阻抗匹配及应用设计实战

更新时间:2023-11-30 05:31:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

阻抗匹配及应用设计实战(老外的经典诠释)

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),

可以看出,负载电阻R越小,则输出电流越大。 负载R上的电压为:Uo=IR=U/[1+(r/R)],

可以看出,负载电阻R越大,则输出电压Uo越高。 再来计算一下电阻R消耗的功率为:

P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r) =U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/{[(R-r)*(R-r)/R]+4*r}

对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,

当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。

对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流

电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。

在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。

如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。

为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。

传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。

例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上

则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。

为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有

时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。

为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况。

确定双绞线的特性阻抗

平衡双绞传输线常用于高频信号处理应用中,如在阻抗变换器、信号合成器和功率分配器等。在高频电路与系统中,采用基于它们的这些传输线和结构,必须了解双绞线的特性阻抗。一旦,找到将这些平衡线连接到标准测试设备不平衡端口的解决方案,就有可能利用商业矢量网络分析仪(VNA)来准确测量平衡双绞传输线的特性阻抗。 在分析双绞传输线的特性阻抗中采用商用VNA的关键之一,就是将由平衡线与非平衡

VNA匹配所导致的测量误差最小化。特性阻抗是双绞线的一个重要参数,在众多应用中所采用,这包括宽带阻抗变换器设计。这一过程和计算将用于分析这些遵循典型均匀传输线设计理论的平衡线。 先前的作者已经提出了确定平衡双绞传输线特性阻抗的方法。其方法是根据在导体和接地平面所做的阻抗测量,并且采用其作为相应导纳值的参考。部分基于传输线导体和绝缘材料性能的特性阻抗表达式已经在几种出版物上发表,其采用分布式传输线参数。已经采用在工作频率下负载开路和短路条件测量传输线输入阻抗的方法,获得了特性阻抗。 这里所介绍的这一测量方法经实验室测试,验证了其中的可靠测量技术是必不可少的。采取特别预防措施来尽量减少测量误差。在测试频段,开路、短路及特定负载条件下,采用标准连接器校准VNA。通过在测试频带采用扫频测试信号来对散射参数(S参数)进行测量。利用输入阻抗和反射系数S11参数测量来对反射特性进行分析。使用Smith图以及设定测试频率的相应电抗值获得了输入复数阻抗。 大多数商业测试设备具备不平衡端点,使其难以对平衡传输线进行评测。幸好,有不同的方法来回避这一不兼容性,例如使用平衡-不平衡转换器(巴伦)。将平衡网络转换到不平衡网络的巴伦,在当前方法中使用。几种类型的商用巴伦及其行为和特性必须采用严格程序进行检查,从而确保巴伦的电气作用并不影响到平衡传输线最后的测量结果。

根据需要,这一测试中使用的VNA采用巴伦和适当的适配器进行校准。图1表示了校准示意图。采用来自VNA的实测值,平衡传输线的特性阻抗可以采用公式1求得2、8、9: Zo-√ZocZ5c 其中,Zoc=传输线端

点开路的输入阻抗;Zsc=传输线端点短路的输入阻抗 负载测量使得在开路和闭路条件下检查先前获得的值成为可能。在作这些检查方面,与传播因子相对应的传输线输入阻抗公式为公式2和3:

Zin=Zo[Z+Zotanh(y1)/Zo+ZLtanh(y1)] tanh(y1)=√Z5c/Zoc 其中,Z5c=负载阻抗;Γ=波传播因子;l=传输线长度。

其中,ZL是负载阻抗,Γ是波传播因子,而l是传输线的长度。此后,将公式1和3代入采用实测值Zoc和Zsc的公式2中。利用负载阻抗ZL可以计算输入阻抗值Zin,并与同一负载的实测值进行比较。所有的测量表明了传输线端点在开路、短路以及负载条件下,其结果具有良好的一致性。图2和图3显示出测试频带下Zin的模和幅角的实测值与计算值之间的比较。这一传输线被用作每厘米五个弯以及20厘米长度的28AWG规格导线。这些实验的负载阻抗是20V的纯电阻。

