哈尔滨工程大学船舶结构力学课程习题集答案
更新时间:2024-01-18 02:29:01 阅读量: 教育文库 文档下载
目 录
第1章 绪 论 ................................................................................ 2 第2章 单跨梁的弯曲理论............................................................ 2 第3章 杆件的扭转理论............................................................ 15 第4章 力法 .............................................................................. 17 第5章 位移法 ............................................................................ 28 第6章 能量法 ............................................................................ 41 第7章 矩阵法 ............................................................................ 56 第9章 矩形板的弯曲理论.......................................................... 69 第10章 杆和板的稳定性............................................................ 75
1
第1章 绪 论
1.1 题
1)承受总纵弯曲构件:
连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中
和轴的纵向连续构件(舷侧列板等)
2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨
3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等
4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙
骨等
1.2 题
甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向
作用)
舷侧外板:横向水压力等骨架限制力沿中面
内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力 舱壁板:主要为横向力如水,货压力也有中面力
第2章 单跨梁的弯曲理论
2.1题
设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(x1)
1)图2.1? v(x)?M0x2EI2?N?x36EI2?l43p(x?l)4?6EIl23p(x?l)2?6EI3l4p(x?3l)4 6EI3原点在跨中:v1(x1)?v0?M0x12EI?N?x16EI3?l43?v(l)?0v'(l)?0p(x?l)12?124,? p'6EI?v1(0)?0N1(0)??22)图2.2?v(x)??0x?Mx22EI?N?x36EIx0?l33p(x?l)3 6EI3p(x?l)2 6EI3)图2.3?v(xx)??0xx?N?x36EI??qxdx6EI3?l22.2题
a) v1?vpppl?1131?pl?1131??vp?(3???)??(?2?)? ???6EI?16444?6EI?41624?pl333 =
512EIpl3
V2?3?1?91?13?pl3pl???()???
6EI?4?192EI96EI4???162? 2
b) v(0)?'?Ml3EI?Ml6EI?2Pl296EI2(1?2)
32 =?0.1Pl6EI2?5Pl3?27EI2Pl2?73Pl1620EI
?(l)??Ml3EI?Ml6EI2?96EI2(1?1)
32 =?0.1Pl6EI?4Pl3?27EI22??107Pl1620EI
?l??2l?2p???l??3??3? vl??333EIl6EI??1???11?1????m2?3?m1?3?
3?????? =
37pl22430EI
4 c) vl3 ??2??192EI?768EI2304EIql3ql47ql5ql4 v(0)??'24EI??pl216EI???ql2166EI?l?ql11?ql3?1 ?????96EI8EI?3612?3d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3
图2.1
3
图2.2
图2.3
2.3题
1)
??右??M?Ml6EI13q1l?2ql324EI?Ml?l?q?q??0??21?45EI?23EI??
2l2120 2)?0??Ml3EI3?q1l324EI?Ml?l?lq? 1??180EI?2?6EI37l2ql?1q1l1713?????? =1?? ?EI?18243606?120?80EI2.4 题
图2.5 ?v(x)?v0??0x??N0x36EI,
v0?A?p?N0?
?x3??v(x)?Ap??0x???A?N0
?6EI? 4
如图2.4, 由v?l??v??l??0得
??l3?Ap??0l???A?N0?0?6EI????2l??0?N0?0?2EI?2?pl?Ap????0?l6EI??N?p3?0解出
33pl?3xx?3 ?v(x)??1?9EI?2l2l?? 图2.4 ? 图2.6
Mx2?v?x???1x?由v?l??0,M0l202EI?N0x6EI3v??l???2N0l3得4EI2EI?M?????201? ?ll??N?6EI?????122?0l?2??1l???0??2EI6EI?2M0lN0l?1????2??EI2EI??v?x???1x?l解得?2?1??2?x2???1??2?x3l2.5题
图2.5:(剪力弯矩图如2.5)
?R1?pl?Mll3??p??2p32p3??pl322p39EI33v0?AR?6EIMlplpl5pl?l?vv???0????216EI18EI48EI144EI?2?v??0???0??v0l?Ml6EI??pl2
9EI?pl218EI??pl26EIM?pa?bb? , 图2.5 A?1?l?KA?6l????将a?l,b?0A?l6,KA?16?13?12代入得:M?pl1???6312pl
5
2.7图:(剪力弯矩图如2.6)
?v1?A1R1?v2?A2R2?0.05lEIl433??ql2ql24??ql440EIql450EI100EI5qlql?11??l?v????????2?384EI2EI?40100?ql?57?293ql?????EI?384400?9600EI44
图2.6 ??0??ql3
24EIql3?v1?v2l?ql?111?2ql??????EI?2440100?75EI333??l????v1?v2l24EI?ql?111??17ql??????EI?2440100?300EI3
图2.8(剪力弯矩图如2.7)
21?b???M???12A??1???24KA?l?????Qa由Q?qa,a?l,b?0,??1,A?1824 KA?1?1?1?1,代入得 82432M?R1?qlql2224??2?12?1ql8?ql3ql84?24?1??ql28,v0?AR1?64EI 图2.7
5qlqlMl5ql?l??v??????384EI?2?384EI128EI16EIql34424
ql?111??(0)????????24EIl6EIEI?246448??ql3v0Ml3
192EIl8EI?ql82?(l)???M??
??ql364EI6
2.6题
dv2??max.dx?v2??maxGdx??NGAsEIdx?GAN1dx?????N?EIv???sGAsv1???C132EI?v?v1?v2??f(x)?ax?bx?cx?d????62??GAs?f??(x)?ax?b??C11?f(x)?EIGAsqxf??(x)?ax436?bx2??EI??c?a?x?d2GAs??qx2式中由于由f(x)?24EIf??(x)?可得出2EId1?b?0v(0)?v1??(0)?0v(l)?v1??(l)?0得方程组:23?ql4??EIqlalEI???c?a???l?06GAs??24EIGAs2EI??2?ql?al?0??2EI解出:a=ql2EIqx4,c?qlx3ql324EIqx2 .
?qx3ql??v(x)???????x24EI12EI2GAs?24EI2GAs??v()??2384EI8GAsl5ql4
ql22.7.题
?12EI? 先推广到两端有位移?i,?i,?j,?j情形:?令???i??j,?? 2?GAsl???v?ax36?bx22?cx?d1?EIGAsax?d1?v(0)??i????由v1(0)??i?c??i??由v(l)??j而v0??i
?al??j?GAs?????EI?al63?2bl22??il??i?由v1?(l)??j?al2?bl??j 7
???????2??a?j2?l??il1?????解出????i31?b?j??i??j?2?l?ll?1????
