水污染控制工程第三版习题答案完整版

更新时间:2023-05-10 08:34:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《水污染控制工程》第三版习题答案

第九章污水水质和污水出路

1.简述水质污染指标体系在水体污染控制、污水处理工程设计中的应用。

水质污染指标是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。

2分析总固体、溶解性固体、悬浮固体及挥发性固体、固定性固体指标之间的相互关系,画出这些指标的关系图。 水中所有残渣的总和称为总固体(TS),总固体包括溶解性固体(DS)和悬浮性固体(SS)。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS)。固体残渣根据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。将固体在600℃的温度下灼烧,挥发掉的即市是挥发性固体(VS),灼烧残渣则是固定性固体(FS)。溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。

3 生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间的联系和区别。

(1)BOD:在水温为20度的条件下,水中有机物被好养微生物分解时所需的氧量。

(2)COD:用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量。

(3)TOD:由于有机物的主要元素是C、H、O、N、S等。被氧化后,分别产生CO2、H2O、NO2和SO2,所消耗的氧量称为总需氧量。

(4)TOC:表示有机物浓度的综合指标。水样中所有有机物的含碳量。

它们之间的相互关系为:TOD > COD >BOD20>BOD5>OC

生物化学需氧量或生化需氧量(BOD)反映出微生物氧化有机物、直接地从卫生学角度阐明被污染的程度。化学需氧量COD的优点是比较精确地表示污水中有机物的含量,测定时间仅仅需要数小时,并且不受水质的影响。而化学需氧量COD则不能象BOD反映出微生物氧化有机物、直接地从卫生学角度阐明被污染的程度。此外,污水中存在的还原性无机物(如硫化物)被氧化也需要消耗氧,以COD表示也存在一定的误差。

两者的差值大致等于难生物降解的有机物量。差值越大,难生物降解的有机物含量越多,越不宜采用生物处理法。两者的比值可作为该污水是否适宜于采用生物处理的判别标准,比值越大,越容易被生物处理。

4 水体自净有哪几种类型?氧垂曲线的特点和适用范围是什么?

答:污染物随污水排入水体后,经过物理的、化学的与生物化学的作用,使污染的浓度降低或总量减少,受污染的水体部分地或完全地恢复原状,这种现象称为水体自净或水体净化。包括物理净化、化学净化和生物净化。物理净化指污染物质由于稀释、扩散、沉淀或挥发等作用使河水污染物质浓度降低的过程。化学净化指污染物质由于氧化、还原、分解等作用使河水污染物质浓度降低的过程。生物净化指由于水中生物活动,尤其是水中微生物对有机物的氧化分解作用而引起的污染物质浓度降低的过程。

有机物排入河流后,经微生物降解而大量消耗水中的溶解氧,使河水亏氧;另一方面,空气中的氧通过河流水面不断地溶入水中,使溶解氧逐步得到恢复。耗氧与亏氧是同时存在的, DO曲线呈悬索状下垂,称为氧垂直曲线。适用于一维河流和不考虑扩散的情况下。

5 试论述排放标准、水环境质量标准、环境容量之间的关系。

排放标准是指最高允许的排放浓度,污水的排放标准分为一,二,三级标准,而水环境质量标准是用来评估水体的质量和污染情况的,有地表水环境质量标准,海洋水质标准,生活饮用水卫生标准等,环境容量则是指环境在其自净范围类所能容纳的污染物的最大量. 排放标准是根据自然界对于污染物自净能力而定的,和环境容量有很大关系,环境质量标准是根据纯生态环境为参照,根据各地情况不同而制定的。排水标准是排到环境中的污染物浓度、速率的控

制标准;环境质量标准是水环境本身要求达到的指标。水环境容量越大,环境质量标准越低,排放标准越松,反之越严格。各类标准一般都是以浓度来衡量的,即某一时间取样时符合标准则认为合格达标, 而环境容量是就某一区域内一定时间内可以容纳的污染物总量而言的,他们是两个相对独立的评价方法,某些时候,虽然达到了环境质量标准或是排水等标准,但可能事实上已经超过了该区域的环境容量。

6 我国现行的排放标准有哪几种?各种标准的适用范围及相互关系是什么?

污水排放标准根据控制形式可分为浓度标准和总量控制标准。

根据地域管理权限可分为国家排放标准,行业排放标准、地方排放标准。

浓度标准规定了排出口向水体排放污染物的浓度限值,我国现有的国家标准和地方标准都是浓度标准。总量控制标准是以水环境质量标准相适应的水环境容量为依据而设定的,水体的环境质量要求高,则环境容量小。国家排放标准按照污水去向,规定了水污染物最高允许排放浓度,适用于排污单位水污染物的排放管理,以及建设项目的环境影响评价、建设项目环境保护设施设计、竣工验收以及投产后的排放管理。行业排放标准是根据各行业排放废水的特点和治理技术水平制定的国家行业排放标准。地方标准是各省直辖市根据经济发展水平和管辖地水体污染控制需要制定的标准,地方标准可以增加污染物控制指标数,但不能减少,可以提高对污染物排放标准的要求,但不能降低标准。

第十章污水的物理处理

1、试说明沉淀有哪些类型?各有何特点?讨论各类型的联系和区别。

答:自由沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮固体之间互不干扰,颗粒各自单独进行沉淀, 颗粒沉淀轨迹呈直线。沉淀过程中,颗粒的物理性质不变。发生在沉砂池中。

絮凝沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮颗粒之间有互相絮凝作用,颗粒因相互聚集增大而加快沉降,沉淀轨迹呈曲线。沉淀过程中,颗粒的质量、形状、沉速是变化的。化学絮凝沉淀属于这种类型。

区域沉淀或成层沉淀:悬浮颗粒浓度较高(5000mg/L以上);颗粒的沉降受到周围其他颗粒的影响,颗粒间相对位置保持不变,形成一个整体共同下沉,与澄清水之间有清晰的泥水界面。二次沉淀池与污泥浓缩池中发生。

压缩沉淀:悬浮颗粒浓度很高;颗粒相互之间已挤压成团状结构,互相接触,互相支撑,下层颗粒间的水在上层颗粒的重力作用下被挤出,使污泥得到浓缩。二沉池污泥斗中及浓缩池中污泥的浓缩过程存在压缩沉淀。

联系和区别:自由沉淀,絮凝沉淀,区域沉淀或成层沉淀,压缩沉淀悬浮颗粒的浓度依次增大,颗粒间的相互影响也依次加强。

2、 设置沉砂池的目的和作用是什么?曝气沉砂池的工作原理和平流式沉砂池有何区别?

答:设置沉砂池的目的和作用:以重力或离心力分离为基础,即将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒,以免这些杂质影响后续处理构筑物的正常运行。

平流式沉砂池是一种最传统的沉砂池,它构造简单,工作稳定,将进入沉砂池的污水流速控制在只能使相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走,从而能从污水中去除砂子、煤渣等密度较大的无机颗粒。曝气沉砂池的工作原理:由曝气以及水流的螺旋旋转作用,污水中悬浮颗粒相互碰撞、摩擦,并受到气泡上升时的冲刷作用,使粘附在砂粒上的有机污染物得以去除。曝气沉砂池沉砂中含有机物的量低于5%;由于池中设有曝气设备,它还具有预曝气、脱臭、防止污水厌氧分解、除泡以及加速污水中油类的分离等作用。

3、水的沉淀法处理的基本原理是什么?试分析球形颗粒的静水自由沉降(或上浮)的基本规律,影响沉降或上浮的因素是什么?

