厦门市中考数学总复习 - 全部导学案 - 图文
更新时间:2024-07-01 05:05:01 阅读量: 综合文库 文档下载
- 厦门市中考数学试卷推荐度:
- 相关推荐
思考与收获 第1课时 实数的有关概念 【知识梳理】 1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限 环循小数)都是有理数. 有理数和无理数统称为实数. 2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应. 3. 绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0. 4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0. 5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字. 6. 科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫105,0.000043=4.3×10-5. 做科学记数法. 如:407000=4.07×7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小. 8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂. 9. 平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根. 10. 开平方:求一个数a的平方根的运算,叫做开平方. 11. 算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0. 12. 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13. 开立方:求一个数a的立方根的运算叫做开立方. 【思想方法】 数形结合,分类讨论 【例题精讲】 例1.下列运算正确的是( ) A.??3?3 B.()13?1??3C.9??3 D.3?27??3 例2.2的相反数是( ) A.?2 B.2 C.?例3.2的平方根是( ) A.4 B.2 C.?2 D.?2 例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) —◇◇
22 D. 221 ◇◇—
思考与收获 A.7.26?10 元 C.0.726?10 元 1110 B.72.6?10 元 119D.7.26?10元 例5.实数a,b在数轴上对应点的位置如图所示, 则必有( ) 0 a 1 b ?1 0 例5图 A.a?b?0 B.a?b?0 C.ab?0 D.例6.(改编题)有一个运算程序,可以使: a?0 ba⊕b = n(n为常数)时,得 (a+1)⊕b = n+2, a⊕(b+1)= n-3 现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】 ?1?1.计算???的结果是( ) ?2?A.31 6B.?111 C. D.? 868B.2.?2的倒数是( ) A.?1 2 1 2 C.2 D.?2 3.下列各式中,正确的是( ) A.2?15?3 B.3?15?4 C.4?15?5 D.14?15?16 4.已知实数a在数轴上的位置如图所示,则化简|1?a|?a2的结果为( ) A.1 B.?1 C.1?2a 5.?2的相反数是( ) A.2 B.?2 C. D.2a?1 a ?1 D.?0 1 第4题图 1 21 226.-5的相反数是____,-1的绝对值是____,2??4?=_____. 7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果 A. 2?(?)?1,则―33 2‖内应填的实数是( ) 2 3 B. 2 C.? 33 D.? 2 —◇◇
2 ◇◇—
思考与收获 第2课时 实数的运算 【知识梳理】 1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数. 3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0. 4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律: 加法交换律:a+b=b+a(a、b为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数) 【思想方法】 数形结合,分类讨论 【例题精讲】 例1.某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名. 例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( ) 伦敦 北京 汉城 纽约 多伦多 -5 -4 0 8 9 国际标准时间(时) 例2图 A.伦敦时间2006年6月17日凌晨1时. B.纽约时间2006年6月17日晚上22时. C.多伦多时间2006年6月16日晚上20时 . D.汉城时间2006年6月17日上午8时. 例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成. …… 例3图 —◇◇
3 ◇◇—
思考与收获 例4.下列运算正确的是( ) A.3?2?5 B.3?2?6 C.(3?1)2?3?1 D.52?32?5?3 例5.计算: (1) 3?2?8?(??1)0??1? 10 (2)?3?(??2)?tan45o 920?12008??0?()?1?38. (3)2?(3?1)?(); (4)(?1)1213 【当堂检测】 1.下列运算正确的是( ) 22 A.a4×a2=a6 B.5ab?3ab?2 C.(?a)?a D.(3ab)?9ab 2.某市2008年第一季度财政收入为41.76亿元,用科学记数法(结果保留两个有效数字)表示为( ) A.41?10元 B.4.1?10元 C.4.2?10元 D.41.7?10元 3.估计68的立方根的大小在( ) A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间 4.如图,数轴上点P表示的数可能是( ) A.7 B.?7 D.?10 P ?3 ?2?O 1 2 3 1 第4题图 89983252336 C.?3.2 5.计算: (1)(?1) 20091?()?2?16?cos600 (2)2??1?3?1????4 ?2??0?1—◇◇
4 ◇◇—