???M(0)?EIv1??(0)?EIb???EI???6???2????4?????ji?l?1?????l?EI6?6???????4?????2?????ijij?l?1????l?l??6EI2????N(0)?EIv(0)?EIa?????????? 1ijji??2l?1????l?????N(l)?N(0)?EI????M(l)?EIv1??(l)?EI?b?al????4??2????6????ji?l1??l???????令上述结果中?i?0,即???j同书中特例2.8题 已知:l?3?75?225cm, q??hs?102?51?0t?1.8cm,s?75cm?0?1050kgcm2
0?.75kg76.87 5cm面积 外板1.8?45 cm2距参考轴 cm 0 15.6 I?C?B2面积距 cm 3惯性矩 cm 4自惯性矩 cm 4 81 38.75 119.8 A e?BA?5.04cm0 604.5 B ?11662?604.520 9430.2 9430.2 C=11662 119.8?8610cm 24(21.87)略 2232 2253.9 球扁钢NO24a ? A计算外力时面积A?75?1.8?38.75?174cm?l?l计算I时,带板be?min?,s???45cm?5?5 1).计算组合剖面要素: 形心至球心表面y1?h?t2?e?24?0.9?5.04?19.86cm形心至最外板纤维
8
y2?e?tw2?I2?5.94cm?w1?Iy1?8610319.863?433.5cm
y2?8610?5.94?1449.4cm1050?174 u?l2?0AEI22522?10?86106?0.366
x?u??0.988,M?ql2?1(u)?0.98076.8752?225?1210.?988212x?u??2kg2cm0?4?324.) M??中ql24?1?u???M中 915?76.8?75?225??0.9(8kgcm015824158915?1416kg?中球头?固端?端球头板?2?cm?w1433.5?M320424?kgkg??0??1050??1271???max?141622cmcmw21450??M320424kg??0??1050??378?2cmw1433.5????0??1050? 若不计轴向力影响,则令u=0重复上述计算:
ql2?max??中球头??0?24w1?1050?76.875?22524?433.52?1424kgcm21424?1416相对误差:?0.5624
结论:轴向力对弯曲应力的影响可忽略不及计。结果是偏安全的。
2.9.题
?EIvIV?Tv???0,EIv????N?Tv?TEI2
?vIV?V???0,vIV?KV???0式中k?r??4k2T EI特征根:r1,?0,2r?3k?v?A1?Akx?Achkx?Ashkx234 ?v(0)?0??v?(0)?0??A1?A3?0??A2?A4?0?
?v??(l)?0???EIv???(l)?N(l)?Tv?(l) 9
??
??A3chkl?A4shkl?0??EIk3?A3shkl?A4chkl???p?Tk?A2?A3shkl?A4chkl?
解得:
A1??pkTthkl,A2?pkTpEIk3pkT,A?3pkTthklA,?4?pkT ?v(x)?????thkl?kx?thklchkx?shkx???thkl?1?chkx???shkx?kx???
2.10题
EIvvIVIV?Tv???0?2??EIv?22IV?N?Tv????kv???0式中k?4T?EI?特征方程:r?kr?0 特征根:r?0,1,2?r?3ik?r??4ik
??v?A1?Akx?Asinkx?Acoskx234???EIv??(0)?m?v(0)?0?A1?A4?0?A4k?2?????mEI???v??(l)?0????EIv???(l)??Tv?(l)???Asinkl?Acoskl?034????3???3???k?A3coskl?A4sinkl???k?A2?A3coskl?A4sinkl? ? ?解得:A3??mT?ctgkl,A2?0?m????????v?(0)??Ak?Akcosk?Aksink?Ak?343???2?x?0kEItgkl2.11题
图2.120
10
由v?(0)?0协调条件查附录图:l24kEI?l2464EI4EIl?1令 A=0 ?B=0 u=
ql324EIM??2?u??Ml3EI??0?u??0ql2
2ql?2?u?.6098?0?u?80.752?0.101ql2??l??l??v(2u)v??v(2u)v????1??33?1M2?l?q??0?u?????2??? ? v????1??2222k1?B2?EIv(2u)?v(2u)????13???????1.91150.66354.93011.9335????ql0.101ql??22222l?u?????1?0.448????22?1B?01.911564EI8EI ??4.930122??44???? ???0.0049ql4EI2.13图
pl22???0??M?16EIx0?u??Ml3EI?0?u???Mpl 16EIx0?u?l?0?u???????3EI??
将u?1,??l12EI代入得:M?0.72??1?0.591????0.111pl3?16?12pl??l??l??v(2u)v??v(2u)v????1??333?1plM2?l????2???v????2?u???222248EI2?EIv(2u)?v(2u)????13????pl?0.6090.1110.9115?0.6635?4.8301?1.9335????? ????? 22EI?4881.9115?4.9301???2lu?13?0.0086Pl3EI2.12题
1)先计算剖面参数:
11
W?bh262?2?10Wp?6?1003?cm?3?iAiyi
2?Ah?3
?2????bh?50?cm?4?24??形状系数?f?WpWbh?24?32bh26 图2.8a
2)求弹性阶段最大承载能力Pmax如(图42.8a)cm2 令Mm即516?W?axy?1003?2400?8?10?kg
?512?kg?Pmalx?W?y解出P416W?y16?8?10axm5l5?5003)求Pu?极限载荷??用机动法?此结构
达到极限状态时将出现三个塑性铰,其上作用有塑性力矩Mp?Wp?y如图由虚功原理:???Pu???? Pu???2??4Mp2????l?2?? 图2.8b ??
?Pu?4Mpl?4Wp?yl00?4?24?5?0960?kg?
5002.13补充题
剪切对弯曲影响补充题,求图示结构剪切影响下的v(x)
解:可直接利用
v(x)?v0??0x?M0x2EI2?N0?36EI?x? ?x?6EI?GAs? 12
则边界条件:v0?0?0?0v(l)?0EIv??(l)?m3ml22 得N0?3ml2l?6EI2M0?m?GAs2l?6EI
GAs23?m??3?lx6??llx2?v(x)??x??2?22EI?2l?6?2l?6?2(2l?6?)???EIGAs2.14. 补充题
试用静力法及破坏机构法求右图示机构的极限载荷 p,已知梁的极限弯矩为M(20分) (1983年华中研究生入学试题)
解: 1)用静力法:(如图2.9)
由对称性知首先固端和中间支座达到塑性铰,再加力p?pu,当p 作用点处也形成塑性铰时结构达到极限状态。即:
pul4?Mpp?Mp?pu?l8Mpl8Mp
2)用机动法: 2p??8Mp?2??pu?l2.15.补充题
求右图所示结构的极限载荷其中??l3EI,p?ql(1985年哈船工研究生入
学试题)
解:由对称性只需考虑一半,用机动法。当此连续梁中任意一个跨度的两 端及中间发生三个塑性铰时,梁将达到极限状态。考虑a) 、b)两种可能:
对a)解得?2??2?2qu???xdx?4M0l??qu?16Mpl2?pl?0
对b)?qu?lp2pu???4M16Mp2?l
?0l2(如图2.10)取小者为极限载荷为qu?坏。
8Mpl2即承受集中载荷p的跨度是破
13
图2.9
图2.10 14
第3章 杆件的扭转理论
3.1题
a) 由狭长矩形组合断面扭转惯性矩公式:
J?1?3ihiti?31?650?103?200?83?80?8?3?26.4cm 4?3? b) J??1?70?1.23?35?13?15?1.23??60.6cm4 ?3? c) 由环流方程
??????ds2AG??M????tf?2ABredt公式Mt4AG22??dst?????材力MtGJ0?J0?4A2??dst 本题A?40?41.6???20?0.8??3023.2?cm2?