答:基本原理:沉淀法是利用水中悬浮颗粒的可沉降性能,在重力作用下产生下沉作用,以达到固液分离的一种过程。基本规律:静水中悬浮颗粒开始沉降(或上浮)时,会受到重力、浮力、摩擦力的作用。刚开始沉降(或上浮)

时,因受重力作用产生加速运动,经过很短的时间后,颗粒的重力与水对其产生的阻力平衡时, 颗粒即等速下沉。影响因素:颗粒密度,水流速度,池的表面积。

6、加压容器浮上法的基本原理是什么?有哪几种基本流程和溶气方式?各有何特点?

答:加压溶气气浮法的基本原理是空气在加压条件下溶于水中,再使压力降至常压,把溶解的过饱和空气以微气泡的形式释放出来。

其工艺流程有全溶气流程、部分溶气流程和回流加压溶气流程3种;溶气方式可分为水泵吸水管吸气溶气方式、水泵压水管射流溶气方式和水泵-空压机溶气方式。

全溶气流程是将全部废水进行加压溶气,再经减压释放装置进入气浮池进行固液分离,与其它两流程相比,其电耗高,但因不另加溶气水,所以气浮池容积小;部分溶气流程是将部分废水进行加压溶气,其余废水直接送入气浮池,该流程比全溶气流程省电,另外因部分废水经溶气罐,所以溶气罐的容积比较小,但因部分废水加压溶气所能提供的空气量较少,因此,若想提供同样的空气量,必须加大溶气罐的压力;回流加压溶气流程将部分出水进行回流加压,废水直接送入气浮池,该法适用于含悬浮物浓度高的废水的固液分离,但气浮池的容积较前两者大。

水泵吸水管吸气溶气方式设备简单,不需空压机,没有空压机带来的噪声;水泵压水管射流溶气方式是利用在水泵压水管上安装的射流器抽吸空气,其缺点是射流器本身能量损失大一般约30%,若采用空气内循环和水内循环,可以大大降低能耗,达到水泵-空压机溶气方式的能耗水平;水泵-空压机溶气方式溶解的空气由空压机提供,压力水可以分别进入溶气罐,也有将压缩空气管接在水泵压入泵上一起进入溶气罐的。

目前常用的溶气方式是水泵-空压机溶气方式。

7、微气泡与悬浮颗粒相粘附的基本条件是什么?有哪些影响因素?如何改善微气泡与颗粒的粘附性能?

答:微气泡与悬浮颗粒相粘附的基本条件是水中颗粒的润湿接触角大于90度,即为疏水表面,易于为气泡粘附或者水的表面张力较大,接触即角较大,也有利于气粒结合。

影响微气泡与悬浮颗粒相粘附的因素有:界面张力、接触角和体系界面自由能,气-粒气浮体的亲水吸附和疏水吸附,泡沫的稳定性等。

在含表面活性物质很少的废水中加入起泡剂,可以保证气浮操作中泡沫的稳定性,从而增强微气泡和颗粒的粘附性能。

8、气固比的定义是什么?如何确定(或选用)?

答:气固比即溶解空气量与原水中悬浮固体含量的比值。

气固比的选用涉及到出水水质、设备、动力等因素。从节能考虑并达到理想的气浮分离效果,应对所处理的废水进行气浮试验来确定气固比,如无资料或无实验数据时,一般取用0.005~0.006,废水悬浮固体含量高时,可选用上限,低时选用下限。剩余污泥气浮浓缩使气固比一般采用0.03~0.04。

9、在废水处理中,气浮法与沉淀法相比较,各有何优缺点?

答:沉淀法它是利用水中悬浮颗粒的可沉淀性能在重力场的作用下,以达到固液分离的一种过程。主要去除污水中的无机物,以及某些比重较大的颗粒物质。浮上法是一种有效的固—液和液—液分离方法,特别对那些颗粒密度或接近或小于水的以及非常细小颗粒,更具有特殊优点。与气浮法相比较,沉淀法的优点是这一物理过程简便易行,设备简单,固液分离效果良好。与沉淀法相比较气浮法的优点:1)气浮时间短,一般只需要15分钟左右,去除率高;2)对去除废水中的纤维物质特别有效,有利于提高资源利用率,效益好;3)应用范围广。它们缺点是都有局限性,单一化。气浮法:能够分离那些颗粒密度接近或者小于水的细小颗粒,适用于活性污泥絮体不易沉淀或易于产生膨胀的情况,但是产生微细气泡需要能量,经济成本较高。

沉淀法:能够分离那些颗粒密度大于水能沉降的颗粒,而且固液的分离一般不需要能量,但是一般沉淀池的占地

面积较大。

11、如何改进及提高沉淀或浮上分离效果?

答:为了提高气浮的分离效果,要保持水中表面活性物质的含量适度,对含有细分散亲水性颗粒杂质的工业废水,采用气浮法处理时,除应用投加电解质混凝剂进行电中和方法外,还可用向水中投加浮选剂,使颗粒的亲水性表面改变为疏水性,使其能与气泡粘附。

影响沉淀分离效果的因素有沿沉淀池宽度方向水流速度分布的不均匀性和紊流对去除率的影响,其中宽度方向水流速度分布的不均匀性起主要作用。所以为了提高沉淀的分离效果,在沉淀池的设计过程中,为了使水流均匀分布,应严格控制沉淀区长度,长宽比,长深比。

第11章

1、简述好氧生物和厌氧生物处理有机污水的原理和适用条件。

答:好氧生物处理:在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物质稳定下来,达到无害化的要求,以便返回自然环境或进一步处置。适用于中、低浓度的有机废水,或者说BOD5浓度小于500mg/L的有机废水。

厌氧生物处理:在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。适用于有机污泥和高浓度有机废水(一般BOD5≥2000mg/L)。

3 简述城镇污水生物脱氮过程的基本步骤。

答:微生物经氨化反应分解有机氮化合物生成NH3,再在亚硝化菌和硝化菌的作用下,经硝化反应生成(亚)硝酸盐,最后经反硝化反应将(亚)硝酸盐还原为氮气。当进水氨氮浓度较低时,同化作用也可能成为脱氮的主要途径。

4、简述生物除磷的原理。

答:在厌氧-好氧交替运行的系统中,得用聚磷微生物具有的厌氧释磷及好氧超量吸磷的特性,使好氧段中混合液磷的浓度大量降低,最终通过排放含有大量富磷污泥而达到从污水中除磷的目的。

第十二章活性污泥法

1. 活性污泥法的基本概念和基本流程是什么?

答:活性污泥是指由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。

活性污泥法处理流程具体流程见下图:

2. 常用的活性污泥法曝气池的基本形式有哪些?

