherez∈C . (z)andψ(z)areinvertible.In
2
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
termsofthegeneratingfunctions:thede ningrelationsare
(z) (w)= (w) (z),
ψ(z)ψ(w)=ψ(w)ψ(z),
(z)ψ(w) (z)ψ(w) 1 1=g(z/wq c)
2c±1±)x(w),
z ψ(z)x±(w)ψ(z) 1=g(w/zq
q 1 1q
x±(z)x±(w)=g(z/w)±1x±(w)x±(z).δ(z2c) δ(2c),
Theorem2.1.ThealgebraUq(g,fsl2)hasaHopfalgebrastructure,whicharegivenbythefollowingformulae.
Coproduct
(0) (qc)=qc qc,
(1) (x+(z))=x+(z) 1+ (zq
(3) ( (z))= (zq
(4) (ψ(z))=ψ(zqc22c12),),),c2
2
wherec1=c 1andc2=1 c.
Counitε
ε(qc)=1ε( (z))=ε(ψ(z))=1,
ε(x±(z))=0.
Antipodea
(0)a(qc)=q c,
(1)a(x+(z))= (zq
(3)a( (z))= (z) 1,
(4)a(ψ(z))=ψ(z) 1.
Strictlyspeaking,Uq(g,fsl2)isnotanalgebra.Thisconcept,whichwecallafunctionalalgebra,hasalreadybeenusedbefore[S],etc.
3c2) 1,
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
2)[Dr2]asaHopfalgebraTheDrinfeldrealizationforthecaseofUq(sl
isdi erent,anditanalgebraandHopfalgebrade nedwithcurrentoperatorsintermsofformalpowerseries.
Letg(z)beananalyticfunctionsthatsatisfyingthefollowingprop-ertythatg(z)=g(z 1) 1=G+(z)/G (z),whereG±(z)isananalyticfunctionwithoutpoles exceptat0or∞andG±(z)havenocommonzeropoint.Letδ(z)=n∈Zzn,wherezisaformalvariable.
De nition2.2.ThealgebraUq(g,sl2)isanassociativealgebrawithunit1andthegenerators:a¯(l),¯b(l),x±(l),forl∈Zandacentralelementc.Letzbeaformalvariableand
x±(z)=
(z)=
and
ψ(z)= l∈Z x±(l)z l,a¯(m)z m]exp[ (m)z m=exp[m∈Zm∈Z≤0 a¯(m)z m]m∈Z>0
m∈Z ψ(m)z m=exp[m∈Z≤0 ¯b(m)z m]exp[m∈Z>0 ¯b(m)z m].
Intermsoftheformalvariablesz,w,thede ningrelationsarea(l)a(m)=a(m)a(l),
b(l)b(m)=b(m)b(l),
(z)ψ(w) (z)ψ(w) 1 1=g(z/wq c)
2c±1±)x(w),
z ψ(z)x±(w)ψ(z) 1=g(w/zq
q 1 1q
G (z/w)x±(z)x±(w)=G±(z/w)x±(w)x±(z),δ(z2c) δ(2c),
wherebyg(z)wemeantheLaurentexpansionofg(z)inaregionr1>|z|>r2.
Theorem2.2.ThealgebraUq(g,sl2)hasaHopfalgebrastructure.Theformulasforthecoproduct ,thecounitεandtheantipodeaarethesameasgiveninTheorem2.1.
Here,onehastobecarefulwiththeexpansionofthestructurefunc-tionsg(z)andδ(z),forthereasonthattherelationsbetweenx±(z)andx±(z)aredi erentfromthecaseofthefunctionalalgebraabove.
4
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
Example2.1.Letg¯(z)beaananalyticfunctionsuchthatg¯(z 1)= z 1g¯(z).Letg(z)=q 2¯g(q2z)
g(z/wqc),
(z)x±(w) (z) 1=g(z/wq 1
2c) 1x±(w),
{x+(z),x (w)}=1
wq c)ψ(wq1c
wq) (zq1
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
Accordinglywehavethat,forthetensoralgebra,themultiplicationisde nedforhomogeneouselementsa,b,c,dby
(a b)(c d)=( 1)[b][c](ac bd),
where[a]∈Z2denotesthegradingoftheelementa.