??3.2题
dst?11.6?2?40?41.6???131.682?J0?4??3023.2?131.68?2.775?10cm54 对于a)示闭室其扭转惯性矩为J0?4A2?? 对于b)开口断面有J??两者扭转之比为dst?4?a?t?4t4?t?a?t?
3?a?t?1?ht33ii?t33??4?a?t???
?b?
?a??MtGJMtGJ0dst?J03?a?t?J??()??271倍4?t?2
本题易将??的积分路径取为截面外缘使答案为300倍,误差为10%,可用但概念不对。若采用s为外缘的话,J大,?小偏于危险。
3.3题
8Mt??n?1pb2?8?b2?p?4pb A?8????1???2b?tsinb?tcos?b?tsin???????2?8?8?4???2?Mt2A?4bp2?b?t?sin2
?f??4?2?100?302(300?0.2)2?9.555kg/cm 15
???l2AG??ftds?
????8b?tsin??????22AGt??82?b?t??2sicn8lf?4?10(弪)5?410?09?.5?b6?t?8?8sinos?8
100?9.56?84?29.8?cos?8?8?10?0.23.4题
.将剪流对内部任一点取矩
?215667f1rds??(f62731?f2)rds??f3)rds??32f2rds??f2rds??(f2?7843f3rds ???21562If1rds?f2??32673rds?f3??78437rds
?f1??rds?f2??rds?f3??rdsIIIII?2A1f1?2A2f2?2A3f3?Mt.........(1) 由于I区与II区,II区与III区扭率相等可得两补充方程
?f1ds???2GA1?t?11???f2tf21??ds??ds????2GAt?2?II?ds???26f1tds??73f3?ds?t??f3????ds?2GA3?IIIt?37?f2t2f2?f1?f3f?f23f?f2即:1??3.....(2)A1A2A3(1)(2)联立(注意到A1?A3,2A1?A2?a)??2A1?f1?2f2?f3??Mt?解得?3f1?f2?3f3?f2?1?3f1?f2?(?f1?4f2?f3)?2?????1???f1ds????2GA1?t1知J0?3Mt??f1?f3?214a??f?2M7a2t?22
?62f2?2Mt?5Mta?9Mtds?????222?3t7a?14atG ?2Gat?14a23????Mt145J0Gat
16
第4章 力法
4.1题
令l?l0?2.75cm由对称性考虑一半I?I0I2?26I0 2.5??q??1???0.8?1.025?1.845吨/米2??对0,1节点列力法方程3?M0l0M1l0ql0???0??3EI6EI24EI?000?33?M0l0?M1l0?ql0??M1(0.8)l0?M2(0.8)l0?q0(0.8l0)?6EI3EI024EI03E(26I0)6E(26I0)24E(26I0)0?2??M0?M1/2?ql8即:?2??M0?2.09M1?0.2549ql2??M1?0.0817ql?1.139?t?m???2M?0.0842ql?1.175?t?m???0
4.2.题
将第一跨载荷向c支座简化M1?Q1l12,p?Q1由2节点转轴连续条件:?Q1l12?l6EI2解得?2M2l23EI2?Q2l2224EI2??M2l33EI3?I2l3?1???Il32???Ql?8?2?Ql16M2??Q1l1?Q2l2?2??8?Q1l1?若不计各跨载荷与尺度的区别则简化为M2??RA??M2l?Q16???QM2?M1?MR????B?2?ll???
2??Q84.3题
由于折曲连续梁足够长且多跨在a, b周期重复。可知各支座断面弯矩且为M 对2节点列角变形连续方程
Ma3EI?Ma6EI?qa324EI??Mb3EI?Mb6EI?qb324EI解得
17
2332??q?a?b?qqbaa??22 M?1????? ?a?ab?b??12?????12?a?b?12b?b????
4.4题
图4.4,对2,1节点角连续方程:
2?M?l?Ml7QlM?l/1?20????10200????I0?E3?I4E1?8I0?04EI3??6E?400?2M?l8Q?l?0??M1?l02?0???0 ??3E?4 IE6I4E18I04?????000??41?Ql?0.1242Ql?M1?解得:330??M?Ql/55?0.0182Ql?
?
4.5图令I12?I34?4I0,I23?3I0l12?l23?l34?l0,由对称考虑一半
18
2?M?l?Ml2Ql????10200???0??3E4IE6I4E45I?0??0???04??2M?l7Ql????M2l0Ml20?M1?l0200????? ?6E?4I0?E3?I4E1?8I0?04E(I)3E(3I) 06?00?3?解出:??M411?330Ql?0.1242Ql??M2?Ql/55?0.0182Ql
4.5题
对图4.4?刚架?1??l02?2?3EI?l006EI0对图4.5?所示刚架考虑2,杆3,由对称性?M2l02l0M2l2?M3E(3I?6E(3I?00)0)6EI0??2?l06EI0?均可按右图示单跨梁计算。由附录表A-6(5)?l0E(4I0)21?0?2?6EI?0l?03K??1?0???21?111?3???3?????3?3636??M?2Ql0?1??2?9?41Ql0?0.1242Ql?145?1136??316??0?????330? ?M7Ql0?1??1?Ql02?0??0.0182Ql0?180??1136????7???55
4.6题
??2为刚节点,转角唯一(不考虑23杆) ?M2l1??M243EI2?l3EI
?M2节点平衡21?M?24?????M22
19
??2??M22?l3EI?M2l6EI,??2?1??2M2l?l6EIK?6EIl13EIl 若21杆单独作用,K21?3EI?21,若24杆单独作用,K24?6EIl?24?
?两杆同时作用,K?K21?K24?4.7.题
已知:受有对称载荷Q的对称弹性固定端单跨梁(EIl), 证明:相应固定系数?与?关
??2?EI?? l?系为:??1?1?