答:推流式曝气池:污水及回流污泥一般从池体的一端进入,水流呈推流型,底物浓度在进口端最高,沿池长逐渐降低,至池出口端最低。

完全混合式曝气池:污水一进入曝气反应池,在曝气搅拌作用下立即和全池混合,曝气池内各点的底物浓度、微生物浓度、需氧速率完全一致。

封闭环流式反应池:结合了推流和完全混合两种流态的特点,污水进入反应池后,在曝气设备的作用下被快速、均匀地与反应器中混合液进行混合,混合后的水在封闭的沟渠中循环流动。封闭环流式反应池在短时间内呈现推流式,而在长时间内则呈现完全混合特征。

序批式反应池(SBR):属于“注水--反应—排水”类型的反应器,在流态上属于完全混合,但有机污染物却是随着反应时间的推移而被降解的。其操作流程由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结

束构成一个周期,所有处理过程都是在同一个设有曝气或搅拌装置的反应器内依次进行,混合液始终留在池中,从而不需另外设置沉淀池。

3. 活性污泥法有哪些主要运行方式?各种运行方式有何特点?

答:传统推流式:污水和回流污泥在曝气池的前端进入,在池内呈推流式流动至池的末端,充氧设备沿池长均匀布置,会出现前半段供氧不足,后半段供氧超过需要的现象。

渐减曝气法:渐减曝气布置扩散器,使布气沿程递减,而总的空气量有所减少,这样可以节省能量,提高处理效率。

分步曝气:采用分点进水方式,入流污水在曝气池中分3—4点进入,均衡了曝气池内有机污染物负荷及需氧率,提高了曝气池对水质、水量冲击负荷的能力。

完全混合法:进入曝气池的污水很快被池内已存在的混合液所稀释、均化,入流出现冲击负荷时,池液的组成变化较小,即该工艺对冲击负荷具有较强的适应能力;污水在曝气池内分布均匀,F/M值均等,各部位有机污染物降解工况相同,微生物群体的组成和数量几近一致;曝气池内混合液的需氧速率均衡。

浅层曝气法:其特点为气泡形成和破裂瞬间的氧传递速率是最大的。在水的浅层处用大量空气进行曝气,就可以获得较高的氧传递速率。

深层曝气法:在深井中可利用空气作为动力,促使液流循环。并且深井曝气池内,气液紊流大,液膜更新快,促使KLa值增大,同时气液接触时间延长,溶解氧的饱和度也由深度的增加而增加。

高负荷曝气法:在系统与曝气池构造方面与传统推流式活性污泥方相同,但曝气停留时间公1.5-3.0小时,曝气池活性污泥外于生长旺盛期。主要特点是有机容积负荷或污泥负荷高,但处理效果低。

克劳斯法:把厌氧消化的上清液加到回流污泥中一起曝气,然后再进入曝气池,克服了高碳水化合物的污泥膨胀问题。而且消化池上清液中富有氨氮,可以供应大量碳水化合物代谢所需的氮。消化池上清液夹带的消化污泥相对密度较大,有改善混合液沉淀性能的功效。

延时曝气法:曝气时间很长,活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放。本工艺还具有处理过程稳定性高,对进水水质、水量变化适应性强,不需要初沉池等优点。

接触稳定法:混合液的曝气完成了吸附作用,回流污泥的曝气完成稳定作用。本工艺特点是污水与活性污泥在吸附池内吸附时间较短,吸附池容积较小,再生池的容积也较小,另外其也具有一定的抗冲击负荷能力。

氧化沟:氧化沟是延时曝气法的一种特殊形式,它的池体狭长,池深较浅,在沟槽中设有表面曝气装置。曝气装置的转动,推动沟内液体迅速流动,具有曝气和搅拌两个作用,

使活性污泥呈悬浮状态。

纯氧曝气法:纯氧代替空气,可以提高生物处理的速度。在密闭的容器中,溶解氧的饱和度可提高,氧溶解的推动力也随着提高,氧传递速率增加了,因而处理效果好,污泥的沉淀性也好。

吸附-生物降解工艺;处理效果稳定,具有抗冲击负荷和pH变化的能力。该工艺还可以根据经济实力进行分期建设。

序批式活性污泥法:工艺系统组成简单,不设二沉池,曝气池兼具二沉池的功能,无污泥回流设备;耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池;反应推动力大,易于得到优于连续流系统的出水水质;运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷的效果;污泥沉淀性能好,SVI值较低,能有效地防止丝状菌膨胀;该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于自控运行,易于维护管理。

4. 解释污泥泥龄的概念,说明它在污水处理系统设计和运行管理中的作用。

答:污泥泥龄即生物固体停留时间,其定义为在处理系统(曝气池)中微生物的平均停留时间。在工程上,就是指反应系统内微生物总量与每日排出的剩余微生物量的比值。活性污泥泥龄是活性污泥处理系统设计\运行的重要参数。在曝气池设计中的活性污泥法,即是因为出水水质、曝气池混合液污泥浓度、污泥回流比等都与污泥泥龄存在一定的数学关系,由活性污泥泥龄即可计算出曝气池的容积。而在剩余污泥的计算中也可根据污泥泥龄直接计算每天的剩余污泥。而在活性污泥处理系统运行管理过程中,污泥泥龄也会影响到污泥絮凝的效果。另外污泥泥龄也有助于进步了解活性污泥法的某些机理,而且还有助于说明活性污泥中微生物的组成。

5.从气体传递的双膜理论,分析氧传递的主要影响因素。

答:气体传递的双膜理论的基点是认为在气液界面存在着二层膜(即气膜和液膜)这一物理现象。这两层薄膜使气体分子从一相进入另一相时受到了阻力。当气体分子从气相向液相传递时,若气体的溶解度低,则阻力主要来自液膜。影响氧传递的因素主要有如下:

污水水质:水中各种杂质如某些表面活性物质会在气液界面处集中,形成一层分子膜,增加了氧传递的阴力,影响了氧分子的扩散。

水温:水温对氧的转移影响较大,水温上升,水的黏度降低,液膜厚度减小,扩散系数提高,反之,扩散系数降低。

氧分压:气相中的氧分压直接影响到氧传递的速率。气相中氧分压增大,则传递速率加快,反之,则速率降低。 总的来说,气相中氧分压、液相中氧的浓度梯度、气液间的接触面积和接触时间、水温、污水的性质、水流的紊流程度等因素都影响着氧的转移速率。

6 生物脱氮、除磷的环境条件要求和主要影响因素是什么?说明主要生物脱氮、除磷工艺的特点

答:生物脱氮、除磷影响因素有:(1)环境因素,如温度、pH、DO;(2)工艺因素,如污泥泥龄、各反应区的水力停留时间、二沉池的沉淀效果;(3)污水成分,如污水中易降解有机物浓度,BOD5与N、P的比值等。

AN/O。优点:在好氧前去除BOD,节能;消化前产生碱度;前缺氧具有选择池的作用。缺点:脱氮效果受内循环比影响;可能存在诺卡氏菌的问题;需要控制循环混合液的DO

Ap/O。优点:工艺过程简单;水力停留时间短;污泥沉降性能好;聚磷菌碳源丰富,除磷效果好。缺点:如有消化发生除磷效果会降低;工艺灵活性差

A2/O。优点:同时脱氮除磷;反硝化过程为消化提供碱度;反硝化过程同时去除有机物;污泥沉降性能好。缺点:回流污泥含有硝酸盐进入厌氧区,对除磷效果有影响;脱氮受内回流比影响;聚磷菌和反消化菌都需要易降解有机物