Similarlywehave:
Theorem3.1.ThealgebraUq(g,fs)hasagradedHopfalgebrastruc-ture,whosecoproduct,counitandantipodearegivenbythesamefor-mulaeofUq(q,fsl2)inTheorem2.1.
AsforthecaseofUq(g,fsl2)isnotagradedalgebrabutratheraagradedfunctionalalgebra.
Let
g(z)=g(z 1) 1=G+(z)/G (z),
whereG±(z)isananalyticfunctionwithoutpolesexceptat0or∞andG±(z)havenocommonzeropoint.
De nition3.2.ThealgebraUq(g,s)isZ2gradedassociativealgebrawithunit1andthegenerators:a¯(l),¯b(l),x±(l),forl∈Zandacentralelementc,wherex±(l)aregraded1(mod2)andtherestaregradedo(mod2).Letzbeaformalvariableand
x(z)=
(z)=
and
ψ(z)= ±l∈Z x±(l)z l,a¯(m)z m (m)z m=exp[m∈Zm∈Z≤0 ]exp[m∈Z>0 a¯(m)z m]
m∈Z ψ(m)z m=exp[m∈Z≤0 ¯b(m)z m]exp[m∈Z>0 ¯b(m)z m].
Intermsoftheformalvariablesz,w,thede ningrelationsare (z) (w)= (w) (z),
ψ(z)ψ(w)=ψ(w)ψ(z),
(z)ψ(w) (z)ψ(w) 1 1=g(z/wq c)
2c±1±)x(w),
z ψ(z)x±(w)ψ(z) 1=g(w/zq
q 1 1q
(G (z/w))x±(z)x±(w)= (G±(z/w))x±(w)x±(z),
6δ(z2c) δ(2c),
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
wherebyg(z)wemeantheLaurentexpansionofg(z)inaregionr1>|z|>r2.
TheaboverelationsarebasicallythesameasinthatofDe nition2.2excepttherelationbetweenx±(z)andx±(w)respectively,whichdi ersbyanegativesign.Theexpansiondirectionofthestructurefunctionsg(z)andδ(z)isveryimportant,forthereasonthattherelationsbe-tweenx±(z)andx±(z)aredi erentfromthecaseofthefunctionalalgebraabove.
Theorem3.2.ThealgebraUq(g,s)hasaHopfalgebrastructure.Theformulasforthecoproduct ,thecounitεandtheantipodeaarethesameasgiveninTheorem2.1.
Example3.1.Letg¯(z)=1.From
Uq(1,s)isbasicallythesameasUq(gl [CJWW][Z],wecanseethat
(1,1)).
4.
Forarationalfunctiong(z)thatsatis es
g(z)=g(z 1) 1,
itisclearthatg(z)isdeterminedbyitspolesanditszeros,whicharepairedtosatisfytherelationsabove.Forthesimplestcase(exceptg(z)=1)thatg(z)hasonlyonepoleandonezero,wehave
g(z)=zp 1
zp2 1
z p1
zp2 1
z p1
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
Asin[DM][DK],forthecaseofquantuma nealgebras,itisveryimportanttounderstandthepolesandzerooftheproductofcurrentoperators.WewillstartwiththerelationsbetweenX+(z)withitself.Fromthede nition,weknowthat
(z p1w)(z p2w)X+(z)X+(w)= (zp1 w)(zp2 w)X+(w)X+(z).Fromthis,weknowthatX+(z)X+(w)hastwopoles,whicharelocatedat(z p1w)=0and(z p2w)=0.
Thisalsoimpliesthat
Proposition4.1.X+(z)X+(w)=0,whenz=w.
IfweassumethatUq(g,s)isrelatedtosomequantizeda nesuper- (1,2))algebra,thenwecanseethatthebestchancewehaveisUq(osp
bylookingatthenumberofzerosandpolesofX+(z)X+(w). (1,2)),weknowweneedanextraHowever,forthecaseofUq(osp
Serrerelation.Forthis,wewillfollowtheideain[FO].
LetLet
f(z1,z2)=(z1 p1z2)(z1 p2z2).