证:梁端转角?i??M??l??M???Q????2EI?Ml3EI?Ml6EI???Q???.............................?1??令??0则相应M?M?固端弯矩?即M???Q?l2EIMM?........................................?2?l2EI?1?12?EIl???EIl
?1??2?得????l2EI????11?2?或:???1?1?1??2??? 讨论:
1)只要载荷与支撑对称,上述结论总成立
2)当载荷与支撑不对称时,重复上述推导可得
?i??2?ij?1??ij?ijor2?ij?ij?1?3?i??1j?i?6?1??j???i13?13式中?ij?MiM??外荷不对称系数 ?ij??i?j??支撑不对称系数 仅当?ij??ij?1即外荷与支撑都对称时有?i?11?2?i
否则会出现同一个固定程度为?i的梁端会由载荷不对称或支撑不对称而影响该端的柔度?i,这与?i对梁端的约束一定时为唯一的前提矛盾,所以适合?i??Mi定义的?i~?i普遍关系式是不存在的。
20
4.8 题
A1??2l?348EI?l36EI列出1节点的角变形连续方程:2?Mlvp2l??M(2l)v11?1????1??3EIl3EI2l16EI? ?v?AR?A??M1?2p???M1?p??
111???????12????2l??l?联立解出M1??311pl,v1?23pl336EI画弯矩图见右图
4.9题
1)如图所示刚架提供的
支撑柔度为A1?A2?V而由5节点?5?0得p?1
?pl?l??3E?7I?6E?7I?M5l?M5?pl2,F???pl???pl2?l?0
??3p2 由卡瓦定理:
A?V1?1p??EIM?M?Pdsp?1 ?l??l3p??3??pssds?pl?sl?sds1????2?2????1?10E?7I??022?????1p?2
1?l3???E?7I???312333?3?1?ll?l?l?s2?ds2???????0?2?4?12EI???7EI?3l1节点列出方程组求解 2)由对称性只需对0,
21
3?M0lM1lv1ql????0??3EI6EIl24EI?33?M0lM1lv1M1lM1lqlql ? ???????l24EI3EI6EI24EI?6EI3EI3???M1?M0ql?ql?lv?AR???111?????12EI??l2?2?? 联立解得:M0?11ql236,M1??ql236,v1?2v2?ql418EI
4.10题
a)? =13?8?4,Q1?qal192, q??Q?a?ql23
k?192Eialb)Q?Q1?Q2?qal?23Q3qal2?3qal2?Q1??v中?5Q1l,?Q2?Q2l313Q5Q1l384Ei3310??7????5180Ei?228?35??5?23?????3?384Ei384EiEi?384384???5Q2lQl3?5Ql3384Ei384?,???5q???148?Q?a5?483qal15??ql3842a16?48Eial,pl?2k?Ei3 c)?al3
??148??1l48,p?p,Q?p?k?Ei?al3?48Eial3
d)令pl348Ei48p4?3?1??p=??26Ei?44?61?41???34?1???4?11p?,k848?Ei(同ac图l)
3
22
e)??53843,??1,Q?qal2?481?4??1????9?p=?q?Q?a?
令pl5?48qal??384a2123???36p6?51623ql348Ei?3pl?11???1??6Ei?32?4?8p??6?
27?1?m????1???1??????768Ei2?2?????2
768?131m3m24768Ei??p=-???????k?37al7?122?222?l7lf)令???g)p同a)即p?7pl1?1???1?????m?26Ei2?2???l2??Q?qal2?q?pa?ql2?192Eil3?k0?x?6a?1? k???192EiA?192E(2i)l3?2??2k03l??k?k0a?192Eial3?x?6a?
4.11题
?支柱处v???0,可简化为刚性固定约束?仅考虑右半边板架
????p=1481?11?11?1????6?42?164p?1116311???????48?16??pk?48Eial?48EI0l?2EI0?4?9l0?4E9I0?6l0?03?2EI09l40u??6l0?24????12?
23
11
?M?N??p?6l0?8p2?1?1??16p2p??6l0?81132?0.874?0.4507pl0P?0.852??0.2929p
?1?1????0.852?vm?l??vax???v?3l?4?p?6l0?3?0
?11?9?192E?I0??2??1?1??16?6?0.88996?9?3pl30EI0?0.1528pl30
EI0
4.12题
设a?l0?1mI?1.857I0,i?I0?5.833?10cmQ?q0al,54L1?l?10l026b?2.5l02q0?1kgcmE?2?10kgcm '求:中纵桁跨中及端部弯曲应力及v中解:因主向梁两端简支受均布载荷Q故其形状可设为sinc1?c3?sin1?1?6?4
?yl?y1l?sin?4?0.707c2?sin?2?1?11??12????111???3?????0.02083?44????按对称跨中求?1?11?11???1??????0.01432?6?24?164??2??i?1?1?1iciIic1I1?I1I2???3?110.707?0.02083?0.707?0.01432?1??0.0411?2?45?2???0.0411,6384?0.0130223k2?Ei?q2??2al?2?10?5.833?102?i0.01302?10q0l00.0411l0?20.0411?10??10?3?283kgcm?2Q?L24l0?3.168q0l03u?4alI1?13?10l024I04l0?10l0?1.857I0?0.0411?1.2?1?1.2??0.728, v中?q2k21?2?u??0.813,3.168?1?102832?1?u??0.774(1?0.728)?0.304?cm??1???u???
24
?端?
M?h?I??t??2?q2L242?q2L122??2?1.?2I51?3q.1l0?608l1220?20?100.8?1310.833?10551?1010kgcm
?中?
??1?u?I51?3.168ql0?10l024??0.774?5110.833?105?481kgcm4.13补充题 写出下列构件的边界条件:(15分)
1)
?I?v?????A?v?0?p1?E????0 解:???EIv???0??m?????v?l ??v?l??0?0 2)
?v???1??v??0?EI??? 解:???v?0??0??0m?1????l?????v?2?l0?????v??2w?2?0时y?=?y0,a ??w=0????E?Iv??
2lm 3) 设x=0,b时两端刚性固定;y=0,a时两端自由支持 ??w?0?解:x=0时,b ??x?w=0?4) 已知:x=0,b为刚性固定边;y=0边也为刚性固定边:y=a为完全自由边
??w?0?解:x=0时,?b?x?w=0 ?y=时0w??w?y?0
25
2??2w?w???0?22?x??y y?a时?
22????w?2???w??0??2???y??y2?x???4.14题.图示简单板架设受有均布载荷q主向梁与交叉构件两端简支在刚性支座
上,试分析两向梁的尺寸应保持何种关系,才能确保交叉构件对主向梁有支持作用?