倒置A2/O。优点:同时脱氮除磷;厌氧区释磷无硝酸盐的干扰;无混合液回流时,流程简捷,节能;反硝化过程同时去除有机物;好氧吸磷充分;污泥沉降性能好。缺点:厌氧释磷得不到优质易降解碳源;无混合液回流时总氮去除效果不高;

UCT。优点:减少了进入厌氧区的硝酸盐量,提高了除磷效率;对有机物浓度偏低的污水,除磷效率有所改善;脱氮效果好。缺点:操作较为复杂;需增加附加回流系统

改良Bardenpho。优点:脱氮效果优秀;污泥沉降性能好。缺点:池体分隔较多;池体容积较大

PhoStrip。优点:易于与现有设施结合及改造;过程灵活性好;除磷性能不受积水有机物浓度限制;加药量比直接采用换血沉淀法小很多;出水磷酸盐浓度可稳定小于1mg/l。缺点:需要投加化学药剂;混合液需保持较高DO浓度,以防止磷在二沉池中释需附加的池体用于磷的解吸;如使用石灰可能存在结垢问题

SBR及变性工艺。优点:可同时脱氮除磷;静置沉淀可获得低SS出水;耐受水力冲击负荷;操作灵活性好。缺点:同时脱氮除磷时操作复杂;滗水设施的可靠性对出水水质影响大;设计过程复杂;维护要求高,运行对自动控制依赖性强;池体容积较大

9 仔细分析污水中COD的组成,并说明它们在污水处理系统中的去除途径。

答:其中可生物降解的大多数被微生物降解;不可生物降解的溶解态COD随出水流走,颗粒态COD进入剩余污泥。

10 二沉池的功能和构造与一般沉淀池有什么不同?在二沉池中设置斜板为什么不能取得理想的效果?

答:活性污泥法中的二沉池在功能上要同时满足澄清和污泥浓缩两个方面的要求,他的工作效果将直接影响系统的 和回流污泥浓度,二沉池中发生的沉淀为絮凝沉淀和压缩沉淀,和一般沉淀池中发生的沉淀不同,故结构也不同。

在二沉池中沉淀形式主要是成层沉淀而非自由沉淀,在二沉池中设置斜板后,实践上可以适当提高池子的澄清能力,这是由于斜板的设置可以改善布水的有效性和提高斜板间的弗劳德数,而不属于浅池理论原理。而且假设斜板既增加了二沉池基建投资,且会由于斜板上积存污泥,造成运行上的麻烦。

第十三章 生物膜法

1什么是生物膜法?生物膜法具有哪些特点?

答:污水的生物膜处理法是与活性污泥法并列的一种污水好氧生物处理技术。这种处理法的实质是细菌一类的生物和原生动物、后生动物一类的微型动物附着在滤料或某些载体上生长繁育,并在其上形成膜状生物污泥——生物膜。污水与生物膜接触,污水中的有机污染物,作为营养物质,为生物膜上的微生物所摄取,污水得到净化,微生物自身也得到繁衍增殖。

特点:

1、 微生物相方面的特点

(1) 参与净化反应的微生物多样化

(2) 生物的食物链长

(3) 能够存活世代时间较长的微生物

(4) 分段运行和优占种属

2、 处理工艺方面的特点

(1) 对水质、水量变动有较强的适应性

(2) 污泥沉降性能好,宜于固液分离

(3) 能够处理低浓度的污水

(4) 易于维护运行、节能

2试述生物膜法处理废水的基本原理

答:细菌一类的生物和原生动物、后生动物一类的微型动物附着在滤料或某些载体上生长繁育,并在其上形成膜状生物污泥——生物膜。污水与生物膜接触,污水中的有机污染物,作为营养物质,为生物膜上的微生物所摄取,污水得到净化,微生物自身也得到繁衍增殖。

3比较生物膜法与活性污泥法的优缺点。

普通活性污泥法优点:BOD和SS去除率高,可达90%-95%,适于处理要求高,水质稳的废水。

缺点:对水质变化适应差;实际需氧前大后小,使前段氧少,后段氧余;曝气池容积负荷低,占地面积大,基建费高。 改进:

阶段曝气:克服前段氧少,后段氧余缺点,曝气池容积减少30%。完全混合:承受冲击负荷强,适应工业废水特点,可处理高浓度有机废水;污泥负荷高,需氧均匀,动力省;但连续出水时,水质不理想,污泥膨胀。延时曝气:低负荷运行,池容积大,耗时长,积污水和污泥处理于一体,污泥氧化彻底,脱水迅速,无臭,水质稳定,受低温影响小。但池容积大,曝气量大,部分污泥老

化。适于处理要求高,不便于污泥处理的小城镇污水和工业废水。

废水→ 初沉池 → 二沉池 → 生物滤池 →出水

生物膜法工作流程

2。生物膜法

优点

★生物膜对水质,水量变化适应性强,稳定性好;★无污泥膨胀,运转管理方便;★生物膜中生物相丰富,生物种群呈一定分布; ★有高营养级别微生物存在,产能多,剩余污泥少;

★自然通风供氧,省能耗。

缺点

★运行灵活性差,难以人为控制;

★载体比表面积小,设备容积负荷小,空间效率低;

★处理效率差,BOD去除率约80%左右,出水BOD

28mg/l(活性污泥法BOD >90%,出水14mg/l)。

4 生物膜的形成一般有哪几个过程?与活性污泥相比 有什么区别?

1潜伏期或适应期

微生物在经历不可逆附着过程后,开始逐渐适应生存环境,并在载

体表面逐渐形成小的,分散的微生物。这些初始菌落首先在载体表面

不规则处形成。这一阶段的持续时间取决于进水第五浓度以及载体表

面特性。在实际生物膜反应器启动时,要控制这一阶段是很困难的。

2对数期或动力学增长期

在适应期形成的分散菌落开始迅速增长,逐渐覆盖载体表面。生物膜厚度可以达到几十μm。多聚糖及蛋白质产率增加,大量消耗溶解氧,后期氧成为限制因素,此阶段结束时,生物膜反应器的出水底物浓度基本达到稳定值,这个阶段决定了生物膜反应器内底物的去除效率及生物膜自身增长代谢的功能。

3线性增长期

生物膜在载体表面以恒速率增长,出水底物浓度不随生物量的积累而显著变化;其好氧速率保持不变;此阶段生物膜总量的积累主要源于非活性物质。此时生物膜活性生物量所占比例很小,且随生物膜总量的增长呈下降趋势。原因是:可剩余有效载体表面饱和;禁锢作用明显,有毒或抑制性物质的积累。这个阶段对底物的去除没有明显的贡献,但在流化床反应器内,这个阶段可以改变生物颗粒的体积特性。

4减数增长期

由于生存环境质量的改变以及谁理学的作用,出现了生物膜增长速率变慢,这一阶段是生物膜在某一质量和膜厚上达到的稳定的过渡期。此时生物膜对水力学剪切作用极为敏感。生物膜结构疏松,出水中悬浮物的浓度明显增高,末期,生物膜质量及厚度都趋于稳定,运行系统也接近稳定。