Y+(z,w)=(z p1w)(z p2w)
(z1 p1z3)(z1 p2z3)
z1 z2
z2 z3X+(z1)X+(z2)X+(z3),
F(z1,z2,z3)=(z1 p1z2)(z1 p2z2)(z3 p1z1)(z3 p2z1)(z2 p1z3)(z2 p2z3)=
f(z1,z2)f(z2,z3)f(z3,z1),
¯(z1,z2,z3)=f(z2,z1)f(z2,z3)f(z3,z1).F
LetV(z1,z2,z3)bethealgebraicvarietyofthezerosofF(z1,z2,z3).LetV(a(z1),a(z2),a(z3)),betheimageoftheactionofaonthisvariety,¯(z1,z2,z3)bewherea∈S3,thepermutationgrouponz1,z2,z3.LetV¯(z1,z2,z3).LetV¯(a(z1),a(z2),a(z3)),thealgebraicvarietyofthezerosofF
betheimageoftheactionofaonthisvariety,wherea∈S3.
Proposition4.2.Y+(z,w)hasnopolesandissymmetrywithrespecttozandw.Y+(z1,z2,z3)hasnopolesandissymmetrywithrespecttoz1,z2,z3.
8
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
Followingtheideain[FO],wewouldliketode nethefollowingconditionsthatmaybeimposedonouralgebra.
ZeroConditionI:
Y+(z1,z2,z3)iszeroonatleastonelinethatcrosses(0,0,0),andthislinemustlieinaV(a(z1),a(z2),a(z3))forsomeelementa∈S3ZeroConditionII:Y+(z1,z2,z3)iszero
crosses(0,0,0),andthislinemustlieinaV¯onatleastonelinethat
(a(z1),a(z2),a(z3))forsome
elementa∈S3
Forthelinethatcrosses(0,0,0)whereY+(z1,z2,z3)iszero,wecallitthezerolineofY+(z1,z2,z3).BecauseY+(z1,z2,z3)issymmetricwithrespecttotheactionofS3onz1,z2,z3,ifalineisthezerolineofY+(z1,z2,z3),thenclearlytheorbitofthelineundertheactionofS3isalsoanzeroline.
Remark1.ThereisasimplesymmetrythatwewouldprefertochoosethefunctionF(z1,z2,z3)todeterminethevarietyV(z1,z2,z3).Wehavethat
F(z1,z2,z3)=f(z1,z2)f(z2,z3)f(z3,z1).
LetS12
tation2bethepermutationgroupactingonz1,z2.LetS
groupactingonz2bethepermu-
2,z3.LetS21bethepermutationgroupactingon
z3,z1.Clearly,[FO]wecanchoosefromafamilyofvarietiesdeterminedbythefunctionsf(a1(z1),a1(z2))f(a2(z2),a2(z3))f(a3(z3),a3(z1))fora1∈S21,a2∈S22,a3∈S23.Foreachsuchafunction
f(a1(z1),a1(z2))f(a2(z2),a2(z3))f(a3(z3),a3(z1)),
wecanattachaorienteddiagram,whosenodsarez1,z2,z3,andthearrowsaregivenby(a1(z1)→a1(z2)),(a2(z2)→a2(z3))(a3(z3)→a3(z1)).ForexamplethediagramofF(z1,z2,z3)isgivenby
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
Diagram II It is not di cult to see that the diagram for F (z1, z2, z3 ) is symmetric in the sense that all the points are equivalent, but for the second situation, the top point z1 is di erent from the other two, in the sense that there are two arrows coming to z1, one to z3 and none to z2 . There is only one other such a diagram given by F (z1, z3, z2 ), which however comes from the S3 action on F (z1, z2, z3 ).
7So S S S S S
From the above, we have the following: Proposition 4.3. Under the action of S3 on the the family of varieties determined by the functions f (a1 (z1 ), a1 (z2 ))f (a2 (z2 ), a2 (z3 ))f (a3 (z3 ), a3 (z1 )) 1 2 3 for a1∈ S2, a2∈ S2, a3∈ S2, there are two orbits. One of the orbit consists of the two varieties determined by F (z1, z2, z3 ) and F (z1, z2, z3 ); and the rest forms another orbit. This shows that indeed we have two choices with respect the zero conditions: the Zero condition I and the Zero condition II.