解:?少节点板架两向梁实际承受载荷如图,为简单起见都取为均布载荷。由
对称性:R1?R2?R由节点挠度相等:
w主w交?????384Ei48Ei?使之相等令3311Q2L5RL? ??972EI162EI??5Q1l1Rl13qlLQ2?qbl?12qlL5????.............................?1??48162???dRd??033Q1?qal?11??5解出节点反力R=qlL????1944??1152式中??lILi33——交叉构件与主向梁的相对刚度,且
由?1?节点反力将随?的增加(即交叉构件刚性的增加)而增加。当???时R=Rmax?51152IL3?48qlL?524qlL
这时交叉构件对主向梁的作用相当于一个刚性支座
当
51152??111944时即?1.3il3时R?0表示交叉构件的存在不仅不支持
26
主向梁,反而加重其负担,使主向梁在承受外载荷以外还要受到向下的节点反作用力这是很不利的。 ∴只有当
27
IL3〉1.3il3时,主向梁才受到交叉构件的支持。
第5章 位移法
5.1题
图4.40M12??Ql010,M21?Ql015,M32?M23?0
' M12?2E(4I0)l02EI0l0/24EI0l0/2?2,M4EI0l0/22EI0l0/2'21?4E(4I0)l0?2
' M23??3??2
'? M32?3??2
对于节点2,列平衡方程
M32?0?? 即: ??M?M?021?23?MM'23'32'21?M32?0?M23?M?M21?0
代入求解方程组,有
2?4EI08EI0Ql0??2??3?0??2???l0l0?22?15EI0?,解得? ?28EI08EI04EI0Ql0Ql0?(????)?2??3??3?l0l015?44?15EI0?l0?所以M12?M'12?M1228EI0??Ql0??l0?22?15EI0?Ql041???Ql0??0.1242Ql0 ?330?10M21?M'21?M21216EI0??Ql0??l0?22?15EI0?Ql0Ql0???0.0182Ql0 ?1555?
图4.50。 由对称性知道:?2???3???
1)M12??Ql010,M21?Ql015,M32?M23?0
'? 2) M122E(4I0)l0?2,M)'21?4E(4I0)l0(0I3?2
E6I0l0 M2'3?2E(3I0l0??34El0?)?2? 23) 对2节点列平衡方程M23?M21?0
28
即
16EI0l0?2?Ql015?6EI0l0?2?0,解得?2??Ql0222?15EI0
4)求M12,M21,M23(其余按对称求得)
M12?M'12?M1228EI0??Ql0??l0?22?15EI0?Ql041???Ql0??0.1242Ql0 ?330?10?Ql0Ql0???0.0182Ql0 ?55?15M21?M'21?M21216EI0??Ql0??l0?22?15EI0M23??M21,其余M43??M21,M34??M21,M32??M23
5.2题
由对称性只要考虑一半,如左半边 1)固端力(查附表A-4)
M12??Q(2l0)10??15q0l02, M21?Q(2l0)1?5215ql02 0M25?M23?M32?M34?0
2)转角?2,?3对应弯矩(根据公式5-5)
M12?'2E(4I0)2l04EI04l04EI0l02EI0l04EI04l0?2,M21?'4E(4I0)2l0EI02l0?2,
M25?'?2?2EI04l02EI0l04EI0l02EI04l0?5?5???2??2
M23?'?2??3,
M32?'?2??3
EI02l0M34?'?3??4?4???3??3
图5.1 (单位:q0l02) M'25'32'233)对于节点2,3列出平衡方程
?M32?M34?0?? 即??M?M21?M25?M23?0???M?M'34'21??(M32?M34)???M23?M21?M25??M
29
32EI04EI0EI0??12q0l0??2??3??3?0??2??l0l02l01045EI0??则有?,得 ?23q0l016?8EI0??EI0??4EI0??2EI0???2q0l0???2223?l?33?1045EI2lll15000?00?4)
M12?M'12?M1234EI0??12q0l0?1257222??(?ql)??q0l0??0.246q0l0 ??00l0?1045EI0?51045M2138EI0??12q0l0?226222??ql?q0l0?0.0415q0l0 ??00l0?1045EI0?156273EI0??12q0l0?622???q0l0??0.0057q0l0 ??2l0?1045EI0?104534EI0??12q0l0?2EI0????l0?1045EI0?l032EI0??12q0l0?4EI0????l0?1045EI0?l03?16q0l0?11222??ql??0.0357ql??00003135?3?1045EI0?3?16q0l0?822??q0l0??0.0026q0l0 ??3135?3?1045EI0?M25M23
M32其余由对称性可知(各差一负号):M65??M12,M56??M21,M52??M25,
M54??M23,M45??M32,M43??M34?M32;弯矩图如图5.1
5.3 题
(M14?M25?0)M12??pl8,M21?pl8,其余固端弯矩都为0
'? M412EIll?1,M14?''4EIll?1,M52?'2EIl?2,M25?'4EIl?2
M63?M12?M'23''2EI4EIl4EIl?3,M36??1?2EIl2EIl4EI?3
'?2, M21?2EIl2EIl?1??2?4EI??2??3, M32?'l4EIl?2 ?3
由1、2、3节点的平衡条件
?M14?M12?0?????M21?M25?M23?0 即?M??M32?M36?0???M14?M12???M14?M12?'''25?M'23'?M'21'???M23?M21?M25?
M32?M36???M32?M36? 30
4EI2EI?4EI?????2?11?lll?4EI4EI?2EI?????2??12ll?l4EI4EI?2EI?????3?23?ll?lpl84EIl02EIlpl8?2??3??
解得:?1?27pl222?64EI,?2??5pl222?16EI,?3?5pl222?64EI
M14??M1224EI?27pl?27??pl?0.0767pl ??l?22?64EI?352M4122EI?27pl?27??pl?0.0383pl ??l?22?64EI?70424EI?5pl?5??pl?0.0142pl??M32 ??l?22?64EI?35222EI?5pl?5??pl?0.007pl ??l?22?64EI?70424EI?5pl?5????pl??0.0568pl ??l?22?16EI?88224EI?5pl?2EI?5pl?35?????pl??0.0497pl ????l?22?16EI?l?22?64EI?704M36M63M25M23M21??M25?M23?75704pl?0.1065pl
M5222EI?5pl?5????pl??0.0284pl ??l?22?16EI?176弯矩图如图5.2
31
5.4题
图5.2(单位:ql) 已知l12?l0?3m,l23?2.2l0?6.6m,l24?3l0?9m I0?0.3?104cm4,I12?2I0,I23?3I0,I24?8I0 Q0?12q2l12?12q0l0,q4?4q0,
12(3q0)3l0?6Q0?9Q03l0)? Q24?Q矩24?Q三角24?q(0
1)求固端弯矩
M21?Q0l010,M12??Q0l015,M32?M23?0
?(6Q0)(3l0)12??33Q0l010 M24??