思考与收获 第3课时 整式与分解因式 【知识梳理】 1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即am?an?am?n(m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即am?an?am?n(a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab)n?anbn(n为正整数);④零指数:a0?1(a≠0);⑤负整数指数:a?n?1(a≠0,n为正整数); an2.整式的乘除法: (1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项. (3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式. (5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即(a?b)(a?b)?a2?b2; (6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即(a?b)2?a2?2ab?b2 3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式. 4.分解因式的方法: ⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:公式a2?b2?(a?b)(a?b) ; a2?2ab?b2?(a?b)2 5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区: ⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项― 1‖易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等 【例题精讲】 【例1】下列计算正确的是( ) A. a+2a=3a B. 3a-2a=a 236222C. a?a=a D.6a÷2a=3a 【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的 结果是( ) m 平方 -m ÷m +2 结果 A.m B.m222 C.m+1 D.m-1 2【例3】若3a?a?2?0,则5?2a?6a? . 【例4】下列因式分解错误的是( ) A.x?y?(x?y)(x?y) C.x?xy?x(x?y) 222 —◇◇
B.x?6x?9?(x?3) D.x?y?(x?y) 22222 5 ◇◇—
思考与收获 【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行―广‖字,按照这种规律,第5个―广‖字中的棋子个数是________,第n个―广‖字中的棋子个数是________ 【例6】给出三个多项式:1211x?2x?1,x2?4x?1,x2?2x.请选择你222最喜欢的两个多项式进行加法运算,并把结果因式分解. 【当堂检测】 1.分解因式:9a?a? , ?x3?2x2?x?_____________ 2.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时, (a,b)=(c,d).定义运算―?‖:(a,b)?(c,d)=(ac-bd,ad+bc).若(1,2)?(p,q)=(5,0),则p= ,q= . 3. 已知a=1.6?109,b=4?103,则a2?2b=( ) A. 2?107 B. 4?1014 C.3.2?105 D. 3.2?1014 . 34.先化简,再求值:(a?b)?(a?b)(2a?b)?3a,其中22a??2?3,b?3?2. 5.先化简,再求值:(a?b)(a?b)?(a?b)?2a,其中a?3,b??. 2213—◇◇
6 ◇◇—
思考与收获 第4课时 分式与分式方程 【知识梳理】 1. 分式概念:若A、B表示两个整式,且B中含有字母,则代数式A叫做分式. B2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算 4.分式方程的意义,会把分式方程转化为一元一次方程. 5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】 1.类比(分式类比分数)、转化(分式化为整式) 2.检验 【例题精讲】 x2?2x?1x?1?21.化简: x2?1x?x x2?2x?2x?4?2.先化简,再求值: 2??x?2??,其中x?2?2. x?4?x?2? (1?3.先化简 1x)?2,然后请你给x选取一个合适值,再求此时原式的值. x?1x?14.解下列方程(1)51x?2x?216??0?? (2) 222?3x?xx?2x?2?4xxx 5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米,则根据题意所列方程正确的是( ) A. B. —◇◇
7 ◇◇—
C. D. 【当堂检测】 1.当a?99时,分式a2?1a?1的值是 . 2.当x 时,分式x2?1x?1有意义;当x 时,该式的值为0. .计算(ab)23ab2的结果为 . 4.1 .若分式方程x?2?3?k?x2?x有增根,则k为( ) A. 2 B.1 C. 3 D.-2 5.若分式2x?3有意义,则x满足的条件是:( ) A.x?0 B.x?3 C.x?3 D.x?3 6.已知x=2008,y=2009,求x2?2xy?y2x?yx2?y5x2?4xy?5x?4y?x的值 7.先化简,再求值:(x?2x?1x2?16x2?2x?x2?4x?4)?x2?4x,其中x?2?2 8.解分式方程. (1)2x3(x?x?1?xx2?1?0 (2) x?2?2?2)x; (3) 12xx?2?1?x2?x?3 (4)x2?1??1x-1?1 —◇◇
8 ◇◇—
思考与收获 思考与收获 第5课时 二次根式 【知识梳理】 1.二次根式: (1)定义:____________________________________叫做二次根式. 2.二次根式的化简: 3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号 4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式: (1)a?b=ab(2)(a?0,b?0)aa =(a?0,b?0)bb6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用 【例题精讲】 【例1】要使式子A.x?1 【例2】估计32?x?1有意义,x的取值范围是( ) x B.x?0 C.x??1且x?0 D.x≥-1且x?0 1?20的运算结果应在( ). 2D.9到10之间 A.6到7之间 B.7到8之间 C.8到9之间 【例3】 若实数x,y满足x?2?(y?3)2?0,则xy的值是 . 【例4】如图,A,B,C,D四张卡片上分别写有?2,3,,π四个实数,从中任取两张卡片. A B C D (1)请列举出所有可能的结果(用字母; A,B,C,D表示)(2)求取到的两个数都是无理数的概率. —◇◇