We know that a zero line is always in the form z1= q1 z2= q2 z3 . Then we have Proposition 4.4. If we impose the Zero condition I on the algebra Uq (g, s), we have p1= p 2, 2 or p2= p 2 . 1 Proof. The proof is very simple. Because of the action of S3, we know that one of the line must lie in V (z1, z2, z3 ). Let assume this line to be z1= z2 q1= q2 z3 . We know immediately that q1 must be p1 or p2 . Let us rst deal with the case that q1= p1 . We also know that q2 must be either p 1 or p 1 by looking that the relations between z1 and 1 2 z3 .10
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
1 2Case1Letq2=p 1,whichimpliesthatp1mustbeeitherp1orp2.
Clearly,itcannotbep1,whichimpliesthattheimpossibleconditionp1=1
Therefore,wehavethat
2p 1=p2,
whichiswhatwewant.1Case2Letq2=p 2,whichimpliesthatp1p2mustbeeitherp1orp2.Clearly,itcannotbep1becauseitimpliesp2=1,itcannotbeneitherbep2,whichimpliesthatp1=1.
Thiscompletestheprooffor
2p2=p 1.
Similarly,ifwehavethatq1=p2,wecan,then,show
2p1=p 2.
Howeverfromthealgebraicpointofview,thetwoconditionareequivalentinthesensethatp1andp2aresymmetric.
Alsowehavethat
Proposition4.5.IfweimposetheZeroconditionIIonthealgebraUq(g,s),wehave
p1=p22,
or
p2=p21.
Howeverwealsohavethat:
IfweimposetheZeroconditionIIonthealgebraUq(g,s),thenUq(g,s)isnotaHopfalgebraanymore.
ThereasonisthattheZeroconditionIIcannotbesatis edbycomultiplication,whichcanbecheckedbydirectcalculation.
ThisisthemostimportantreasonthatwewillchoosetheZerocon-ditionItobeimposedonthealgebraUq(g,s),ly,ifwechooseV(z1,z2,z3)ortheequivalentoneswhichhasthesamediagrampresen-tationasDiagramItode nethezerolineofY+(z1,z2,z3),then,thequotientalgebraderivedfromtheZeroConditionIisstillaHopfalgebrawiththesameHopfalgebrastructure(comultiplication,counitandantipode).
11
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
Fromnowon,weimposetheZeroconditionIonthealgebraUq(g,s),andletus xthenotationsuchthat
p1=q2,
p2=q 1.
Similarly,wede ne
Y(z,w)= 1 1(z p 1w)(z p2w)
1 1(z1 p 1z3)(z1 p2z3)
z1 z2
z2 z3Wenowde netheq-Serrerelation.X+(z1)X+(z2)X+(z3),
q-Serrerelations
Y+(z1,z2,z3)iszeroontheline
z1=z2q 1=z3q 2.
Y (z1,z2,z3)iszeroontheline
z1=z2q=z3q2.
Theq-Serrerelationscanalsobeformulatedinmorealgebraicway.Proposition4.6.Theq-Serrerelationsareequivalenttothefollowingtworelations:
(z3 z1q 1)(z3 z1q3)(z1 z2q2)
X+(z3)X+(z2)X+(z1)) (z1 z1q)
((z1 z3q2)(z1 z3q)(z1q z3q 1)(z1 z2q2)z2q 1)(z3
(z1 z3)(z3 z1q2)(z1 z2q 1)
(z3 z1q)(z3 z1q 3)(z1 z2q 2)X+(z2)X+(z1)X+(z3))=0,
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
(z2 z1q 2)(z2 z1q)(z3 z1q)(z3 z1q 3)
X (z1)X (z2)X (z3) (z1 z3)(z3 z1
((z1 z3q 2)(z1 z3q 1)(z1q z3q)(z2 z1q 2)(z2 z1q)q 2)