M42(9Q0)(3l0)15
?(9Q0)(3l0)10?(6Q)(3l)0012?21Q0l05
2)转角弯矩
M'12?4E(2I0)l0?1?2E?2I0?l0?2,
32
M21?'2E(2I0)l0?1?4E?2I0?l0?2
' M23?4E(3I0)2?(2l0)?2?2E(3I0)2?(2l0)?3,
M32?'2E(3I0)2?(2l0)4E(8I0)(3l0)?2?4E(3I0)2?(2l0)?3
' M24??2,
M42?'2E(8I0)(3l0)?2
图5.3(单位:Q0l0) 3)对1、2、3节点列平衡方程
8EI04EI0????2?Q0l0151?l0l0??796EI030EI0?4EI0?16??0即:??1??2??3????Q0l0?33l011l0?5??l0?30EI060EI0???3?0?211l011l0??2M12?0?? ?M21?M24?M23?M32?0?
解得:?1??2234Q0l032880EI02??0.03397q0l02EI0,?2?209Q0l01370EI02?0.07628q0l02EI0,
?3??209Q0l02740EI0??0.03814q0l02EI0
4)求出节点弯矩 M21?????4?223432880?8?2091370?1??Q0l0?1.0487Q0l0 10?2096209??12M23??????Q0l0?0.6241Q0l01.213702.22740??33??32209M24?????Q0l0??1.6727Q0l0?3137010?21??14209M24?????Q0l0?5.0136Q0l0313705??
弯矩图如图5.3。
5.5 题
33
由对称性只考虑一半; 节点号 杆件号ij Iij/I0 lij/l0 kij Cij Cijkij 1 12 —— —— —— —— —— —— —— —— -1/10 8/11 1/2 1/15 21 4 1 4 1 4 2 23 3 1 3 (1/2)对称 3/2 11/2 3/11 —— 0 ?Cijkij ?ij nij Mij/Ql0 mij/Ql0m'ij /Ql0-4/165 -8/165 -1/55 Mij/Ql0 -41/330 1/55 -1/55
所以:
M12??M43??41Ql0330,M21??M34?Ql055,M23??M32??Ql055
5.6题
1.图5.40:令I10?I0?I12,l10?l0,l12?1.5l0
节点号 杆件号ij Iij/I0 lij/l0 kij Cij Cijkij 0 01 —— —— —— —— —— —— —— —— 2/3 1/2 10 1 1 1 1 1 1 12 1 1.5 2/3 3/4 1/2 3/2 1/3 0 2 21 —— —— —— —— —— —— —— ?Cijkij ?ij nij 34
Mij/Ql0 -1/10 -1/45 1/15 -2/45 0 -1/45 0 —— mij/Ql0m'ij /Ql0Mij/Ql0 -11/90 1/45 -1/45 0 由表格解出 M01??0.1222QlM10?0.0222Ql M12??0.0222QlM21?0
2.图5.50
令I10?3I0,I0?I12,
l10?l0,l12?l0
ql q?q0,Q10?q0l0,Q12?002
1 10 3 1 3 1 3 4 3/4 1/2 1/12 1/4 1/2 -11/192 12 1 1 1 1 1 2 21 —— —— —— —— —— —— —— 5/192 节点号 杆件号ij Iij/I0 lij/l0 kij Cij Cijkij 0 01 —— —— —— —— —— —— —— —— ?Cijkij ?ij nij Mij/ql mij/qlm'ij22-1/12 /ql2 -5/512 -0.0931 35
-5/256 0.0638 -5/768 -0.0638 -5/1536 0.0228 Mij/ql
2
由表格解出:
M01??0.0931ql2,M10??M12?0.0638ql2,M21?0.0228ql2
若将图5.5中的中间支座去掉,用位移法解之,可有:
4?5ql?16l?2?12?2???192EI ?4??12l??48??29ql22?32EI?解得:
?2?77ql396?52EI227ql4?0.0514ql3EIql,
4?2?256?39EI2?0.0227EI
M12??0.140ql,
M23?0.14ql2 ,
N21?0.040qlN23??0.040ql5.7题
计算如表所示 节点号 杆件号ij Iij/I0 lij/l0 kij Cij Cijkij 1 12 —— —— —— —— —— —— —— 0 21 2 1 2 3/4 3/2 198/685 0 2/15 2 23 3 2.2 15/11 3/4 45/44 297/1507 0 0 24 8 3 8/3 1 8/3 1056/2055 1/2 -3.3 3 32 —— —— —— —— —— —— —— 0 4 42 —— —— —— —— —— —— —— 21/5 ?ij nij Mij/Ql0 mij/Ql0m'ij/Ql0 0 0.9153 0.6241 1.6273 0 0.8136 36
Mij/Ql0 0 1.0487 0.6241 -1.6273 0 5.0136
5.8题
1)不计45杆的轴向变形,由对称性知,4、5节点可视为刚性固定端 2) Q23?12q0?3l0??32q0l0,Q34?0.6q0?3l0??1.8q0l0 3q0l02 M23?Q23(3l0)/15?, M32??Q23(3l0)/10??9q0l02
10 MQ12?934?34(3l0)/20q20l0
3) 计算由下表进行:
M18??M12?0.0039q0l20,
M21??0.0786q20l0
M??M??0.518q232340l0,
M25??0.0341q0l20
M243??0.4159q0l0,M23?0.1127q20l0
M252??0.0170q0l0, 其它均可由对称条件得出。
37
20 节点号 杆件号ij Iij/I0 lij/l0 kij Cij Cijkij 1 18 1 6 1/6 1/2 1/12 13/12 1/13 —— 12/13 1/2 0 -.045 .04154 -.00537 0.3 1/2 0 -.009 .02077 -.01073 12 1 1 1 1 1 21 1 1 1 1 1 2 25 1 3 1/3 1 1/3 10/3 0.1 1/2 0 -.003 -.00358 0.6 1/2 0.3 -.018 .015 -.02146 1/3 1/2 -0.45 -.009 .003 -.01073 23 6 3 2 1 2 32 6 3 2 1 2 3 34 12 3 4 1 4 2/3 1/2 0.45 .06 4 43 -0.45 .03 5 52 0 -.015 -.00179 ?Cijkij ?ij nij Mij/ql 20 mij/qlm'ij20.00346 /ql2 .00041 .00496 -.00064 .00248 -.00128 -.00043 .00179 -.00256 .00358 -.00128 .00715 .00358 .00022 38
Mij/q0l0 2.00005 -0.0039 .00059 -.00008 0.0039 .00030 -.00016 -.00001 -0.0786 -.00005 -.00000 -0.0341 .00022 -.00031 .00003 -.00002 0.1127 .00043 -.00016 .00005 -.00001 -0.5181 .00085 .00011 0.5181 .00043 .00006 -0.4159 -.00003 -0.0170
图5.4a 图5.4b
39
5.9 题
任一点i的不平衡力矩为
Mi??sMis?ql12?ql12?0(i=1,2,…,h,i,j,…n-1. s=i-1,i+1)
所以任一中间节点的分配弯矩mij与传导弯矩m'ij?njimji均为0。 任一杆端力矩:Mij?Mij?mij?m'ij
?Mij??ij?Mis?nji???ji?Mjs??Mij?0?i?n?
s????s对两端i?0,n,由于只吸收传导弯矩m'ij?0 Mij?Mij?m'ij?Mij
两端所以对于每个节都有杆端力矩Mij?Mij
说明:对图5.4b所示载荷由于也能使?Mi?0,也可以看作两端刚固的单
跨梁。
40
第6章 能量法
6.1题
1)方法一 虚位移法
考虑b),c)所示单位载荷平衡系统, 分别给予a)示的虚变形 :
M(x)EIdx??d?