579 ◇◇—
【例5】计算: (1)27?(3.14??)0?3tan30??(13)?1 ?1(2)(??1)0?????1?2???5?27?23. 【例6】先化简,再求值:(2a?1?1a?1)?(a2?1),其中a?3?3. 【当堂检测】 1.计算:(1)12??3?2tan60??(?1?2)0. (2)cos45°·(-1-212)-(22-3)0+|-32|+2?1 . (3)3?12?(62?2)0?cos230??4sin60? 2.如图,实数a、b在数轴上的位置,化简 a2?b2?(a?b)2 —◇◇
10 ◇◇—
思考与收获
思考与收获 第6课时 一元一次方程及二元一次方程(组) 【知识梳理】 1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程: 等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组. 4.用方程解决实际问题:关键是找到―等量关系‖,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】 方程思想和转化思想 【例题精讲】 ?3x?2y?152x?115?2x例1. (1)解方程??1.(2)解二元一次方程组 ??7x?2y?27 56 解: 例2.已知x??2是关于x的方程2(x?m)?8x?4m的解,求m的值. 方法1 方法2 例3.下列方程组中,是二元一次方程组的是( ) x?y?52????1?1?5xy?15x?y??2??x?y?3??xy6?例4.在 x ? 2 y ? 3 ? 0 中,用x 的代数式表示y,则y=______________. ?A. ? B. ? x ? y ? 10 C. ? x ? y ? 8 D. ?x?1例5.已知a、b、c满足??a?2b?5c?0,则a:b:c= . a?2b?c?0?例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超月份 用电量 交电费总数 过了规定的 A 度,则超过部分应该交3月 80度 25元 电费多少元(用 A 表示)? . 4月 45度 ②4 月的用电情右表是这户居民 3 月、况和交费情况:根据右表数据,求电厂规定A度为 .
—◇◇
10元 11 ◇◇—
思考与收获 【当堂检测】 1.方程x?5?2的解是___ ___. 2.一种书包经两次降价10%,现在售价a元,则原售价为_______元. 3.若关于x的方程1x?5?k的解是x??3,则k?_________. 3?x?2?x?3?x?1?y?c都是方程ax+by+2=0的解,则c=____. 4.若?y??1,?,?y?2??5.解下列方程(组): (1)3x?2??5(x?2); (2)0.7x?1.37?1.5x?0.23; (3)? 6.当x??2时,代数式x2?bx?2的值是12,求当x?2时,这个代数式的值. 7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少? ?2x?5y?212x?11?4x ; (4) ??1;35?x?3y?8?mx?ny??8(1)8.甲、乙两人同时解方程组?由于甲看错了方程①中的m,得mx?ny?5 (2)??x?4?x?2到的解是?,乙看错了方程中②的n,得到的解是?,试求正确m,n?y?2?y?5的值.
—◇◇
12 ◇◇—
思考与收获 第7课时 一元二次方程 【知识梳理】 1. 一元二次方程的概念及一般形式:ax2+bx+c=0 (a≠0) 2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b2-4ac≥0时,一元二次方程ax2+bx+c=0 (a≠0)的两根为 ?b?b2?4acx?2a4.根的判别式: 当b2-4ac>0时,方程有 实数根. 当b2-4ac=0时, 方程有 实数根. 当b2-4ac<0时,方程 实数根. 【思想方法】 1. 常用解题方法——换元法 2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程: (1) (x-15)2-225=0; (2) 3x2-4x-1=0(用公式法); (3) 4x2-8x+1=0(用配方法); (4)x2+22x=0 (m?1)x2?7mx?m2?3m?4?0有一个根为零,例2 .已知一元二次方程求m的值. 例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么? 例4.已知关于x的方程x2―(2k+1)x+4(k-0.5)=0 (1) 求证:不论k取什么实数值,这个方程总有实数根; (2) 若等腰三角形ABC的一边长为a=4,另两边的长b.c恰好是这个方程的两个根,求△ABC的周长. —◇◇
13 ◇◇—
思考与收获 【当堂检测】 一、填空 1.下列是关于x的一元二次方程的有_______ ①1?3x2?2?0 ②x2?1?0 x③(2x?1)2?(x?1)(4x?3) ④k2x2?5x?6?0 ⑤2x2?13x??0 42⑥3x2?2?2x?0 2.一元二次方程3x2=2x的解是 . 3.一元二次方程(m-2)x2+3x+m2-4=0有一解为0,则m的值是 . 4.已知m是方程x2-x-2=0的一个根,那么代数式m2-m = . 5.一元二次方程ax2+bx+c=0有一根-2,则4a?c的值为 . b6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根, 则k的取值范围是__________. 7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 . 二、选择题: 8.对于任意的实数x,代数式x2-5x+10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m2-n2)(m2+n2)=-6,则m2+n2的值是( ) A.3 B.3或-2 C.2或-3 D. 2 10.下列关于x的一元二次方程中,有两个不相等的实数根的方程是( ) (A)x2+4=0 (B)4x2-4x+1=0(C)x2+x+3=0(D)x2+2x-1=0 11.下面是李刚同学在测验中解答的填空题,其中答对的是( ) A.若x2=4,则x=2 B.方程x(2x-1)=2x-1的解为x=1 C.方程x2+2x+2=0实数根为0个 D.方程x2-2x-1=0有两个相等的实数根 12.若等腰三角形底边长为8,腰长是方程x2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21 三、解下方程: (1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x2-4x-4=0 (4)x2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0 —◇◇