5生物膜稳定期

生物膜新生细胞与由于各种物理力所造成的生物膜损失达到平衡。次阶段,生物膜相及液相均已达到稳定状态。在生物膜反应器运行中,生物膜稳定期的维持一直认为是过程稳定性的必要保证,而在三相流化床等生物反应器中,在高底物浓度、高剪切力作用下,这一阶段时间很短,甚至不出现。

6脱落期

随着生物膜的成熟,部分生物膜发生脱落。生物膜内微生物自身氧化、内部厌氧层过厚以及生物膜与载体表面间相互作用等因素可加速生物膜脱落。另外,某些物理作用也可以导致生物膜脱落。此阶段中,出水悬浮物浓度增高,直接影响出水水质;底物降解过程受到影响,其结果是底物去除率降低,而我们在运行生物膜反应器的时候应该尽量避免生物膜同时大量脱落。

5生物膜法有哪几种形式?试比较它们的特点。

答:生物滤池:处理效果好,BOD5的去除率可达90%以上,出水 BOD5可下降到25mg/L以下,硝酸盐含量在10mg/L左右,出水水质稳定。

生物转盘:(1)不需曝气和回流,运行时动力消耗和费用低;(2)运行管理简单,技术要求不高;(3)工作稳定,适应能力强;(4)适应不同浓度、不同水质的污水;(5)剩余污泥量少,易于沉淀脱水;(6)没有滤池蝇、恶臭、堵塞、泡沫、噪音等问题;(7)可多层立体布置;(8)一般需加开孔防护罩保护、保温。

生物接触氧化法:一种浸没曝气式生物滤池,是曝气池和生物滤池综合在一起的处理构筑物,兼有两者优点:(1)具有较高的微生物浓度,一般可达10~20g/L;(2)生物膜具有丰富的生物相,含有大量丝状菌,形成了稳定的生态系统,污泥产量低;(3)具有较高的氧利用率;(4)具有较强的耐冲击负荷能力; (5)生物膜活性高;(6)没有污泥膨胀的问题。

生物流化床:滤床具有巨大的表面积容积负荷高,抗冲击负荷能力强,生物流化床每单位体积表面积比其他生物膜大,单位床体的生物量很高(10~14g/L),传质速度快,废水一进入床内,很快被混合稀释。 微生物活性强,对同类废水,在相同处理条件下,其生物膜的呼吸速率约为活性污泥的两倍,可见其反应速率快,微生物的活性强。 传质效果好,由于载体颗粒在床体内处于剧烈运动状态,气-固-液界面不断更新,因此传质效果好,这有利于微生物随污染物的吸附和降解,加快了生化反应速率。

1、生物滤池

优点:(1)处理效果好(2)运行稳定、易于管理、节省能源

缺点:(1)占地面积大、不适于处理量大的污水;(2)滤料易于堵塞;(3)产生滤池蝇,恶化环境卫生(4)喷嘴喷洒污水,散发臭味。

2、生物转盘

优点:(1)不需曝气和回流,运行时动力消耗和费用低;(2)运行管理简单,技术要求不高; (3)工作稳定,适应能力强;(4)适应不同浓度、不同水质的污水;(5)剩余污泥量少,易于沉淀脱水;(6)没有滤池蝇、恶臭、堵塞、泡沫、噪音等问题; (7)可多层立体布置;

缺点:(1)占地面积大(2)散发臭气(3)寒冷地区需加保温装置。

3、 生物接触氧化

优点:(1)具有较高的微生物浓度,一般可达10~20g/L;(2)生物膜具有丰富的生物相,含有大量丝状菌,形成了稳定的生态系统,污泥产量低;(3)具有较高的氧利用率;(4)具有较强的耐冲击负荷能力;(5)生物膜活性高;(6)没有污泥膨胀的问题。

缺点:滤床易堵塞和更换,运行费用较高。

4、 生物流化床

优点:(1)容积负荷高,抗冲击负荷能力强(2)微生物活性高(3)传质效果好

缺点:设备磨损较固定床严重

生产运行过程中设备堵塞,曝气方法、进水配水系统选用及生物颗粒流失等问题。

6试述各种生物膜法处理构筑物的展本构造及其功能。

答:普通生物滤池

普通生物滤池由池体、滤料、布水装置和排水系统等四个部分所组成

(1)池体 普通生物滤池在平面上多呈方形或矩形。四周筑墙称之为池壁,池壁具有维护滤料的作用,应当能够承受滤料的压力,一般多用砖石构造。池壁可构成带孔洞的和不带孔洞的两种形式,有孔洞的赤壁有利于滤料内部的通风,但在低温季节,易受低温的影响,使净化功能降低。为了防止风力对池表面均匀布水的影响,池壁一般应高出滤料表面0.5~0.9m。池体底部为池底,它的作用是支撑滤料和排除处理后的污水。

(2)滤料滤料是生物滤池的主体,它对生物滤池的净化功能有直接影响。

(3)布水装置 生物滤池布水装置的首要任务是向滤池表面均匀的散布污水。此外,还应具有:适应水量的变化;不易堵塞和易于清通以及不受风、雪的 影响等特征。

(4)排水系统 生物滤池的排水系统设于池的底部,它的作用有二:一是排除处理后的污水;二是保证滤池的良好通风。

高负荷生物滤池:

在构造上,高负荷生物滤池与普通生物滤池基本相同,但也有不同之处,其中主要有以下各项。

(1) 高负荷生物滤池在表面上多为圆形。

(2) 高负荷生物滤池多使用旋转式的布水装置,即旋转布水器。

塔式生物滤池:

在构造上由塔身、滤料、布水系统以及通风及排水装置所组成。

(1) 塔身 塔身主要起围挡滤料的作用。

(2) 滤料 宜采用轻质滤料。

(3) 布水装置

(4) 通风 一般采用自然通风

曝气生物滤池:

设备与给水处理的快滤池相类似。池类底部设承托层,其上部则是作为滤料的填料。在承托层设置曝启用的空气管及空气扩散装置,处理水集水管兼作反冲洗水管也设置在承托层内。

生物转盘:

生物转盘设备是由盘片、转轴和驱动装置以及接触反应槽3部分组成。

(1) 盘片 是生物转盘的主要部件,应具有轻质高强,耐腐蚀、耐老化、抑郁挂膜、不变形,比表面积大,易于取材、便于加工安装等性质。

(2) 接触反应槽

(3) 转轴

驱动装置,提供动力

7、生物滤池有几种形式?各适用于什么具体条件?

答:低负荷生物滤池(现在已经基本上不常用):仅在污水量小、地区比较偏僻、石料不贵的场合尚有可能使用。 高负荷生物滤池(大多采用):适用于大部分污水处理过程,水力负荷及有机负荷都比较高。

8、影响生物滤池的处理效率的因素有哪些?它们是如何影响处理效果的?