In this paper, we extend the generalization of Drinfeld realization of quantum affine algebras to quantum affine superalgebras with its Drinfeld comultiplication and its Hopf algebra structure, which depends on a function $g(z)$ satisfying the relation: $g
[DI]
[DI2]
[DK]
[DM]
[Dr1]
[Dr2]
[Dr3]
[Er]
[FRT]
[FO]
[FJ]
[GZ]
[J1]
[RS]
[S]
[Z]J.Ding,K.IoharaGeneralizationanddeformationofthequantuma nealgebrasLett.Math.Phys.,41,1997,181-193q-alg/9608002,RIMS-1091J.Ding,K.IoharaDrinfeldcomultiplicationandvertexoperators,Jour.Geom.Phys.,23,1-13(1997)J.Ding,S.KhoroshkinWeylgroupextensionofquantizedcurrentalgebras,toappearinTransformationGroups,QA/9804140(1998)J.DingandT.MiwaZerosandpolesofquantumcurrentoperatorsandtheconditionofquantumintegrability,PublicationsofRIMS,33,277-284(1997)V.G.DrinfeldHopfalgebraandthequantumYang-BaxterEquation,Dokl.Akad.Nauk.SSSR,283,1985,1060-1064V.G.DrinfeldQuantumGroups,ICMProceedings,NewYork,Berkeley,1986,798-820V.G.DrinfeldNewrealizationofYangianandquantuma nealgebra,SovietMath.Doklady,36,1988,212-216B.Enriquez,OncorrelationfunctionsofDrinfeldcurrentsandshu eal-gebras,math.QA/9809036.L.D.Faddeev,N.Yu,Reshetikhin,L.A.TakhtajanQuantizationofLiegroupsandLiealgebras,Yang-BaxterequationinIntegrableSystems,(Ad-vancedSeriesinMathematicalPhysics10)WorldScienti c,1989,299-309.B.Feigin,V.OdesskiVectorbundlesonEllipticcurveandSklyaninalge-brasRIMS-1032,q-alg/9509021I.B.Frenkel,N.JingVertexrepresentationsofquantuma nealgebras,A85(1988),9373-9377M.Gould,Y.ZhangOnSuperRSalgebraandDrinfeldRealizationofQuantumA neSuperalgebrasq-alg/9712011M.JimboAq-di erenceanalogueofU(g)andYang-Baxterequation,Lett.Math.Phys.10,1985,63-69N.Yu.Reshetikhin,M.A.Semenov-Tian-ShanskyCentralExtensionsofQuantumCurrentGroups,LMP,19,1990E.K.SklyaninOnsomealgebraicstructuresrelatedtotheYang-BaxterequationFunkts.Anal.Prilozhen,16,No.4,1982,22-34Y.ZhangCommentsonDrinfeldRealizationofQuantumA neSuperal-
gebraUq[gl(m|n)(1)]anditsHopfAlgebraStructureq-alg/9703020
JintaiDing,DepartmentofMathematicalSciences,UniversityofCincinnati
BorisFeigin,LandauInstituteofTheoreticalPhysics
14
正在阅读:
Generalized Drinfeld realization of quantum superalgebras and U_q(hat {frak osp}(1,2))06-06
大专出纳实务学习指导及综合练习(精)03-15
电气运规07-05
四川大学离散数学课后习题一解答或提示11-09
文明班级、文明学生评选方案11-13
大树岭的秋天作文500字07-09
最新湖南省2018-2019年四年级下数学期末质量检测试题(1)02-02
百般抵赖--否认事实的诡辩02-23
文学的趣味12-09
主题团会03-18
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- superalgebras
- Generalized
- realization
- Drinfeld
- quantum
- frak
- hat
- osp
- 七年级语文阅读理解_十篇_含答案
- 建筑业统计报表填报说明
- 阿里钉钉软件基本介绍(用户)
- 第2章颈部3-填空、填图
- 大工13春《电子政府与电子政务》在线作业2免费答案
- 浙江工商大学研究生考试最近内幕信息
- 优秀共青团员先进事迹
- 电子商务环境下客户关系管理探讨
- 第六章 公共支出理论与实践
- 第三章 常用计算的基本理论和方法
- 小功率调频广播发射机的制作
- 引导探究提高能力
- 《孔子游春》教学设计
- 初一诗词默写大赛题库
- 小学语文第三册词语表
- 承兑信用证与延期付款信用证之比较
- 宝利沥青:中国证监会关于核准公司首次公开发行股票并在创业板上市的批复 2010-09-27
- 36例重度子痫前期剖宫产的术中护理
- 全国报社杂志社投稿方式精选(散文。随笔类)
- 2012年北京中考各区县一模化学实验题探究题汇编