中考数学试卷精选合辑(补充)52之22-初中毕业学业考试数学卷及参

更新时间:2023-03-08 04:42:32 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

初中毕业学业考试试卷

数 学

一、选择题(每小题2分,共20分)

1.北京2008年第29届奥运会火炬接力活动历时130天,传递总里程13.7万千米,传递总里程用科学记数法表示为( )

(A)1.37×105千米 (B)1.37×104千米 (C)1.37×103千米 (D)1.37×102千米 2.下列运算中,结果正确的是 ( )

448325824(A)a?a?a (B)a?a?a (C)a?a?a (D)?2a?23???6a6

3.不等式3x?5<3?x的正整数解有( )

(A)1个 (B)2个 (C)3个 (D)4个

21?x??0的解是 ( ) x?44?x(A)x??3 (B)x?3 (C)x?4 (D)x?3或x?4

5.如图1,是张老师晚上出门散步时离家的距离y与时间x之间的函数图象,若用黑点表示张老师家的

4.方程

位置,则张老师散步行走的路线可能是( )

6.如图2,AB//CD , ?1?105,?EAB?65,则?E 的度数是 ( )

(A)30 (B)40 (C)50 (D)60

7.如图3,是小玲在5月11日“母亲节”送给她妈妈的礼盒,图中所示礼盒的主视图是 ( )

8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是 ( )

??????

9.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为 ( )

3211 (B) (C) (D) 4324k10.设反比例函数y??(k?0)中,y随x的增大而增大,则一次函数y?kx?k的图象不经过

x(A)

( )

(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

二、填空题(每小题2分,共20分)

11.分解因式:2a?8b? . 12.方程组?22?x?y?5,的解是 ___.

x?y?3?13.已知数据2,3,4,5,6,则x的值是 . x的平均数是4,

得分 评卷人 复评人 14.如图4,直线a、b被直线c所截,若a//b,?1?120,则?2的度数等于 .

?15.如图5,△ABC内接于⊙O,点P是AC上任意一点(不与A、C重合),

??ABC?55,则?POC的取值范围是 .

?16.已知△ABC中,?C?90,3cosB=2,AC=25,

?则AB= .

17.师生做游戏,杨老师要随机将2名男生和2 名女生排队,两名女生排在一起的概率是 . 18.如图6,在平行四边形ABCD中, DB=DC、?A?65,CE?BD于E, 则?BCE? .

?19.某厂接到为汶川地震灾区赶制无底帐篷的任

务,帐篷表面由防水隔热的环保面料制成.样式如图7所示,则赶制这样的帐篷3000顶,大约需要用防水

隔热的环保面料(拼接处面料不计) m2. (参考数据:5?2.2,π?3.1)

20.某市出租车公司收费标准如图8所示,如果小明乘此出租 车最远能到达13千米处,那末他最多只有 元钱.

三.解答题(本大题8个小题,满分60分)

21.(本题满分7分)

先化简,再求值:

22.(本题满分7分)

袋中装有红、黄、绿三种颜色的球若干个,每个球只有颜色不同.现从中任意摸出一个球,得到红球的概率为

x32??1,其中x??. x?1?x?1??x?2?311,得到黄球的概率为.已知绿球有3个,问袋中原有红球、黄球各多少个? 32

23.(本题满分7分)

如图9,已知正比例函数y?x与反比例函数y?1的图象交于xA、B两点.

(1)求出A、B两点的坐标;

(2)根据图象求使正比例函数值大于反比例函数值的x的范围; 24.(本题满分7分)

如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.

求证:(1)AE?CG;

(2)AN?DN?CN?MN.

25.(本题满分7分)

如图11,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA. (1)求四边形CEFB的面积;

(2)试判断AF与BE的位置关系,并说明理由;

(3)若?BEC?15,求AC的长.

26. (本题满分7分)

某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图12所示,BC//AD,斜坡AB长

?5106m,坡度i?9:5.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,地质人员勘测,2当坡角不超过45时,可确保山体不滑坡.

(1)求改造前坡B到地面的垂直距离BE的长;

(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F处,问BF至少是多少米?

27.(本题满分8分)

5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作. 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.

(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;

(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.

? 28.(本题满分10分)

0?、B?0,?6?如图13,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A??8,两点.

(1)求出直线AB的函数解析式;

(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;

(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S?PDE?若存在,请求出点P的坐标;若不存在,请说明理由.

1S?ABC?10

2008年怀化市初中毕业学业考试试卷参考答案及评分标准

数 学

一、选择题(每小题2分,共20分)

题号 答案 1 A 2 B 3 C 4 B 5 D 6 B 7 A 8 D 9 A 10 B 二、填空题(每小题2分,共20分)

题号 答案 11 12 13 4 14 ??15 ?16 6 17 18 19 20 2?a?2b??a?2b? ?x?4 ?y?1?120 0<∠POC<110 1 225? 203670 16 三、解答题

21.解:

x?x?2??3??x?1??x?2?x3??1? ·································· 2分 x?1?x?1??x?2??x?1??x?2?x2?2x?3?x2?2x?x?2??x?1??x?2?x?1??x?1??x?2?