外力虚功为 ?W??虚应变能为
?V=?1??i?? ?1??j??M(x)MEI01l0(x)dx
?1?? =?EI?1??EI?0?Ril0ilx?Mi??0R?x1?idx
??Rx?M??Rx?dx0ii
?l???EI??=??l??EI???Mi3Mj3?Mj?l?1??M?M..........b)?j??i6?3EI?2?Mi?l?1?M?M...........c)??i??j6?3EI?2?
?由虚功原理:?W=?V 得:
?1??i?l? ?????3EIj??1????2?1?2??Mi???? Mj?1????
2)方法二 虚力法(单位虚力法) ? 梁弯曲应力:???=MM?x?Iy
??=?E=?x?EIy
41
Mx??Mi??Mi?Mlj?xxl
?M?x??1?(1?0)
?M?x?Iy
给Mi以虚变化?Mi?1 虚应力为 ????=虚余功:?W?=?i?1
虚余能:?V*=?(真实应变)?(虚应力)d?
?????1EI1EIM?x??M?x?yydxdydz EII2???l0l0M?x??M?x?dx?Ay2dA
j??Mi??Mi?M?1?x/l?dx ?x/l????
Qi?1??M?Mj??i3EI?2?l
同理:给Mj以虚变化?Mj?1,??Mi?0?可得(将i换为j)
?j??Mi???Mj??3EI?2?l
3)方法三 矩阵法(柔度法) 设??????,?p?????j?M?x?I??i??Mi???Mi?力?p?,虚?????,?????p????
?Mj???Mj?yx??Mi???????c??p?
Ml??j? ??????y?xy??Mi??Mi?Mj?x/l???1??II?l?式中?c??y??x??x??1??,??????I??l??l??(不妨称为物理矩阵以便与刚度法中几何矩阵
?B?对应)
??Mi???c???p???c???
?Mj???1?1虚应力????实应变?????D??????D??C??p?
42
虚余功 ?W*??????p????p???????i?Mi??j?M虚余能 ?V*?????????d??????????d?
??TTTTj?
????p??C??D??C??P?d????p??TT?1T??T?1CDCd???????????p? ???于虚力原理:?W*??V*考虑到虚力??p?的任意性。得: ?????p???C??D???A??? p??C?d?T?1式中 ?A????C??D??C?d?——柔度矩阵(以上推导具有普遍意义)
?T?1对本题:
x??1??y??y?x??l?1??????I?x?EI??l????l??2??x???1??l?x?1l????d???l?EI0?x?x???1???l???l???A????x?x??1????l?l??dx2??x??????l??
由
1?l/3?l/?6l????EI??l/6l/3?3EI????1?1/21?/2? ?1????A??p?展开得: ??i?l ?????j?3EI?1/?2?Mi??1???M? 1??j???1/26.2题
方法一 单位位移法
???uj?ui?/l , ??E??E?uj?ui?/l
ui/l??1/l设 ?ui?1,则 ?????
Ti?1???El?uj?ui???1/l?d???EAl2?l0?uj?ui?dx?EAl?ui?uj?
同理,令?uj? 可得
Tj?1???l?uEj?ui??1/l?d??EAl?uj?ui?
?Ti?EA?1即:????Tlj??1???1??ui???? 可记为 1??uj??p???K????
ijij 43
?K?为刚度矩阵。
方法二 矩阵虚位移法 设?pij????TiTj??T ??i???j?u1iu??jT
? {?}??uj?ui?1l?ui?/l???1??1???l?uj??B??????j i?式中 ?B????11?——几何矩阵
? ?????D??????D??B???ij?
设虚位移
??ij?????uiT?uj?? , 虚应变 ??????B????ij?
TijijijT外力虚功 ?W??pij???????????p?
T?TT虚应变能 ?V?????????d??????????d?
?T ???????????B??D??Bij?ijd?
????i?jT?TB???????D??ij?Bd???????
ij ????i?K???j??
?
ij由 ?W??V 得: ?pi???K???jTd——刚度矩阵 式中 ?K????B??D???B??对拉压杆元 ?K??EA??l1??1?1EA?1?11dx?????l?1?ll??1?1?? 详细见方法一。 1?方法三 矩阵虚力法 设 ?pij??Ti??ui???? , ??ij???? , ?????D???? ?Tj??uj?Tj?TiA1A?1? ?????1?Ti??11??????C??pij? A?Tj?1?——物理矩阵(指联系杆端力与应力的系数矩阵)
?1 式中 ?C???
??1 ?????D??????D??C??pij? 虚应力 ??????C???pij?
44
设虚力 ??pij???Ti??1??? , 则 ??????D??C???pij? ??Tj?T 虚余功 ?W*???ij???pij????pij??TT?1T???
ij 虚余能 ?V*?????????d??????????d?
?TT ?p??C??????p??C??Dij?ij?d
???pi?C??Dd????C??j???????T?1??p
ij ???pij??A??pij? 式中
A????C???C??D?T?1?d ——柔度矩阵
?1?? 1?对拉压杆: ?K???
AEij?l1??1?1l?1?11dx??????A?1?AEA??1 ??i???A??pj?
?1??Ti???? 1??Tj??ui?l?1 即 ????uEAj??1??讨论: 比较方法二、三。
结论: ?pij???K???ij?, ??i???A??pj?
ij?1若 ?K?与?A?的逆矩阵存在(遗憾的是并非总是存在),则,?K?实际上是一个柔度矩阵,?A?实际上是一个刚度矩阵
6.3题
1)6.30如图所示
??1设vx???an?1n2n?x??1?cos??
l??
显然满足x?0,x?l处的
变形约束条件
v?0??v?l??0v?0??v?l??0''
45
变形能 V?EI2?l0(v)dx?''2EI?2n?x??2n??acos??n??dx ??02l???n?1?l??l?422l2?2n?? ? a?n??2n?1?l?2EI?力函数 ??pv?c??pv?l?c??2pv?c?(对称)
? ?2p?an?1?cosn?1??2n?c??l?