将具有串联和并联谐振的该传输线端点在短路和开路条件下,根据其线的长度与波导传输线进行了对比。实验结果表明,在这两种情况下包括了阻抗的实部和虚部。图4、5、6和7表示了在测试频段,开路和短路条件下,每根传输线另一端的输入阻抗。1对负载开路的传输线,第一谐振与一个空电抗(串联谐振)出现。对负载短路的传输线,该传输线显示出最大的阻抗(并联谐振)。该传输线在接近谐振时,阻抗显示出很大增加或减小。在理想传输线中,一个值趋于无穷大时,其他值将趋向于零,在两个值的比之间有不同的变化。在频率中,小的变化在实测的传输线参数中就显示出较大的差别,这表明为了保持准确性,应该避免这

些接近谐振条件下的测量。 对这些情况,采用短路和开路负载,发现谐振频率有少许不同的值。这被认为是由于测量中传输线在非理想短路和开路条件下,其要求有轻微的变化来比较波导传输线,以确保平衡传输线与波导关系中的有效匹配。然而,平衡线的测量值与理论值之间被发现具有良好的一致性,其被用于验证测量方法。第一谐振总是出现在某个频率,其中传输线的长度等于四分之一的波长。因为谐振的存在及其导致的问题,不应该在某个点进行测量,在该点传输线的长度是四分之一波长的整数倍。这可以利用公式4来进行检查: 1=k(VP/f) 其中,k=部分波长,VP=波的传播速度,f=波的频率。

如果不知道传输线中波的传播速度,可以通过利用经典方法先前测量的参数来确定。9表中所提供的例子是这里所提出的测量方法的测试结果,特征阻抗的模和幅角的值是频率的函数。作者采用同样的测量方法,还完成了已有的不同直径和弯数的其他传输线类型的结果。

平衡线在高频电路中的噪音抑制以及RFI和EMI抑制方面具有许多优势。随着通过有线和无线方式传输视频、数据、语音等的增加,高数据速率下的无噪音传送的必要性将随时间而增加,这要求对处理基于单端设计、差分设计以及二者相结合的器件和电路进行有效测量和分析的方法。这里提出的这一测量方法是基于采用已有的商用VNA系统及其校准标准,而且通过适当注重细节可用于辅助传统的测量方法。 总之,这份报告显示,实现仔细校准和测量必须使这一测量方法有效确定商用VNA的平衡传输线的特性阻抗。主要问题涉及到有害谐振,这可能降低测量精度。但是,只要小心,这一基于巴伦的测量方法可用于

确定各种平衡传输线的特性阻抗。而对于不平衡传输线,巴伦完全没有必要,但公式和测量过程是有用且有效的。 作者:Antonio Alves Ferreira, Jr.,Wilton Ney Do Amaral Pereira, Jose Antonio Junstino Ribeiro

测试系统阻抗匹配与开关质量的评价

阻抗失配会引起信号反射,这是高频测试系统所不希望出现的现象。对于交流信号而言,材料之间介电常数的任何变化都会导致特性阻抗的变化和阻抗失配问题。例如,当某个正弦波沿着某条40.9-W传输线和50-W负载传输时,它的部分能量将会反射回传输线上。掌握信号反射发生的原理有助于我们改进测试系统的配置和测量效果,这对于高频测试尤其重要。 尽管由于反射导致的功率损耗是所有交流系统普遍存在的现象,但是仅当系统中传输线的长度大于其传输信号波长的1/100时,由功率损耗而导致的测量误差才值得我们关注。由于射频信号具有较短的波长,因此它们相比低频信号更容易受反射导致的功率损耗的影响。 我们来对比一个1MHz的正弦波和一个1GHz的正弦波在1m长的同轴线缆上的传输特性,通过这个例子可以说明线缆长度与信号波长之间的关系。这两种信号的波长可以根据公式(1)计算出来。