14 ◇◇—
思考与收获 第8课时 方程的应用(一) 【知识梳理】 1. 方程(组)的应用; 2. 列方程(组)解应用题的一般步骤; 3. 实际问题中对根的检验非常重要. 【注意点】 分式方程的检验,实际意义的检验. 【例题精讲】 例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( ) A.4场 B.5场 C.6场 D.13场 例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是( ) ?x–y= 49?x+y= 49?x–y= 49?x+y= 49A.?y=2(x+1) B.?y=2(x+1) C.?y=2(x–1) D.?y=2(x–1) ????例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意得到的方程是( ) 15151??x?1x215151C.??x?1x2A.B.15151??xx?12 15151D.??xx?12例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,?但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x张,?信封个数分别为y个,则可列方程组 . 例5. 团体购买公园门票票价如下: 购票人数 1~50 51~100 100人以上 每人门票(元) 13元 11元 9元 今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?
—◇◇
15 ◇◇—
思考与收获 【当堂检测】 1. 某市处理污水,需要铺设一条长为1000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm,则可得方程 . 2. ―鸡兔同笼‖是我国民间流传的诗歌形式的数学题,?―鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?‖解决此问题,设鸡为x只,兔为y只,所列方程组正确的是( ) A.??x?y?36?x?y?36B.??x?2y?100?2x?4y?100?x?y?36?x?y?36 C.?D..??2x?2y?100?4x?2y?1003.为满足用水量不断增长的需求,某市最近新建甲、乙、?丙三个水厂,这三个水厂的日供水量共计11.8万m3,?其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3. (1)求这三个水厂的日供水量各是多少万立方米? (2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A型,B?型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A型汽车,每辆B型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载) 4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度. 5. 某体育彩票经售商计划用45000?元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩费,进价分别是A?种彩票每张1.5元,B种彩票每张2元,C种彩票每张2.5元. (1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案; (2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案? (3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案. —◇◇
16 ◇◇—
思考与收获 第9课时 方程的应用(二) 【知识梳理】 1.一元二次方程的应用; 2. 列方程解应用题的一般步骤; 3. 问题中方程的解要符合实际情况. 【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,?结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A.16 B.25 C.34 D.61 例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A.1米 B.1.5米 C.2米 D.2.5米 例3. 为执行―两免一补‖政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是( ) 2A.2500x?3600 B.2500(1?x)2?3600 C.2500(1?x%)2?3600 D.2500(1?x)?2500(1?x)2?3600 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,?加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,?设此人从甲地到乙地经过的路程为x千米,那么x的最大值是( ) A.11 B.8 C.7 D.5例5. 已知某工厂计划经过两年的时间,?把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台. 例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000?元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个? 例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.?如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.
