小学奥数专题157-5 - 组合 - 题库学生版
更新时间:2024-03-18 00:04:01 阅读量: 综合文库 文档下载
- 小学奥数专题有哪些推荐度:
- 相关推荐
组合
知识框架图 7-5-1组合及其应用 7 计数综合 7-5 组合 7-5-2排除法 7-5-3插板法
教学目标
1.使学生正确理解组合的意义;正确区分排列、组合问题; 2.了解组合数的意义,能根据具体的问题,写出符合要求的组合; 3.掌握组合的计算公式以及组合数与排列数之间的关系;
4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.
知识要点
一、组合问题
日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.
一般地,从n个不同元素中取出m个(m?n)元素组成一组不计较组内各元素的次序,叫做从n个不同元素中取出m个元素的一个组合.
7-5.组合.题库 学生版 page 1 of 13
从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.
从n个不同元素中取出m个元素(m?n)的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数.记作Cnm.
一般地,求从n个不同元素中取出的m个元素的排列数Pmn可分成以下两步: 第一步:从n个不同元素中取出m个元素组成一组,共有Cnm种方法;
m种排法. 第二步:将每一个组合中的m个元素进行全排列,共有Pmmm?Pm根据乘法原理,得到Pnm?Cn.
Pnmn(?n?1)(?n?2)?(?n?m?1)因此,组合数C?m?.
Pmm(?m?1)(?m?2)??3?2?1mn这个公式就是组合数公式.
二、组合数的重要性质
mn?m?Cn一般地,组合数有下面的重要性质:Cn(m?n)
n?m这个公式的直观意义是:Cnm表示从n个元素中取出m个元素组成一组的所有分组方法.Cn表示从n个
元素中取出(n?m)个元素组成一组的所有分组方法.显然,从n个元素中选出m个元素的分组方法恰是从n个元素中选m个元素剩下的(n?m)个元素的分组方法.
3?C52. 例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即C50?1. 规定Cnn?1,Cn
例题精讲
模块一、组合及其应用
7-5.组合.题库 学生版 page 2 of 13
【例 1】 计算:⑴ C62,C64;⑵ C72,C75.(2级)
1985598100?2C100【例 2】 计算:⑴ C200;⑵ C56;⑶ C100.(2级)
3998【巩固】 计算:⑴ C12;⑵ C1000;⑶ P82?C82.(2级)
【例 3】 6个朋友聚会,每两人握手一次,一共握手多少次?(2级)
【巩固】 某班毕业生中有20名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手?
(2级)
【例 4】 (难度等级 ※※)学校开设6门任意选修课,要求每个学生从中选学3门,共有多少种不同的选
法?(4级)
【例 5】 某校举行排球单循环赛,有12个队参加.问:共需要进行多少场比赛?(2级)
【巩固】 芳草地小学举行足球单循环赛,有24个队参加.问:共需要进行多少场比赛?(2级)
【例 6】 一批象棋棋手进行循环赛,每人都与其他所有的人赛一场,根据积分决出冠军,循环赛共要进行
78场,那么共有多少人参加循环赛?(4级)
【例 7】 某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个
小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?(4级)
7-5.组合.题库 学生版 page 3 of 13
【例 8】 从分别写有1、3、5、7、9的五张卡片中任取两张,做成一道两个一位数的乘法题,问:
⑴ 有多少个不同的乘积?
⑵ 有多少个不同的乘法算式?(6级)
【巩固】 9、8、7、6、5、4、3、2、1、0这10个数字中划去7个数字,一共有多少种方法?(4级)
【巩固】 从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张,做成一道两个一位数的加法题,
有多少种不同的和?(4级)
【例 9】 在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?(6级)
【巩固】 从19、20、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?
(6级)
【例 10】 一个盒子装有10个编号依次为1,2,3,,10的球,从中摸出6个球,使它们的编号之和为奇
数,则不同的摸法种数是多少?(6级)
【例 11】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?
用2个0,2个1,2个2可以组成多少个互不相同的六位数?(6级)
【例 12】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五
位数,一共可以组成多少个数?(6级)
7-5.组合.题库 学生版 page 4 of 13
【例 13】 从0、0、1、2、3、4、5这七个数字中,任取3个组成三位数,共可组成多少个不同的三位数?
(这里每个数字只允许用1次,比如100、210就是可以组成的,而211就是不可以组成的).(2008年“陈省身杯”国际青少年数学邀请赛五年级)(4级)
【例 14】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多
少个互不相同的六位数?(6级)
【巩固】用两个3,一个2,一个1,可以组成多少个不重复的4位数?(6级)
【例 15】 工厂某日生产的10件产品中有2件次品,从这10件产品中任意抽出3件进行检查,问:
(1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有一件是次品的抽法有多少种?
(3)抽出的3件中至少有一件是次品的抽法有多少种?(6级)
【例 16】 200件产品中有5件是次品,现从中任意抽取4件,按下列条件,各有多少种不同的抽法(只要求
列式)?⑴都不是次品;⑵至少有1件次品;⑶不都是次品.(6级)
【例 17】 在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的:
⑴ 直线段;⑵ 三角形;⑶ 四边形.(6级)
【巩固】 平面内有10个点,以其中每2个点为端点的线段共有多少条?(4级)
7-5.组合.题库 学生版 page 5 of 13
正在阅读:
安妮日记读后感700字10-29
我爱美丽的家乡作文600字06-30
化学同步苏教版高二选修5学案:专题5 - 第二单元 - 氨基酸 - 蛋白质 - 核酸 - word版含解析11-14
小学六年级语文教师述职报告多篇精选08-01
点阵LED显示屏的原理与制作06-12
八下美术第二课教案01-01
2018新版苏教版三年级下册数学教学设计及反思(59课时)07-04
2018届二轮复习 短文语法填空典题10篇训练之一学案(14页word版)09-16
剑灵职业商人讲解赚钱攻略之奸商04-13
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 学生版
- 奥数
- 题库
- 组合
- 小学
- 专题
- 157
- 本科毕业论文原稿
- 农业推广案例分析 一个农业推广的典型案例及对它的分析
- 计算机基础知识 - 试题及答案
- 亿达化工演练方案 - 图文
- 消防安全风险评估报告
- 低压电力线载波抄表系统
- 高一地理地球自转练习题附答案 - 图文
- 人教版初二数学下册《16.3 第2课时 二次根式的混合运算》导学案
- 双语小学语言文字规范化工作制度
- 把句子改成比喻句
- 高一语文下学期期中试题5
- 指间MUD 萌新跳坑入门指南
- 初中选择填空题做题方法指导与归纳总结
- 月亮中的兔子与民俗(中秋节习俗)
- 小学奥数几何计数
- 2010年5月证券从业资格考试基础知识真题
- 《热力学第一定律》练习题1
- 茶多酚的分离提取实验改进及结果分析
- 一冶“营改增”项目管理手册(第一版)
- 2012届中考生物考点动物的生殖和发育专题复习试题及答案