答:滤池高度:随着滤床深度增加,微生物从低级趋向高级,种类逐渐增多,生物膜量从多到少。各层生物膜的微生物不相同,处理污水的功能和速率也随之不同。

负荷率:在低负荷条件下,随着滤率的提高,污水中有机物的传质速率加快,生物膜量增多,滤床特别是它的表面很容易堵塞。在高负荷条件下,随着滤率的提高,污水在生物滤床中停留的时间缩短,出水水质将相应下降。

回流:(1)回流可提高生物滤池的滤率,它是使生物滤池负荷率由低变高的方法之一;(2)提高滤率有利于防止产生灰蝇和减少恶臭;(3)当进水缺氧、腐化、缺少营养元素或含有有害物质时,回流可改善进水的腐化状况、提供营养元素和降低毒物质浓度;(4)进水的质和量有波动时,回流有调节和稳定进水的作用。

供氧:微生物的好氧性,厌氧性,兼氧性使微生物有不同的氧需求,氧气量就制约了微生物的活性,进而影响了微生物分解有机物反应速率,进而影响了处理效果。

9影响生物转盘处理效率的因素有哪些?它们是如何影响处理效果的?

答:(1)水力负荷(2)转盘转速、级数(3)水温(4)溶解氧

第十四章 稳定塘和污水的土地处理

1、稳定塘有哪几种主要类型,各适用于什么场合?

答:好氧塘:好氧塘的深度较浅,阳光能透至塘底,全部塘水内都含有溶解氧,塘内菌藻共生,溶解氧主要是由藻类供给,好氧微生物起净化污水作用。适用于低有机物浓度污水。

兼性塘:兼性塘的深度较大,上层是好氧区,藻类的光合作用和大气复氧作用使其有较高的溶解氧,由好氧微生物起净化污水作用;中层的溶解氧逐渐减少,称兼性区(过渡区),由兼性微生物起净化作用;下层塘水无溶解氧,称厌氧区,沉淀污泥在塘底进行厌氧分解。适用于富含N,P等营养物质及一些难去除的有机污染物的污水。(占地面积大)

厌氧塘:厌氧塘的塘深在2m以上,有机负荷高,全部塘水均无溶解氧,呈厌氧状态,由厌氧微生物起净化作用,净化速度慢,污水在塘内停留时间长。适用于高温高有机物浓度的污水。

曝气塘:曝气塘采用人工曝气供氧,塘深在2m以上,全部塘水有溶解氧,由好氧微生物起净化作用,污水停留时间较短。

深度处理塘:深度处理塘又称三级处理塘或熟化塘,属于好氧塘。其进水有机污染物浓度很低,一般BOD5≤30mg/L。常用于处理传统二级处理厂的出水,提高出水水质,以满足受纳水体或回用水的水质要求。

2、试述好氧塘、兼性塘和厌氧塘净化污水的基本原理及优缺点。

答:在各种类型的氧化塘中,兼性塘是应用最为广泛的一种。兼性塘一般深1.0~2.0m,在塘的上层,阳光能够照射透入的部位,为好氧层,其所产生的各项指标的变化和各项反应与好氧塘相同,由好氧异养微生物对有机污染物进行氧化分解;藻类的光合作用旺盛,释放大浪的氧。在塘底部,由沉淀的污泥和衰死的藻类和菌类形成的污泥层,在这层里由于缺氧,而进行由厌氧微生物起主导作用的厌氧发酵,为厌氧层。

好氧层与厌氧层之间,存在一个兼性层,在这里溶解氧量低,而且是时有时无,一般在白昼有溶解氧存在,而在夜间又处于厌氧状态,在这里存活的是兼性微生物,这一类微生物既能够利用水中游离的分子氧,也能够在厌氧条件下,从NO3-和CO32-中摄取氧。

在兼性塘内进行的净化反应是比较复杂的,生物相也比较复杂。

在厌氧区与一般的厌氧发酵反应相同,是产酸、产氢产乙酸和产甲烷3种细菌的连续作用下,相继经过产酸、产氢产乙酸和产甲烷三个阶段的反应。液态代谢产物与塘水混合,气态产物则逸出水面,或在通过好氧区时为细菌分解,为藻类利用。

厌氧区也有降解BOD的功能,约有20%的BOD是在厌氧娶去除的。此外,厌氧区,通过厌氧反应发酵反应可以使污泥得到一定程度的降解,减少塘底污泥量。

在好氧区进行的各项反应与存活的生物基本同好氧塘。由于污水的停留时间长,有可能生长繁育多种种属的微生物,其中包括世代时间较长的种属。除有机物降解外,这里还可以进行更为复杂的反应,如硝化反应等。

3、好氧塘中溶解氧和PH值为什么会发生变化。

在好氧塘内高效地进行着光合成反应和有机物的降解反应,溶解氧是充足的,但在一日内是变化的,在白昼,藻类光合作用放出的氧远远超过藻类和细菌所需要的,塘水中氧的含量

由于生物呼吸所耗,水中溶解氧浓度下降,在凌晨时最低,阳光开始照射,光合作用又开始,水中溶解氧又上升;好氧塘内pH值也是变化的,在白昼pH值上升,夜晚又下降。

4、在稳定塘的设计计算时一般采用什么方法?应注意哪些问题?

答:一般采用经验法。

要注意:塘的位置:稳定塘应设在居民区下风向200m以外,以防止塘散发的臭气影响居民区。此外,塘不应设在距机场2km以内的地方,以防止鸟类(如水鸥)到塘内觅食、聚集,对飞机航行构成危险。

防止塘体损害:为防止浪的冲刷,塘的衬砌应在设计水位上下各0.5m以上。若需防止雨水冲刷时,塘的衬砌应做到堤顶。衬砌方法有干砌块石、浆砌块石和混凝土板等。

在有冰冻的地区,背阴面的衬砌应注意防冻:若筑堤土为黏土时,冬季会因毛细作用吸水而冻胀,因此,在结冰水位以上位置换为非黏性土。

塘体防渗:稳定塘的渗漏可能污染地下水源;若塘体出水再考虑回用,则塘体渗漏会造成水资源损失,因此,塘体防渗是十分重要的。但某些防渗措施的工程费用较高,选择防渗措施时应十分谨慎。防渗方法有素土夯实、沥青防渗衬面、膨胀土防渗衬面和塑料薄膜防渗衬面等。

塘的进出口:进出口的形式对稳定塘的处理效果有较大影响。设计时应注意配水、集水均匀,避免短流、沟流及混合死区。主要措施为采用多点进水和出水;进口、出口之间的直线距离尽可能大;进口、出口的方向避开当地主导风向。

5、污水土地处理系统中的工艺类类型有哪些?各有什么特点?

答:慢速渗滤系统:慢速渗滤系统的污水投配负荷一般较低,渗流速度慢,故污水净化效率高,出水水质优良。 快速渗滤系统:快速渗滤土地处理系统是一种高效、低耗、经济的污水处理与再生方法。适用于渗透性能良好的土壤,如砂土、砾石性砂土、砂质垆坶等。污水灌至快速滤渗田表面后很快下渗进入地下,并最终进入地下水层。灌水与休灌反复循环进行,使滤田表面土壤处于厌氧-好氧交替运行状态,依靠土壤微生物将被土壤截留的溶解性和悬浮有机物进行分解,使污水得以净化。

地表漫流系统:地表漫流系统适用于渗透性的黏土或亚黏土,地面的最佳坡度为 2%~ 8%。废水以喷灌法或漫灌法有控制地在地面上均匀地漫流,流向设在坡脚的集水渠,在流动过程中少量废水被植物摄取、蒸发和渗入地下。地面上种牧草或其他作物供微生物栖息并防止土壤流失,尾水收集后可回用或排放水体。

湿地处理系统:湿地处理系统是一种利用低洼湿地和沼泽地处理污水的方法。污水有控制地投配到种有芦苇、香蒲等耐水性、沼泽性植物的湿地上,废水在沿一定方向流动过程中,在耐水性植物和土壤共同作用下得以净化。

地下渗滤处理系统:地下污水处理系统是将污水投配到距地面约0.5m深、有良好渗透性的底层中,藉毛管浸润和土壤渗透作用,使污水向四周扩散,通过过滤、沉淀、吸附和生物降解作用等过程使污水得到净化。

6 人工湿地脱氮除磷的机理是什么?