1 ··································································································································· 5分 x?2213········································································ 7分 ?当x??时,原式的值为? ·

23??24311122. 解:摸到绿球的概率为:1??? ···································································· 1分

3261则袋中原有三种球共 3??18 (个) ············································································· 3分

61所以袋中原有红球 ··········································································· 5分 ?18?6 (个) ·

31袋中原有黄球 ·················································································· 7分 ?18?9 (个) ·

2??y?x,?x1?1?x2??1?,?23.解:(1)解方程组?得, ··············· 2分 ?1y?1y??1y??1?2?x?所以A、B两点的坐标分别为:A(1,1)、B(-1,-1) ······· 4分

(2)根据图象知,当?1?x?0或x?1时,正比例函数值大于反比例函数值 24. 证明:(1)?四边形ABCD和四边形DEFG都是正方形

7分

?AD?CD,DE?DG,?ADC??EDG?90?,

······················· 3分 ??ADE??CDG,?△ADE≌△CDG,······································································· 4分 ?AE?CG ·

(2)由(1)得 ?ADE??CDG,??DAE??DCG,又?ANM??CND,

?ANMN?,即AN?DN?CN?MNCNDN ······················································· 7分

∴?AMN∽?CDN ····································································································· 6分 25解:(1)由平移的性质得

AF//BC且AF?BC,△EFA≌△ABC,?四边形AFBC为平行四边形,?S?EFA?S?BAF?S?ABC?3,

?四边形EFBC的面积为9. ······························································································ 3分

(2)BE?AF.证明如下:由(1)知四边形AFBC为平行四边形

?BF//AC且BF?AC,又AE?CA,?BF//AE且BF?AE,?四边形EFBA为平行四边形又已知AB?AC,?AB?AE,

?平行四边形EFBA为菱形,?BE?AF ········································································· 5分

(3)作BD?AC于D,??BEC?15?,AE?AB,??EBA??BEC?15?,??BAC?2?BEC?30?,?在Rt?BAD中,AB?2BD.设BD?x,则AC?AB?2x,?S?ABC?3,且S?ABC?11AC?BD??2x?x?x2,?x2?3,?x为正数,?x?3,?AC?23......................7分22

BE9?,?设BE?9k,AE?5k?k为正数?,AE55则在Rt?ABE中,?BEA?90?,AB?106,AB2?BE2?AE2,.....................................2分226.解:?1??i?5522?5?即?106???9k???5k?,解得k?,?BE?9??22.5?m?.22?2?故改造前坡顶与地面的距离BE的长为22.5米....................................................................4分27

FH?tan?FAH,?2?由?1?得AE?12.5,设BF?xm,作FH?AD于H,则AH22.5由题意得?tan45?,即x?10.x?12.5?坡顶B沿BC至少削进10m,才能确保安全.........................................................................7分.解: (1)因为租用甲种汽车为x辆,则租用乙种汽车?8?x?辆.

2??4x?2?8?x?≥30,由题意,得? ·················································································· 2分

??3x?8?8?x?≥20.44解之,得7?x?···································································································· 3分 . ·

5即共有两种租车方案:

第一种是租用甲种汽车7辆,乙种汽车1辆;

第二种是全部租用甲种汽车8辆 ···················································································· 5分 (2)第一种租车方案的费用为7?8000?1?6000?62000元 ·································· 6分 第二种租车方案的费用为8?8000?64000元 ······························································· 7分 所以第一种租车方案最省钱······························································································ 8分 28.解:(1)设AB的函数表达式为y?kx?b.

3??0??8k?b,?k??,∵A??8,0?,B?0,?6?,∴?∴?4

?6?b.???b??6.∴直线AB的函数表达式为y??3········································································ 3分 x?6. ·

4(2)设抛物线的对称轴与⊙M相交于一点,依题意知这一点就是抛物线的顶点C。又设对称轴与x轴相交于点N,在直角三角形AOB中,AB?AO2?OB2?82?62?10.

因为⊙M经过O、A、B三点,且?AOB?90,?AB为⊙M的直径,∴半径MA=5,∴N为AO的中点AN=NO=4,∴MN=3∴CN=MC-MN=5-3=2,∴C点的坐标为(-4,2). 设所求的抛物线为y?ax?bx?c

2?1?b????4,a??,?2a?2??则?2?16a?4b?c,??b??4, ??6?c.?c??6.????∴所求抛物线为y??(3)令?12·················································································· 7分 x?4x?6 ·

212得D、E两点的坐标为D(-6,0)、E(-2,0),所以DE=4. x?4x?6.?0,21又AC=25,BC?45,?直角三角形的面积S?ABC??25?45?20.

2111假设抛物线上存在点p?x,y?使得S?PDE?S?ABC,即?DE?y??20,?y??1.

10210当y?1时,x??4?2;当y??1时,x??4?6.故满足条件的存在.它们是

P2,1,P2?4?2,1,P3?4?6,?1,P4?4?6,?1. ··························· 10分 1?4?

????????

本文来源:https://www.bwwdw.com/article/up6.html

微信扫码分享

《中考数学试卷精选合辑(补充)52之22-初中毕业学业考试数学卷及参.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文
范文搜索
下载文档
Top