其中:λ=信号的波长;f=信号频率;VF=线缆的速度因子。假设两个系统中线缆的速度因子都是0.66,那么可得以下结果: 对于频率为1MHz的信号(信号1):

对于频率为1GHz的信号(信号2):

相比信号1的波长,线缆的长度是相对较小的(如图1所示)。因此,线缆上不同位置的任何电势差异都是可以忽略的。由于信号1无法以波的形式在线缆上传输,因此它不存在由于反射导致的功率损耗问题。但是信号2的波长是线缆长度的1/5,因此任意时刻都有5个周期的信号2在线缆上传输。这种波长较短的信号在线缆上传输时就会呈现出波的形式,在具有不同特性阻抗的结点上就会发生反射。

射频元件的特性阻抗并不是直流电阻。相反,对于传输线上的某个点,特性阻抗可以定义为在不存在任何反射的情况下这一点上一对电流和电压波的比。实际上,信号的频率以及传输线的单位电阻、电导、电容和电感等就决定了这一电压与电流的比值。因此,这些因素也就决定了特性阻抗的大小(Zo)。传输线(如图2所示)单位长度的特性阻抗可以表示为公式(2): 其中:L=单位长度的电感,R=单位长度的电阻,G=单位长度的电导,C=单位长度的电容,ω=2pf,j=(-1)0.5 典型的射频传输系统包括一个产生信号的信号源、传输该信号的传输线以及解析或广播该信号的负载。在如图3所示的系统例子中,Pin表示源产生信号的功率,Pout表示传输线输出端的信号功率,Preflected表示由于硬件上阻抗不匹配而产生的信号反射所导致的功率损耗。由于存在制造容差和材料缺陷,真实世界中的硬件总是具有一定程度的阻抗不匹配,Preflected的值不可能等于零。因此,在实际系统中,Pout的值总是小于Pin。 由于反射而导致的功率损耗可以用多种方法来衡量。其中一种方法是计

算回波损耗(return loss),它是指反射回源端的信号功率与源发射功率的比值的对数:

回波损耗的取值范围从理想匹配系统(所有元件具有相同的特征阻抗值)的无穷大到开路和短路电路的零。VSWR(Voltage Standing-Wave Ratio,电压驻波比)是另外一种衡量射频系统阻抗匹配和反射功率大小的指标。正如其名所暗示的那样,VSWR是指入射波和反射波叠加之后形成的驻波上最大幅值与最小幅值二者的比值。VSWR的取值范围从理想匹配系统的1到开路或短路电路的无穷大。

为了更好的理解VSWR,我们不妨以图4中的系统为例。假设源端发出的功率恒定不变。反射回源端的信号功率的增加将会导致到达负载端信号功率的相应减少。当在75-W的同轴电缆上传输的信号波遇到50-W的终端时,由于元件阻抗的不匹配就会导致出现反射现象。在计算这一例子的VSWR之前,我们需要首先计算出反射系数(Γ):

反射系数的计算结果表明20%的入射波将会反射回传输线和负载之间的不连续点。然后我们可以利用这个值来计算系统的VSWR: 对于只有几个不连续点的简单电路可以通过这些公式计算出VSWR。但是对于更加复杂的电路,在计算VSWR时需要利用VNA(Vector Network Analyzer,矢量网络分析仪)分析信号的入射、反射和合成波,判断最大驻波幅值与最小驻波幅值的比。图5给出了在两个不同时刻,在分析仪上观察到的图4的射频系统中传输信号的入射、反射、传输和驻波的波形。在第一个时刻,信号源的输出波形是一个1Vpp的正弦波,它与反射信号同相。因此,在这个时刻,驻波(1.2Vpp)的幅值是入射波(1Vpp)

本文来源:https://www.bwwdw.com/article/unht.html

Top