EIl22n?l2n?c??4)?2p?1?cos?
l??由
??V????an?0 ,所以
?V?an????an 。即
an(所以, an?pl43pl344EI??2n?c??1?cos??l???4n
v?x??4?EI?n?11?2n?c??2n?x?1?cos1?cos??? 4?n?l??l? 2)6.40如图所示
?设v?x??a0x??ansinn?1n?xl
2???n?x?EI?n???v?l???V??asindx???n?????20?ll2A2????n?1?22EIll?a0l?2?n??a?n?l?2?2A ??n?1?42? ??pU?c??p?ansinn?1n?cl?a0pc
由
??V????a0?0
得 a0l2/A?pc , 所以,a0?Apc/l2 由
??V????an?0, 得
46
2plEIl?n??n?c 所以,a?a?psinn??n2?l?lEI?n?? v?x??43?4sinn?cl
Apcl2x?2plEI?34??n?11n4sinn?clsinn?xl
3)6.50如图所示 令v?x??ax2?l?x? 所以, V??EI2?l0vdx''2
2EI22?0?2al?6ax?3ldx
5192?2aEIl ??由
?
?l/20qU?x?dx??l0/2qax52?l?x?dxql4?qal4
??V????a?0 得 4aEIl?3192 所以,a?5ql768EI v?x??5ql768EIx2?l?x?
4)6.60所示如图, 设v?x??a1x2?a2x3,v?x??2?a1?3a2x?
V?EI2''?l0vdx?''2EI2?l04?a1?3a2x?dx222
2 ?2EI?l1a?31a2a?l3?a
2l3???ll/2qv?x?dx?q?ll/2?ax12?a2x?dx
ql?7a115a2l?? ???
8?38?3由
??V????a1??V????a2?0 得 2EIl?2a1?3a2l??7ql3/24
由
?0 得 6EIl?a1l?2a2l2??15ql4/64
47
2?67qla???1384EI解上述两式得 ?
?a??13ql??2192EI? v?x??0.1745ql2EIx?0.06772qlEIx
36.4题
如图所示
设 v?x??a1sin?xl
?EIV?2??2?l/40vdx?''2E?2I?2?l/2l/4?vdx?
?''2 ?EI?
l/40l/2?????x??x?????2a???sindx?2EIasin1?????dx ?l/4l?l??l???l??2144242???l?31??EIa?????l4???2??21
?xldx?2qla1/?4???l0qv?x?dx?q?a1sin0l
由
??V????a1???l?31?2ql?0 得 EIa1?? ??????l?2?2??4ql?4所以, a1?5???3?21?EI????0.00718ql4EI
ql U?x??0.00718EI4?xsi nl6.5题
如图所示
?设 v?x???n?1ansin?2n?1??x2l
2?EI2l''?v?l????? V?vxdx?????20?2A2 48
24??????2n?1???2?EI??2n?1????3????? ?an???ansin?2l?n?1?2?2????n?1???其中,A??Vl3EI
4??2n?1???EI?2n?1?EI???2n?1???3???an?3??ansin?????sin?? ?anl?2l22?????n?1??????2l0qv?x?dx?q?2l0??n?1ansin?2n?1??x2ldx
?2l?q?an???2n?1??n?1??4ql1?cos2n?1??????????????n?1an2n?1
所以,
???an?4ql?2n?1??
44EI???EI?VEI?3??EI取前两项得 ?3??a1?3?a1?a2?,?3?a??a1?a2? ?23?a1l?2?l?a2l?2?l?V 由
??V????a1??V????a2?0 得
??EI?3l??????4??EI4ql??1a?a??????1232l?????????
由
?0 得
??EI?3?l???3??4??EI4ql??1a?a?????21?32l3?????????
4?4ql?7.088a1?a2???EI即: ? 4?a?494.133a??4ql12?3?EI?4?ql?a1?0.1798?EI解得 ? 4?a?0.001ql182??EI?x3?x?ql??0.0012sin ?v?x???0.180sin?2l2l?EI?ql?l? ?中点挠度v???0.17862EI??44 49
6.6题 取v1(x)?V?EI2EI2EI2EIl4??2ansinn?xl,v2(x)?'2?bnsinn?xl
??l0v1dx?1GAs2?l0v2dx2 ?l02?GAsn?x??n???asindx????n??ll?2??????n?x??n??bcos?n?l??dx?0?l????l2 ???lGAs2?n??an???l22??GAsl?n??2a???n4?l?44??l2?n??bn???l?222
??V?an?n??2??bn?l?GAsln?2EIln?4?V()an,?()bn 2l?bn2ll???0qv1dx?l0?l0qv2dxn?xl?1 ?q??ansindx?q?l0?bnsinn?xldx?1
(1?cosn?) ?q??n??an???l?(1?cosn?)?q??n??bn???l?∴???an?q??(V??)?an?(V??)?an?l??l?(1?cosn?),???b?qn???(1?cosn?) n?n?????2ql(1?cosn?)(n?)EI2ql(1?cosn?)(n?)GAs3254n为奇数由
?0得an??n为奇数4ql54(n?)EI4ql32
由
?0得bn??(n?)GAs
∴U?x??U1?x??U2(x)
?4ql54?EI?nn15sinn?xl?4ql32?GAS?nn13sinn?xl
(N?1,3,5,? ? ? ? ? )6.7题
1)图6.9 对于等断面轴向力沿梁长不变时,复杂弯曲方程为:
EIVIV?TV?q?0''
50
正在阅读:
哈尔滨工程大学船舶结构力学课程习题集答案01-18
数据库考试试题精选10-12
风力发电并网及电能质量控制的相关探讨12-30
微观经济学习题集1-5章参考答案03-02
壳体机械论文04-06
湖北省农村信用社案防考试题库(单选)08-08
王静爱《中国地理教程》复习重点07-18
四川省建设厅关于进一步加强房地产开发企业资质管理的通知11-29
第三届中金所杯题库-金融衍生品真题及答案05-20
职业体验报告10-12
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 哈尔滨工程大学
- 结构力学
- 习题集
- 船舶
- 答案
- 课程
- 神经外科颅内动脉瘤血管内介入栓塞治疗手术知情同意书
- windows操作系统的现状和发展方向
- 名师伴你行2016届高考英语一轮复习对点练习必修4 unit 3
- 2018届中考物理分类汇编 滑轮与滑轮组专题
- 云大洞穴中心合作建议书
- 西南大学《儿童哲学》网上作业及参考答案
- 安全知识竞赛题库(单选3 多选2 判断3)
- C语言闯关题
- “素质教育月”活动实施方案
- 桥梁监理工程师职责
- 2018年15年室内设计毕业实习心得体会-精选word文档(2页)
- 世界十大最著名建筑师的生平及作品介绍 - 图文
- 2015年浙江杭州市中考模拟(二模)语文试题
- 分布式宏基站建设与应用研究 - 图文
- 基于MATLAB的骨架提取算法的研究实现
- 大学法语四级考试语法手册统稿4
- 四川科技动态-四川科技厅
- 领导人媒体形象优化(下)干部培训考试 85分
- 企业IT服务管理系统建设规范
- 甘肃省兰州市2018年中考英语试题(Word版,有答案)