—◇◇
17 ◇◇—
思考与收获 【当堂检测】 1. 某印刷厂1?月份印刷了书籍60?万册,?第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少? 2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵? 3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动. ⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2? ⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm? 4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg. (1)乙班比甲班少付出多少元? (2)甲班第一次,第二次分别购买苹果多少千克? 50kg 30kg以下但 购苹果数 不超过30kg 不超过50kg 以上 每千克价格 3元 2.5元 2元 —◇◇
18 ◇◇—
思考与收获 第10课时 一元一次不等式(组) 【知识梳理】 1.一元一次不等式(组)的概念; 2.不等式的基本性质; 3.不等式(组)的解集和解法. 【思想方法】 1.不等式的解和解集是两个不同的概念; 2.解集在数轴上的表示方法. 【例题精讲】 例1.如图所示,O是原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论错误的是( ) A. a?b?0 B. ab?0 C. a?b?0 D. b(a?c)?0 B A O C 1例2. 不等式?x?1的解集是( ) 21A.x?? B.x??2 C.x??2 2 例3. 把不等式组? ?1 D.x??1 2?2x?1??1的解集表示在数轴上,下列选项正确的是( ) ?x?2≤30 1 ?10 1 ?10 1 ?10 1 A. B. C. D. 例4. 不等式组???x≤2的整数解共有( ) ?x?2?1A.3个 B.4个 C.5个 D.6个 例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x的不等式x-m≥-1的解集如图所示,则m等于( ) A.0 C.2 B.1 D.3 01 234?x?13?x?2x?1?x?,??例7.解不等式组:(1)?1?x (2)?5 5?1???3?4(x?4)?3(x?6) —◇◇
19 ◇◇—
思考与收获 【当堂检测】 1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元. 2. 解不等式3x?2?7,将解集在数轴上表示出来,并写出它的正整数解. ?2x?2?3x?3?3. 解不等式组?x?1x?4,并把它的解集在数轴上表示出来. ???2?2?3 4. 我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题: A B C 脐 橙 品 种 6 5 4 每辆汽车运载量(吨) 16 10 每吨脐橙获得(百元) 12 (1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式; (2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案; (3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值. —◇◇
20 ◇◇—
思考与收获 第11课时 平面直角坐标系、函数及其图像 【知识梳理】 一、平面直角坐标系 1. 坐标平面上的点与有序实数对构成一一对应; 2. 各象限点的坐标的符号; 3. 坐标轴上的点的坐标特征. ?x轴?(a,?b)??4. 点P(a,b)关于?y轴 对称点的坐标?(?a,b) ?(?a,?b)?原点??5.两点之间的距离 (1)P, 0),P2(x2, 0), P1P2=x1?x21(x1 (2)P(0,y),P(0,y), PP=y?y11221216.线段AB的中点C,若A(x1,y1),B(x2,y2),C(x0,y0) 则x0?x1?x2,y0?y1?y2 222二、函数的概念 1.概念:在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x 的函数. 2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义 3.函数的表示方法; (1)解析法 (2)列表法 (3)图象法 【思想方法】 数形结合 【例题精讲】 2中自变量x的取值范围是 ; x?2 函数y?2x?3中自变量x的取值范围是 . 例2.已知点A(m?1则m? , ,3)与点B(2,n?1)关于x轴对称,n? .例1.函数y?例3.如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为 (8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形. 求点C的坐标. OyCDMBAx例3图 例4.阅读以下材料:对于三个数a,b,c用M{a,b,c}表示这三个数的平均数,用?1?2?34; min{a,b,c}表示这三个数中最小的数.例如:M??1,2,3???33?amin{-1,2,3}=-1;min??1,2,a?????1(a≤?1); 解决下列问题: (a??1).(1)填空:min{sin30o,sin45o,tan30o}= ; (2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论―如果—◇◇
21 ◇◇—
思考与收获 M{a,b,c}= min{a,b,c},那么 (填a,b,c的大小关系)‖. ③运用②的结论,填空:M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y}若, 则x + y= . (3)在同一直角坐标系中作出函数y=x+1,y=(x-1)2,y=2-x的图象(不需 列表描点).通过观察图象,填空: y min{x+1, (x-1)2,2-x}的最大值为 . x O 例4图 【当堂检测】 1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( ) A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4) 2.已知点P(x,y)位于第二象限,并且y≤x+4 , x,y为整数,写出一个符合上述条件的..点P的坐标: . 3.点P(2m-1,3)在第二象限,则m的取值范围是( ) A.m>0.5 B.m≥0.5 C.m<0.5 D.m≤0.5 4.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线. ⑴由图观察易知A(0,2)关于直线l的对称点A?的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B?、C?的位置,并写出他们的坐标: B? 、C? ; ⑵结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P?的坐标为 (不必证明); ⑶已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标. 7y 6 5 C4 3 A2 1A O-6-5-4-3-2-112-1 -2 -3D -4E -5 -6 (第22题图)第4题图 ''lB'3456x—◇◇