机理是氮被有机基质的吸附;阳离子交换作用与固氮作用;植物的吸收及因其收获而去除;氨的挥发而逸入大气;被微生物代谢而于形成新细胞;化学的生物的硝化反硝化;随净化水流出;渗入地下水

7、人工湿地系统设计的主要工参数是什么?应考虑哪些问题?

答:土地处理系统的主要工艺参数为负荷率。常用的负荷率有水量负荷和有机负荷,有时还辅以氮负荷和磷负荷。 要考虑的问题是:土壤性质、透水性、地形、作物种类、气候条件和废水处理程度的要求。

第十五章 污水的厌氧生物处理

1. 厌氧生物处理的基本原理是什么?

答:废水厌氧生物处理是指在无分子氧条件下通过厌氧微生物 (包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。

2、厌氧发酵分为哪个阶段?为什么厌氧生物处理有中温消化和高温消化之分?污水的厌氧生物处理有什么优势,又有哪些不足之处?

答:通常厌氧发酵分为三个阶段:

第一阶段为水解发酵阶段:复杂的有机物在厌氧菌胞外酶的作用下,首先被分解为简单的有机物。继而简单的有机物在产酸菌的作用下经过厌氧发酵和氧化转化成乙酸、丙酸、丁酸等脂肪酸和醇类等。 第二阶段为产氢产乙酸阶段:产氢产乙酸菌把第一阶段中产生的中间产物转化为乙酸和氢,并有二氧化碳生成。 第三阶段为产甲烷阶段:产甲烷菌把第一阶段和第二阶阶段产生的乙酸、氢气和二氧化碳等转化为甲烷。

厌氧生物处理可以在中温(35℃一38℃)进行(称中温消化),也可在高温(52℃一55℃)进行(称高温消化)。因为在厌氧生物处理过程中需考虑到各项因素对产甲烷菌的影响,因为产甲烷菌在两个温度段(即35℃一38℃和52℃一55℃)时,活性最高,处理的效果最好。

厌氧生物处理优势在于:应用范围广,能耗低,负荷高,剩余污泥量少,其浓缩性、脱水性良好,处理及处置简单。另外,氮、磷营养需要量较少,污泥可以长期贮存,厌氧反应器可间歇性或季节性运转。其不足之处:厌氧设备启动和处理所需时间比好氧设备长;出水达不到要求,需进一步进行处理;处理系统操作控制因素较复杂;过程中产生的异味与气体对空气有一定影响。

3、 影响厌氧生物处理的主要因素有哪些?提高厌氧处理的效能主要从哪些方面考虑?

答:影响厌氧生物处理的主要因素有如下:pH、温度、生物固体停留时间、搅拌和混合、营养与C/N比、氧化还原电位、有机负荷、厌氧活性污泥、有毒物质等。

提高厌氧生物处理的效能可考虑:1 .pH维持在6.8~7.2之间, 2.温度可以维持在中温(35℃一38℃),也可以是高温(52℃一55℃) 3.保持较长的生物固体停留时间 4.系统内避免进行连续的剧烈搅拌 5.碳:氮:磷控制为200-300:5:1为宜。 6.需控制有毒物质的浓度,以防止有毒物质影响微生物的生存而使效果降低。

4、 试比较现有几种厌氧处理方法和构筑物的优缺点和适用条件。

传统消化法——适用:在一个消化池内进行酸化,甲烷化和固液分离。适用于小型,低投入系统。。优点:设备简单。缺点:反应时间长,池容积大;污泥易随水流带走

厌氧生物滤池——适用:微生物固着生长在滤料表面,适用于悬浮固体量低的污水。优点:设备简单,能承受较高负荷,出水悬浮固体低,能耗小。缺点:底部易发生堵塞,填料费用较贵

厌氧接触法——适用:用沉淀池分离污泥并进行回流,消化池中进行适当搅拦,池内呈完全混合,能适应高有机物浓度和高悬浮固体的污水。优点:能承受较高负荷,有一定抗冲坝子负荷能力,运行较稳定,不受进水悬浮固体的影响;出水悬浮固体低。缺点:负荷高时污泥会流失,设备较多,操作要求较高

上流式厌氧污泥床反应器——适用:消化和固液分离在一个池内,微生物量很高,适用于高负荷污水。优点:负荷高;总容积小,能耗低,不需搅拌。缺点:如设计不善,污泥会大量消失,池的构造复杂

两相厌氧处理法——适用:酸化和甲烷化在两个反应器进行,两个反应器可以采用不同反应温度。优点:能承受较高负荷,耐冲击,运行稳定。缺点:设备较多,运行操作较复杂

5 试述UASB反应器的构造和高效运行的特点。

答:构造1)进水配水系统:其功能主要有两个方面:① 将废水均匀地分配到整个反应器的底部;② 水力搅拌;一个有效的进水配水系统是保证UASB反应器高效运行的关键之一。

2)反应区:反应区是UASB反应器中生化反应发生的主要场所,又分为污泥床区和污泥悬浮区,其中的污泥床区主要集中了大部分高活性的颗粒污泥,是有机物的主要降解场所;而污泥悬浮区则是絮状污泥集中的区域。

3)三相分离器:三相分离器由沉淀区、回流缝和气封等组成;其主要功能有:① 将气体(沼气)、固体(污泥)、和液体(出水)分开;② 保证出水水质;③ 保证反应器内污泥量;④ 有利于污泥颗粒化。

4)出水系统:出水系统的主要作用是将经过沉淀区后的出水均匀收集,并排出反应器。

5)气室:气室也称集气罩,其主要作用是收集沼气。

6)浮渣收集系统:浮渣收集系统的主要功能是清除沉淀区液面和气室液面的浮渣。

7)排泥系统:排泥系统的主要功能是均匀地排除反应器内的剩余污泥。

特点:① 污泥的颗粒化使反应器内的平均浓度50gVSS/l以上,污泥龄一般为30天以上;

② 反应器的水力停留时间相应较短;

③ 反应器具有很高的容积负荷;

④ 不仅适合于处理高、中浓度的有机工业废水,也适合于处理低

浓度的城市污水;

⑤ UASB反应器集生物反应和沉淀分离于一体,结构紧凑;

⑥ 无需设置填料,节省了费用,提高了容积利用率;

⑦ 一般也无需设置搅拌设备,上升水流和沼气产生的上升气流起

到搅拌的作用;

⑧ 构造简单,操作运行方便。

第十六章 污水的化学与物理化学处理

1、 化学处理的对象主要是水中的哪类杂质?它与生物处理相比有什么特点(成本、运行管理、占地、污泥等)? 答:化学处理的对象主要是水中的无机的或有机的(难于生物降解的)溶解物质或胶体物质。

与生物处理相比:成本较高;运行管理较容易,占地较小,污泥较难脱水处理。

2、化学处理所产生的污泥,与生物处理相比,在数量(质量及体积)上、最后处理、处置上有什么不同?