22 ◇◇—
思考与收获 第12课时 一次函数图象和性质 【知识梳理】 1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y?kx?b的图象是经过(?3. 一次函数y?kx?b的图象与性质 k、b的符号 图像的大致位置 经过象限 性质 第 象限 y随x的增大 而 第 象限 第 象限 第 象限 y随x的增大 而 y随x的增大而y随x的增大 而 而 k>0,b>0 k>0,b<0 k<0,b>0 k<0,b<0 b,0)和(0,b)两点的一条直线. k 【思想方法】数形结合 【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点. (1)求这个一次函数的解析式; (2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x轴、y轴围成的三角形的面积. 例2. 已知一次函数y=(3a+2)x-(4-b),求字母a、b为何值时: (1)y随x的增大而增大; (2)图象不经过第一象限; (3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y轴交点在x轴下方. 例3. 如图,直线l1 、l2相交于点A,l1与x轴的交点坐标为(-1,0),l2与y轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l2表示的一次函数表达式; (2)当x为何值时,l1 、l2表示的两个一次函数的函数值都大于0? —◇◇
23 ◇◇—
思考与收获 例4.如图,反比例函数y?2的图像与一次函数y?kx?b的图像交于点A(m,x2),点B(-2, n ),一次函数图像与y轴的交点为C. (1)求一次函数解析式; (2)求C点的坐标; (3)求△AOC的面积. 【当堂检测】 ; 1.直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______2.一次函数y1?kx?b与y2?x?a的图象如图,则下列 y 结论:①k?0;②a?0;③当x?3时,y1?y2中, 正确的个数是( ) A.0 B.1 C.2 D.3 O 3 y2?x?a x 第2题图 1 3.一次函数y?(m?1)x?5,y值随x增大而减小,则m的取值范围是( ) A.m??1 B. m??1 C.m??1 D.m?1 y?kx?b 4.一次函数y?2x?3的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.已知函数y?kx?b的图象如图,则y?2kx?b的图象可能是( ) 第5题图 6.已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是( ) A.1 B.2 C.24 D.-9 7.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为 ( ) A.(0,0) B.(22,?) 22y B 2211C.(-,-) D.(-,-) 2222
—◇◇
A O x 第7题图 24 ◇◇—
思考与收获 第13课时 一次函数的应用 【例题精讲】 例题1.某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图像如图所示. ⑴月用电量为100度时,应交电费 元; ⑵ 当x≥100时,求y与x之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元? 例题2. 在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系. (1)甲、乙两地之间的距离为 km,乙、丙两地之间的距离为 km; (2)求第二组由甲地出发首次到达乙地及由乙S(km) 地到达丙地所用的时间分别是多少? 8· (3)求图中线段AB所表示的S2与t间的函数6· 关系式,并写出t的取值范围. 4· B 2· A 2 t(h) 0 例题3.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x为多少时,销售利润为4万元; (2)分别求出线段AB与BC所对应的函数关系式; (3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案) 1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升. 15日:进油4万升,成本价4.5元/升. 31日:本月共销售10万升. —◇◇
25 ◇◇—
正在阅读:
第6讲 对数与对数函数03-14
我的爸爸是医生作文300字07-02
天津市2013届高三第三次六校联考地理试卷 - 图文07-07
总务主任述职报告两篇09-26
航空发动机燃烧室机匣可靠性分析 - 图文03-19
最新人教版二年级数学下册第八单元《克和千克》教案设计01-24
街道集中宣传活动方案 .doc04-16
管理会计习题集11-18
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 厦门市
- 中考
- 复习
- 数学
- 全部
- 图文
- 2009年黄埔区初中毕业班综合测试英语(二)含听力材料及答案
- 某科技创新服务平台项目策划方案规划书(完整版)
- “十三五”重点项目-预应力钢筒混凝土管(PCCP)生产建设项目可行
- 两角和与差的余弦公式说课案
- 三基考试成绩分析
- 实验2 路由器基本配置
- 上市公司财务绩效综合评价研究—以陕西省上市公司为例
- 恒大万科陷入泄密“罗生门”
- 苏教版小学语文三年级上册《小稻秧脱险记》精品教案
- 龙光~内衬塑复合钢管安装交底 - 图文
- 家具-掌上明珠专卖店经营手册 - 图文
- 《人体解剖生理学》复习题答案
- 楼宇自动化课程总结(火灾报警传感器) - 图文
- 施工-土06-B卷
- 数据结构图实验报告
- 最全电大应试资料--货币银行学--金融学
- 西餐
- 2018年转预备党员个人入党自传范文
- 中国邮政储蓄银行理财类业务指引
- 演讲稿:保护环境,创建绿色校园