化学处理所产生的污泥,数量较多,含有各种有机无机物质,体积较小,最后处理处置较麻烦,处理流程为:储存-浓缩-调理-脱水-最终处置

生物处理所产生的污泥,数量较少,含有微生物,N,P等,体积较大,最后处理处置较简单,处理流程为:储存-调理-脱水浓缩-最终处置

3、化学混凝法的原理和适用条件是什么?城镇污水的处理是否可以用化学混凝法,为什么?

答:原理:混凝是通过向废水中投加混凝剂(coagulant),破坏胶体的稳定性,通过压缩双电层作用、吸附架桥作用及网捕作用使细小悬浮颗粒和胶体微粒聚集(aggregation)成较粗大的颗粒而沉降与水分离,使废水得到净化。

适用条件:废水中有细小悬浮颗粒和胶体微粒,这些颗粒用自然沉降法很难从水中分离出去。

城镇污水处理不适合用化学混凝法,因为要不断向废水中投药,经常性运行费用较高,沉渣量大,且脱水较困难。

4、 化学混凝剂在投加时为什么必须立即与处理水充分混合、剧烈搅拌?

答:废水与混凝剂和助凝剂进行充分混合,是进行反应和混凝沉淀的前提。要立即与处理水充分混合、剧烈搅拌以创造良好的水解和聚合条件,使胶体脱稳并借颗粒的布朗运动和紊动水流进行凝聚。

5、 化学沉淀法与化学混凝法在原理上有何不同?使用的药剂有何不同?

答:化学沉淀法是向废水中投加化学物质,使与废水中的一些离子发生反应,生成难溶的沉淀物而从水中析出,以达到降低水中溶解污染物的目的。而混凝法是通过混凝剂使小颗粒及胶体聚集成大颗粒而沉降,不一定有化学反应发生。

化学混凝法使用的药剂主要是混凝效果好;对人类健康无害;价廉易得;使用方便的无机盐类和有机高分子类混凝剂或助凝剂。而化学沉淀法主要是投加有氢氧根、硫化物、钡盐等能与废水中一些离子反应生成沉淀物的化学物质。

6、氧化和还原法有何特点?是否废水中的杂质必须是氧化剂或还原剂才能用此方法?

答:特点是:通过氧化还原反应改变水中一些有毒有害化合物中元素的化合价以及改变化合物分子的结构,使剧毒的化合物变为微毒或无毒的化合物,使难于降解的有机物转化为可以生物降解的有机物。

废水中的杂质不用一定是氧化剂或还原剂才能用此方法,但是投加的药要一定是氧化剂或还原剂。

7、 物理化学处理与化学处理相比,在原理上有何不同?处理的对象有什么不同?在处理成本和运行管理方面又有什么特点?

物理化学处理——原理:利用物理化学反应的原理来去除污水中溶解的有害物质,回收有用组分,并使污水得到深度净化的方法。处理的对象:与化学处理相似,尤其适于杂质浓度很高的污水或是杂质浓度很低的污水,处理成本较高,运行管理较方便,但比化学处理法复

化学处理——原理:利用化学反应的作用去除水中的杂质。处理的对象:水中的无机的或有机的(难于生物降解的)溶解物质或胶体物质,处理成本较高,但相对物化处理法较低,运行管理较为方便

8.用吸附法处理废水,可以达到使出水极为洁净。那么,是否对处理要求高,出水要求高的废水,原则上都可以考虑采用吸附法?为什么?

答:吸附法对进水的预处理要求高,吸附剂价格昂贵,因此在废水处理过程中,吸附法主要用来去除废水中的微量污染物,达到深度净化的目的,或是从高浓度的废水中吸附某些物质达到资源回收和治理的目的。吸附法处理的主要对象是废水中用生化法难于降解的有机物或用一般氧化法难于氧化的溶解性有机物。包括木质素、氯或硝基取代的芳烃化合物、杂环化合物、洗涤剂、合成染料、除莠剂、DDT等。

9.电镀车间的含铬废水,可以用氧化还原法.化学沉淀法和离子交换法等加以处理。那么,在什么条件下,用离子交换法进行处理是比较合宜的?

答: 1 FeSO4-石灰法

FeSO4-石灰法处理含铬废水是一种成熟的方法,适用于含铬浓度大的废水.优点是药剂来源容易,方法简单,处理效果好;缺点是占地面积大,污泥体积大,出水色度高,适用于小厂.其反应原理为:

(1)酸化还原(pH2~3)

6FeSO4+2H2Cr2O7+6H2SO4=3Fe2(SO4)3+Cr2(SO4)3+7H2O.

(2)碱化沉淀(pH8.5~9.0)

Cr2(SO4)3+3Ca(OH)2=2Cr(OH)3↓+3CaSO4

2电解法

用电解法处理含铬废水,优点是效果稳定可靠,操作管理简单,设备占地面积小,废水中的重金属离子也能通过电解有所降低.缺点是耗电量较大,消耗钢板,运行费用较高,沉渣综合利用等问题有待进一步决。.其电解反应为: Fe-2e=Fe2+,

Cr2O72-+6Fe2++4H+=2Cr3++6Fe3++7H2O,

CrO42-+3Fe2++8H+=Cr3++3Fe3++4H2O.

随着废水中H+的消耗, [OH-]升高, pH升高, Cr(OH)3沉淀析出.

3 离子交换法

该法适于处理浓度不太高的含铬废水,处理效果好,废水可回用,并可回收铬酸.但工艺较为复杂,且使用的

树脂不同,工艺也不同.一次投资较大,占地面积大,运行费用高,适于大厂.原理为:用阴离子交换树脂去除Cr2O72-或CrO42-:

2ROH+CrO42-R2CrO4+2OH-,

2ROH+Cr2O72-R2Cr2O7+2OH-.

10从水中去除某些离子(例如汞盐),可以用离子交换法和膜分离法。您认为,当含盐浓度较高时,应该用离子交换法还是膜分离法,为什么?

答:膜析法好些。关于离子交换和膜法处理高盐度废水问题,事实上当含盐量超过一定浓度范围时,两者都不是较好的选择,因为当浓度较高时,渗透压过高,反渗透操作压力过高,同时容易造成膜污染破坏;若采用电渗析则能好过高;而离子交换则会造成树脂用量太大或反洗操作过于频繁,不能应用。

11有机酚的去除可以用萃取法。那么,废水中的无机物的去除是否可以用萃取法,为什么?

答:利用溶质在互不相溶的溶剂里溶解度的不同,用一种溶剂把溶质从另一溶剂所组成的溶液里提取出来的操作方法.例如,用四氯化碳从碘水中萃取碘,就是采用萃取的方法.因此在条件允许的情况下当然是可以的。无机物也可以采取萃取法进行分离,如采用络合萃取分离重金属离子等,或离子对萃取分离酸根等

本文来源:https://www.bwwdw.com/article/uzoe.html

Top